压实黄土增湿变形的非饱和土力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多工程问题与土的非饱和特性有关。往往处于非饱和状态,未来气候的变化将明显的改变土体的含水量分布,有关的工程必然面临许多与非饱和土有关的工程问题,如降雨引起的路基沉陷等。为了达到安全经济有效的预防和治理此类工程问题,对压实黄土的特性有必要进行基于非饱和土力学的进一步认识。
    
     本研究来源于中铁二十一局集团科研开发项目,同时得到甘肃省科技支撑计划项目(No.1011FKCA093)的资助。论文主要通过室内试验手段,运用非饱和土力学的理论和方法,对压实黄土的非饱和特性进行了系统的研究,试图揭示压实黄土的增湿时的变形特性和规律,为干旱半干旱地区的压实黄土路堤工程的实践服务。主要的研究内容包括压实黄土土水特性的特征和机理、压实黄土的非饱和渗透特性试验及路堤降雨入渗规律模拟、压实黄土增湿压缩变形特性、压实黄土的非饱和变形特性、强度特性、屈服特性和水量变化特性及增湿变形模型等。
    
     论文主要的研究内容包括以下几个方面:
    
     (1)对土水特征曲线、非饱和渗透性、黄土湿陷及增湿变形和非饱和弹塑性模型的研究现状进行较为详细的综述和评价。目前的研究现状表明,由于非饱和土力学的复杂性,其理论的工程实用需要大量的数据积累和验证。对于压实黄土,非饱和特性方面的试验研究资料较欠缺,试验资料明显偏少,限制了非饱和土力学在国内的发展,所以大量开展试验研究并获得高质量的试验数据是一项重要的研究内容之一。
    
     (2)室内试验研究了干密度分别为1.61、1.65、1.71、1.74 g/cm3的压实黄土试样的土水特征曲线。对于任何干密度的压实黄土土水特征曲线基本符合典型土水特征曲线的形式,具有明显的三个阶段。VG模型可以很好地描述压实黄土的土水特征曲线特性。
    
     试验范围内,不同干密度的压实黄土土水特征曲线相交于一点。试验的结果表明,该交点的体积含水量大约为27.9%(相应的含水量为15.3%,接近最优含水量16%),吸力为55kPa。本文定义该交点为临界含水量(或临界吸力值),其其物理意义在于对于不同密度的压实黄土,总存在一相同的含水量和吸力状态,该状态与颗粒大小有关而颗粒间距无关。同时,基于此给出了黄土压实的非饱和力学机理。
    
     (3)通过室内试验和理论模型研究了压实黄土非饱和渗透特性和机理,对压实黄土路堤的降雨入渗进行了非饱和有限元数值模拟。
    
     非饱和渗透系数随吸力的增大而减小,在较低吸力时,非饱和渗透系数对吸力较敏感,在较大吸力时,非饱和渗透系数趋于稳定;干密度对非饱和渗透系数有明显的影响,干密度越小,同一吸力的非饱和渗透系数越大;Wind (1955)模型、Gardner (1958)模型和Brooks和Corey (1964)模型都能较好的拟合压实黄土非饱和渗透系数随吸力的变化曲线。
    
     采用Green-Ampt垂直入渗模型计算了不同干密度压实黄土降雨入渗的积水时间、积水湿锋面深度、入渗率和累积入渗量。干密度对入渗率时间曲线影响较大,干密度越大,无论是初始入渗率还是稳定入渗率都越小;累积入渗量随干密度的增大而减小;积水时间随干密度的增大而非线性减小,积水湿锋面深度随干密度的增加线性减小
    
     非饱和有限元数值模拟表明:一定降雨强度的降雨结束后,压实黄土路堤入渗含水率分布剖面可以划分为3个区,饱和区、传导区和湿润区。饱和区土体处于饱和状态;传导区含水率随深度的增加以较小的梯度线性减小;湿润区含水率值急剧下降到接近初始含水率值。降雨停止后水分在重力作用下继续向路堤内迁移,随着时间的增加,降雨结束时的饱和区由饱和状态转变为非饱和状态,即含水量减小,传导区和湿润区的含水量增加,湿锋面向下移动。传导区和湿润区的范围随时间的增加而增大,而传导区含水率的变化梯度增大,湿润区含水率的变化梯度减小。
     (4)采用常含水量压缩试验和常压力湿化压缩试验研究了压实黄土的增湿变形特性及其规律。常含水量压缩压缩变形曲线可以分为2个阶段:压密变形阶段和稳定压缩变形阶段。在压缩变形系数、垂直压力和含水量组成的三维空间中,应力增(减)湿路径曲面总体上呈一压力和含水量从最小值到最大值的倾斜面。
    
     随着干密度的增大,压缩变形系数增大;在较低含水量时,相邻干密度试样间的压缩变形系数相差较小,即干密度对压缩变形的影响较小,随着含水量的增加,相邻干密度试样间的压缩变形系数相差增加,即干密度对压缩变形的影响增大。
    
     常压力湿化压缩试验表明,随着湿化含水量的增加,压缩变形系数增加,压缩量增大;在某级湿化含水量下变形稳定后,再进行非饱和增湿,土样会发生明显的增湿变形。
    
     (5)通过饱和压实黄土的压缩-回弹-再压缩试验、同时控制吸力和净围压为常数的三轴固结排水试验、控制吸力的各向等压试验和控制净平均应力的三轴收缩试验,系统地探讨压实黄土的非饱和变形特性、强度特性、屈服特性和水量变化特性,建立了压实黄土湿化变形的简化模型。
    
     在围压相同的条件下,压实黄土的强度和内聚力随吸力的增加而增大,内摩擦角随吸力的变化可看作是一常数,且与饱和土的有效内摩擦角相当接近。
    
     控制吸力的各向等压试验的体变和水量变化,在低吸力范围内(小于50kPa)变化较大,而在吸力超过50kPa后变化较小;控制净平均应力的三轴收缩试验的体变和水量变化随净平均应力的增加变化较小。控制净平均应力的三轴收缩试验的体变和排水量比控制吸力的各向同性压缩试验的体变和排水量分别高大约22%和27%,反映应力路径对非饱和土的体变和排水有显著的影响。
    
     屈服净平均应力随吸力提高而增大,这与LC屈服的概念一致。屈服吸力并不是常数,随净平均应力的增减而减小,具有非线性特征,为了简便起见及与已有数据对比,本文取其平均值作为吸力屈服条件。干密度对吸力路径下的体变和屈服有较大的影响,而对荷载路径影响不大。
    
     压实黄土湿化变形的简化模型表明:对于该干密度试样湿化应变一般小于2%;土样吸力越大,湿化变形越大;随着围压增大,湿化变形减小。
Many engineering problems are associated with unsaturated characters of soils. In arid or semi-arid areas, where the ground water level is normally relatively deep, the compacted loess is in their unsaturated states. Future climate changes, which could potentially cause significant changes in the soil moisture regime, induce to many engineering problems, such that the settlement of compacted loess embankment due to rainfall is a problem related to unsaturated mechanical behaviour of compacted loess. In order that safe and cost-effective solutions to these engineering problems, the study on unsaturated mechenics of compacted loess is necessary.
     Based on the lab tests and theory and method of unsaturated soil mechanics, the unsaturated characteristic of compacted loess is discussed, including soil-water characteristic of compacted loess and mechanism of compaction, unsaturated permeability coefficient of compacted loess, the features of compressive deformations on loading and wetting paths, and elastoplastic constitutive model.
     To summarise the main contents which the current research aimed at addressing are as follows:
     (1) A review is given of the characteristic and experimental metod of soil-water characteristic curve, of the theory of unsaturated seepage and unsaturated permeability coefficient, of the mechanism of collapsible deformation of loess and wetting deformation of compacted loess, of the elastoplastic critical state-based framework for describing the constitutive behavior of unsaturated soils. This review presents the nessary background for the paper. Gaps in knowledge are disscused tegother with the specific objectives of the current research.
     (2) Soil water characteristic curve for compacted loess is studied by lab test, with the dry density of 1.61、1.65、1.71、1.74 g/cm3. The soil water characteristic curve for compacted loess with virous dry density is same as the typical curve shape of soil water characteristic curve, with the obvious 3 stages. The curves fit VG model nicely. All the 4 soil water characteristic curve intersect at one point. The results show that the volumetric water content of the point is 27.9% approximately, where the water content is 15.3%, almost being equal to optimization water content 16%, and the suction is 55kPa. The critical water content or critical suction is defined, and the parameter means that there exists a critical value which is independent of dry density or microstructure. Based the soil-water characteristic curve and compaction curve, mechanism of compaction is explained.
     (3) Unsaturated permeability coefficient of compacted loess is studied by the test system of the hydraulic conductivity under different dry densities. The relationship between matric suction and permeability coefficient shows that the permeability coefficient decreases with suction non-linearly, and increases with dry density. It is found that dry density has more effect on the permeability coefficient in the low matrix suction than in the high matrix suction. It is indicated that from test results, the relation between permeability coefficient and matrix suction can be fitted with Wind(1955) model, Gardner(1958) model, and Brooks-Corey(1964)model under certain conditions.
     Based on the Green-Ampt model, the general mechanism of rain infiltration is presented. The seeper time, the depth of wetting front, the infiltration rate, and the total infiltration displacement is calculated for various dry density compacted loess. The results show that the infiltration rate and the total infiltration displacement decrease with the increasing of dry density, and the seeper time decreases nonlinearly with the increasing of dry density, and the depth of wetting front decreases linearly with the increasing of dry density.
     The FEM simulations show the transient moisture profile after raining is made up of 3 sections, saturated section, transmitting section and wetting section. The soil is saturated in the saturated section, and water content decrease linearly along the depth with the less grads in the transmitting section, and water content fall to the initial values in the wetting section. After raining the water continue to migrate in the loess. The saturated state of saturated section changes to unsaturated state, and the water content of transmitting section and wetting section increases, resulting in the wetting front moving deeper.
     (4) A series of experiments including constant-water-content loading tests and wetting tests has been conducted by using oedometer apparatus to investigate the features of compressive deformations on loading and wetting paths. In constant-water-content loading tests, the compressive deformation is of 2 stages:the first stage is compression and the second is stabilized compaction deformation. In the space of compressive deformation, pressure and water content, the state surface of loading-wetting (dying) is a inclined plane with the increasing of water congtent and pressure.
     The coefficient of compressive deformation increases with the increasing dry density. The dry density has less influence on the coefficient of compressive deformation at lower water content, nevertheless, the influence is obvious with the increasing of water content.
     The results of wetting tests show that the elementary characteristics of moistening deformation, as of the consolidating deformation, is that it will be stable after some time. The increment of wetting deformation decreases with the advancing water content. The increment of wetting deformation increases with the advancing dry density at each wetting stage.
     (5)With the same confining stress, the strength and cohesion of the compacted loess incease with the increased suction, and the internal friction angle is approximately a content, which is close to the effective angle of internal friction of the saturated samples.
     Within the range of less suction(less than 50kPa), the parameter for water content change and volume strain in the isotropic compression tests controlling suction change significantly, but the change under the suction beyond 50kPa is small. The parameters for water content change and volume strain in the triaxial shrinkage test with controlled net mean stress change slightly with the increased net mean stress. The two parameters of the triaxial shrinkage test with controlled net mean stress are approximately 22% and 27% higher than the isotropic compression tests controlling suction. It means that stress paths have significant effect on the deformation and moisture change of unsaturated soil.
     The yield stress increases with the increased suction, but the yield suction is not a constant, decreasing with the increased net mean stress. For contrasted with known data, the mean is considered as the the yield suction. The dry density has significant effect on the strain and yield in the suction paths, but small in the load paths.
     The simple mode of the wetting deformation shows that wetting strain is less than 2%, and inceases with increased suction and decrased confining stress.
引文
[1]Williams P J. The surface of the Earth, an intruoduction to geotechnical science. Longman Inc., New York,1982.
    [2]Buckingham E. Studies on the movement of soil moisture[C]. U.S. Department of Agriculture, soil Bulletin 38,1907
    [3]Marshall T J. A relation between permeability and size distribution of pores[J]. J. of Soil Science,1958,9:1-8.
    [4]Fredlund D Q Rahardjo H. Soil mechnics for unsaturated soils[M]. John Wiley & Sons Inc., New York.1993
    [5]Fredlund D G, Xing A, and Huang S. Predicting the permeability function for unsaturated soil using the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31:533-546.
    [6]Croney D, Coleman J D. Pore pressure and suction in soil[C].//Conference on Pore Pressure and Suction in Soils. Butterworths, London,1961,31-37.
    [7]Richards B G Measurement of the free energy of soil moisture by the psychrometric technique using thermistors[C].//Moisture equilibria and moisture changes in soils beneath covered areas. Aitchison. Butterworths, Sydney, Australia,1965,39-46.
    [8]Williams J, Prebble R E, Williams W T, Hignett C T. The influence of texture, structureand clay mineralogy on the soil moisture characteristics[J]. Australian J. of Soil Res.,1983,21:15-32.
    [9]陈正汉等.非饱和土的土气运动规律及其工程性质的试验研究[J].岩土工程学报,1993(3):9-20.
    [10]Gardner W R. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Sci.,1958,85(4):228-232.
    [11]Leong E C, Rahardjo H. Review of soil-water characteristic curve equations[J].Geotechnical and Geoenvironmental Engineering,1997,12:1106-1117.
    [12]Brooks R H, Corey A T. Hydraulic properties of porous medium[C]. Hydrology paper, No.3, Civ Engrg. Dept, Colorado State Unie, Fort Collins, Colo.1964.
    [13]McKee C R, Bumb A C. Flow-testing coalbed methane production wells in presence of water and gas[J]. SPE Formation Evalution,1987,12:599-608
    [14]van Genuchten M T., A closed form equation for predicting the hydraulic onductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44:892-898.
    [15]Fredlund D G, Xing A, Huang S. Predicting the permeability function for unsaturated soil using the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31:533-546.
    [16]戚国庆,黄润秋.土水特征曲线的通用数学模型研究[J].工程地质学报.2004.12(2):182-186.
    [17]Ning Lu, William J Likos. Unsaturated Soil Mechanics[M]. John Wiley & Sons, Inc., Hoboken, New Jersey,2004.
    [18]Arya LM, Paris J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal,1981, 45:1023-1030.
    [19]刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展[J].水利学报,2004,2:68-76
    [20]Fredlund M D,Wilson G W,Fredlund D G.Prediction of the soil—water characteristic curve from the grain-size distribution curve[A].Proceeding of the 3rd Symposium on Unsaturated Soil[C].Brazil,1997.13-23.
    [21]Tyler Sw, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation[J].Soil Sci. Soc. Am. J.,1989,53:987-996.
    [22]徐永福,董平.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(4):400-405
    [23]Farouk A, Lamboj L, Kos J. A Numerical Model to Predict Matric Suction Inside Unsaturated Soils[J]. Acta Polytechnica,2004,44(4):3-10.
    [24]栾茂田,李顺群,杨庆.非饱和土的理论土—水特征曲线[J].岩土工程学报,2005,27(6):611-615.
    [25]贺炜,赵明华,陈永贵,王泓华.土-水特征曲线滞后现象的微观机制与计算分析[J].岩土力学,2010,31(4):1078-1083.
    [26]党进谦,李靖,王力.非饱和黄土水分特征曲线的研究[J].西北农业大学学报,1997,6:55-58.
    [27]刘巍然.压实黄土路基中含水量的分布及水分迁移规律研究[D].长安大学,2004.
    [28]王钊,骆以道,肖衡林,姚政法.运城黄土吸力特性的试验研究[J].岩土力学,2002,23(1):51-54.
    [29]赵爱辉.黄土水力参数的测定与间接推求方法研究[D].西北农林科技大学,2008.
    [30]王铁行等.考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J].岩土力学,2008,29(1):1-5.
    [31]关亮,孙树国,方祥位,李炳宏.重塑非饱和黄土的土水特征曲线试验研究[J].四川建筑,2009,29(1).
    [32]Freeze R A, Cherry J A. Groundwater[M], Prentice-Hall, Englewood Cliffs, NJ,1979.
    [33]Buckingham E. Studies on the movement of soil moisture[M] U.S. Dept. Agric.Bur. Soils Bull. 38, U.S. Government Printing Office, Washington, DC,1907
    [34]Richards L A. Capillary conduction of liquids in porous mediums[J]. Physics,1931, 1:318~333
    [35]Klute A. A numerical method for solving the flow equation for water in unsaturated material[J]. Soil.Sci.,1952,73:105-106.
    [36]Neuman S P. Saturated-Unsaturated Seepage by Finite Elements[J]. Proc.ASCEHY,1973, 99(12):2233~2250.
    [37]Green W H, Ampt G. A.Studies on soil physics, Part Ⅰ. Flow of air and water through soils[J]. Journal of Agricultural Science,1911,4:1-24.
    [38]Philip J R.The theory of infiltration.1. The infiltration equation and solution[J]. Soil Science, 1957,83:345-357.
    [39]Pullan A J. The quasilinear approximation for unsaturated porous media flow[J] Water Resources Research,1990,26(6):1219-1234.
    [40]Srivastava R, Yeh T C J.Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils[J]. Water Resources Research,1991, 27(5):753-762.
    [41]Rubin J. Theoretical analysis of two-dimensional transient flow of water in unsaturated and partly unsaturated soils[J]. Pros. Soil Sci. Soc. Am.,1968,32:929-941.
    [42]Freeze R A. Three-dimensional transient saturated-unsaturated flow in a groundwater basin[J]. Water Resources Res.1971(7):929-941.
    [43]Remson I, Hornberger G M, Molz F J. Numerical methods in sub surface hydrology [M]. Wiley-Interscience,1971.
    [44]Neuman S P. Saturated-Unsaturated Seepage by Finited Elements[J] Journal of the Hydraulics, Division, ASCE, Dec,1973:2233-2250.
    [45]Neuman S P. Galerkin approach to saturated-unsaturated flow in porous media. Finite elements in fluids[J], Viscous Flow and Hydrodynamical,1974:201-217.
    [46]Neuman S P. Narasimhan T N. Witherspoon P A. A pplication of mixed explicit-implicit finite element method to nonliner diffusion-type problems[J]. Finite Elements in Water Resources, Pentech Press, London, Plymouth,1977.
    [47]赤井浩一,大西有三.有限要素法对饱和一非饱和渗流问题的解析[C].土木学会论文报告集,No.264,1977:87-96.
    [48]Lam L, Fredlund D G. Saturated-unsaturated transient finite element seepage model for geotechnical engineering[J]. Adv. Water Resources,7(1984):132-136.
    [49]Lam L. Transient seepage model for saturated-unsaturated soil system:a geotechnical engineering approach[J]. Can Geotech.1987(24).
    [50]刘洁,毛褪熙.堤坝饱和与非饱和渗流计算的有限单元法[J].水利水运科学研究,1997(9).242-252.
    [51]吴良骥,Bloomaburg G L饱和非饱和区渗流问题的数值模拟[J].水利水运科学研究,1985(6).33-45.
    [52]高戮,雷光耀,张锁春.堤坝饱和非饱和渗流数值分析[J].岩土工程学报,1990,10(6):28-37.
    [53]张培文,刘德富,黄达海,宋玉普.饱和-非饱和非稳定渗流的数值模拟[J].岩土力学,2003,24(6):927-930.
    [54]汪自力,张俊霞,李莉.饱和-非饱和渗流模型在多层自由面渗流分析中的应用[J].人民黄河,1997(1):28-37.
    [55]李信,高骇,汪自力.饱和-非饱和土的渗流三维计算[J].水利学报,1992(11):63-80.
    [56]黄俊,苏向明,汪炜平.土坝饱和非饱和渗流数值分析方法研究[J].岩土工程学报,1990,12(5):30-39.
    [57]张家发.三维饱和非饱和稳定非稳定渗流场的有限元模[J].长江科学院院报,1997,14(3):35-38.
    [58]吴梦喜,高莲士.饱和-非饱和土体非稳定渗流数值分析[J].水利学报,1999(12):38-42.
    [59]吴梦喜.土体非饱和渗流与变形祸合分析方法及在心墙坝中的应用[D].清华大学2000.
    [60]彭华,陈胜宏.饱和一非饱和岩土非稳定渗流有限元分析研究[[J].水动力学研究与进展,2002,17(6):253-259.
    [61]胡云进,速宝玉,仲济刚.有地表入渗的裂隙岩体渗流数值分析及工程应用[J].岩石力学 与工程学报,2000,19(增):1019-1022.
    [62]Bjerrum L, Huder J. Measurement of the permeability of compacted clays[C].//Proceedings of 4th international conference on soil mechanics and foundation engineering. London,1957.
    [63]Corey A T. Measurement of water and air permeability in unsaturated soil[J]. Soil Sci Soc Am Proc.,1957,21(1):7-10
    [64]李永乐,刘翠然,刘海宁,刘慧卿.非饱和土的渗透特性试验研究[J].岩石力学与工程学报,2004,23(22):3861-3865.
    [65]徐永福,兰守奇,孙德安,夏小和,杨洪杰,肖朝昀,王建华.一种能测量应力状态对非饱和土渗透系数影响的新型试验装置[J].岩石力学与工程学报,2005,24(1):160-164.
    [66]邵龙潭,梁爱民,王助贫.非饱和土非饱和土稳态渗流试验装置的研制与应用.岩土工程学报,2005,27(11):1338-1340.
    [67]梁爱民.非饱和土壤渗透特性及饱和入渗机理试验研究[D].大连:大连理工大学,2008.
    [68]Olsen H W. Darcy's Law in saturated kaolinite[J]. Wat. Resour. Res.,1966,2(6):287-295.
    [69]Olsen H W, Nichols R W, Rice T L. Low gradient permeability methods in a triaxial system[J]. Geotechnique,1985,35(2):145-157
    [70]Aiban S A, Znidarcic D. Evaluation of the flow pump and constant head techniques for permeability measurements[J]. Geotechnique,1989,39(4):655-666.
    [71]Znidarcic D, Illangasekare T, Manna M. Laboratory testing and parameter estimation for two-phase flow problems[J]. ASCE, Geotechnical Special Publication,1991,27:1089-1099.
    [72]Bicalho K V, Znidarcic D, Ko H Y. Air entrapment effects on hydraulic properties[J]. ASCE, Geotechnical Special Publication,2001,99:517-528.
    [73]Likos W J, Wayllace A, Lu N. Numerical modeling of constant flow method for measuring unsaturated hydrologic properties[C].//Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema,2005.
    [74]Bicalho K V, Znidarcic D, Ko H Y. An experimental evaluation of unsaturated hydraulic conductivity functions for a quasi-saturated compacted soil[C].//Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema,2005.
    [75]Nimmo J R, Rubin J, Hammermeister D P. (1987) Unsaturated flow in a centrifugal field: measurement of hydraulicconductivity and testing of Darcy's law[J]. Water Resour. Res.,1987 23(1):124-134.
    [76]Conca J L, Wright J V. The UFA method for rapid, direct measurements of unsaturated transport properties in soil, sediment, and rock[J]. Aust J. Soil Res.,1992,36:291-315.
    [77]McCartney J S, Zorenberg J G. The centrifuge permeameter for unsaturated soils[C]. //Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema,2005.
    [78]Caputo M C, Nimmo J R. Quasi-steady centrifuge method for unsaturated hydraulic characterization[C].//Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema,2005.
    [79]Klute A (1972) The determination of the hydraulic conductivity and diffusivity of unsaturated soils. Soil Sci.,1972,113(4):264-276.
    [80]Benson C H, Gribb M M. Measuring unsaturated hydraulic conductivity in the laboratory and field[M]. Unsaturated soil engineering practice. Geotechnical Special Publication No.68, Logan, Utah,1997.
    [81]Miller E, Elrick D. Dynamic determination of capillary conductivity extended for non-negligible membrane impedance[J]. Soil Sci. Soc. Am. Proc.,1958,22:483-486.
    [82]Kunze R J, Kirkham D. Simplified accounting for membrane impedance in capillary conductivity measurements[J]. Soil Sci. Soc. Am. Proc.,1962,26:421-426.
    [83]Bruce R, Klute A. The measurement of soil moisture diffusivity. Soil Sci. Soc. Am. Proc., 1956,20:458-462.
    [84]Watson K K. An instantaneous profile method determining the hydraulic conductivity of unsaturated porous materials[J]. Water Resour. Res.,1966,2:709-715.
    [85]Daniel D E. Permeability test for unsaturated soil. Geotech. Test J.,1983,6(2):81-86.
    [86]Chiu T F, Shackelford C D. Unsaturated hydraulic conductivity of compacted sand-kaolin mixtures[J]. J. Geotech. Geoenviron. Eng.,1998,124(2):160-170.
    [87]Wind G P. Capillary conductivity data estimated by a simple method. Water in the unsaturated zone[C].//Rijtema P E, Wassink H:Proceedings of the Wageningen Symposium,1968, 1:181-191.
    [88]Tamari S, Bruckler L, Halbertsmama J, Chadoeuf J. A simple method for determining soil hydraulic properties in the laboratory [J]. Soil Sci. Soc. Am. J.,1993,57:642-651.
    [89]Simunek J, Wendroth O, van Genuchten MTh. Parameter estimation analysis of the evaporation method for determining soil hydraulic properties[J]. Soil Sci. Soc. Am. J.,1998, 62:894-905.
    [90]Meerdink J, Benson C, Khire M. Unsaturated hydraulic conductivity of two compacted barrier soils. J Geotechn. Eng. ASCE,1996,122(7):565-576.
    [91]王文焰,张建丰.在一个水平土柱上同时测定非饱和土壤水各运动参数的试验研究[J].水利学报,1990,(7):26-31.
    [92]陈正汉,谢定义,王永胜.非饱和土的水气运动规律及其工程性质研究[J].岩土工程学报,1993,15(3):9-20.
    [93]陈正汉,孙树国,方祥位,等.非饱和土与特殊土测试技术新进展[J].岩土工程学报,2006,28(2):147-169.
    [94]刘奉银.非饱和土力学基本试验设备的研制与新有效应力原理的探讨[D].西安:西安理工大学,1999.
    [95]赵敏.非饱和土孔隙流体运动规律的研究[D].西安:西安理工大学,1999.
    [96]高永宝,刘奉银,李宁.确定非饱和土渗透特性的一种新方法[J].岩石力学与工程学报,2005,24(18):3258-3261.
    [97]高永宝.微机控制非饱和土水一气运动联测仪的研制及浸水试验研究[D].西安:西安理工大学,2006.
    [98]Mualem, Y. Hydraulic conductivity of unsaturated soils:Prediction and formulas[C].//Klute A: Methods of Soil Analysis, Part Ⅰ. Physical and Mineralogical Methods, Agronomy Monograph No. 9, American Society of Agronomy, Madison, WI,1986,799-823.
    [99]Childs E C, Collis-George G N. The permeability of porous materials[C].Proceedings of the Royal Society of London, Series A,1950.
    [100]Burdine N T. Relative premeability calculations from pore size distribution data petroleum trans., AIME,1953,198:71-78.
    [101]Mualem Y. Hydraulic conductivity of unsaturated porous media:Generalized macroscopic approach, Water Res.,1978,14(2):325-334
    [102]Fredlund D G, Xing. Predicting the permeability for unsaturated soils using the soil-water characteristic curve[J].Canadian Geotechnical Journal,1994.
    [103]王铁行,卢靖,张建锋.考虑干密度影响的人工压实非饱和黄土渗透系数的试验研究[J].岩石力学与工程学报,2006,25(11):2364-2368.
    [104]潘宗俊,杨晓华,刘巍然,杜金,贾耀辉.压实黄土路基导水参数的试验研究[J]公路交通科技,2005,22(7):52-63.
    [105]刘巍然,高江平.压实黄土路基中水分迁移的数值模拟[J].长安大学学报(自然科学版),2006,26(4):5-7.
    [106]孙建中.黄土高原第四纪[M].北京:科学出版社,1991.
    [107]捷尼索夫.黄土与黄土状亚粘土的建筑性质[M].北京:地质出版社,1956.
    [108]郑晏武.中国黄土的湿陷性[M].北京:地质出版社,1982.
    [109]高尔希登.土工问题第二集[M].北京:地质出版社,1959.
    [110]刘东生.黄土的物质成分的结构[M].北京:科学出版社,1966.
    [111]王永焱,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
    [112]胡再强,沈珠江,谢定义.非饱和黄土的显微结构与湿陷性[J].水利水运科学研究,2000(2).
    [113]雷详义.中国黄土的孔隙类型与湿陷性[J].中国科学(B辑),1987,12:1309-1316.
    [114]杨运来.黄土湿陷性机理[J].中国科学(B辑),1988,7:756-765.
    [115]张苏民,郑建国.湿陷性黄土(Q3)的增湿变形特征[J].岩土工程学报,1990,12(4):21-31.
    [116]张苏民,张炜.增湿和减湿时黄土的湿陷性[J].岩土工程学报,1992,14(1):57-61.
    [117]张茂花.湿陷性黄土增(减)湿变形性状试验研究[D].西安:长安大学,2002.
    [118]张茂花,谢永利,刘保健.增(减)湿时黄土的湿陷系数曲线特征[J].岩土力学,2005,26(9):1363-1368.
    [119]伍石生,武建明,戴经梁.压实黄土湿陷变形问题的研究[J].西安公路交通大学学报,1997,17(3):1-3
    [120]贾茂林.对压实黄土湿陷问题的试验研究[J].山西建筑,2000,1:4-11.
    [121]陈存礼,高鹏,胡再强.黄土的增湿变形特性及其与结构性的关系[J].岩石力学与工程学报,2006,25(7):1352-1359.
    [122]何春峰.压实黄土的工程性质及应用问题[D].西安:西北农林科技大学,2006.
    [123]杨玉生.压实黄土增湿变形性质与地基增湿变形计算[D].西安:西北农林科技大学,2006.
    [124]沙爱民,陈开圣.压实黄土的湿陷性与微观结构的关系[J].长安大学学报(自然科学版),2006,26(4):1-4.
    [125]梁燕,赵桂娟,谢永利,李同录.黄土增湿变形的数值模型[J].建筑科学与工程学报,2007, 24(3):43-46.
    [126]Gens A, Sanchez M,Sheng D C. On constitutive modelling of unsaturated soils[J].Acta Geotechnica,2006,1(3):137-147.
    [127]Sheng D C, Gens A, Fredlund D G, et al. Unsaturated soil:From constitutive modelling to numerical algorithms[J].Computers and Geotechnics,2008,35(6):810-824.
    [128]殷宗泽,周建,赵仲辉,等.非饱和土本构关系及变形计算[J].岩土工程学报,2006,28(2):137-146.
    [129]周建.非饱和土Barcelona模型修正及存在问题探讨[J].浙江大学学报(工学版),2006,40(7):1246-1252.
    [130]孙德安.非饱和土的水力和力学特性及其弹塑性描述[J].岩土力学,2009,30(11):3217-3231
    [131]Bishop A W. The principle of effective stress[J]. Teknisk Ukeblad,1959,106(39):859-863.
    [132]Jennings J E B, Burland J B. Limitation to the use of effective stress in partly saturated soils[J]. Geotechnique,1962,12(2):125-144.
    [133]Burland J B, Ridley A M. The importance of suction in soil mechanics[C]//Proceedings of the 12th Southeast Asian Geotechnical Conference. Kuala Lumpur,1996, Vol.2 27-49.
    [134]Coleman, J. D. Stress strain relations for partly saturated soil[J]. Geotechnique,1962, 12(4):348-350.
    [135]Bishop A W, Blight G E. Some aspects of effective stress in saturated and partly saturated soils[J]. Geotechnique,1963,13(3):177-197.
    [136]Matyas E L, Radhakrishna H S. Volume change characteristics of partially saturated soils[J]. Geotechnique,1968,18:432-448.
    [137]Fredlund D G, Morgenstern N R. Stress state variables for unsaturated soils[J]. J. Geotech. Eng. Div., ASCE 103,1977, GT5:447-466.
    [138]Wheeler S J. Inclusion of specific water volume within an elasto-plastic model for unsaturated soil[J]. Can. Geotech. J.,1996,33:42-57.
    [139]Kohgo Y, Nakano M, Miyazaki T. Theoretical aspects of constitutive modeling for unsaturated soils[J]. Soils and Foundations 1993,33(4) 49-63.
    [140]Kato S, Matsuoka H, Sun D. A. A constitutive model for unsaturated soil based on extended[C]//SMP.1st Int. Conf. on Unsat. Soils, Paris,1995,2:739-744.
    [141]Wheeler S J, Sharma R J, Buisson M. S. R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[J]. Geotechnique,2003,53(1):41-54.
    [142]Wheeler S J. Inclusion of specific water volume within an elasto-plastic model for unsaturated soil[J]. Can. Geotech. J.,1996,33:42-57.
    [143]Karube D, Kawai K. The role of pore water in the mechanical behaviour of unsaturated soils[J]. Geotech. Geol. Engng.,2001,19:211-241.
    [144]Fredlund D G, Morgenstern N R, Widger R S. The shear strength of unsaturated soils[J]. Can. Geotech. J.,1978,15(3):313-321.
    [145]Escario V, Saez J. The shear strength of partly saturated soils[J]. Geotechnique,1986, 36(3):453-456.
    [146]Gan J K M, Fredlund D G., Rahardjo H. Determination of the shear strength parameters of an unsaturated soil using the direct shear test[J]. Can. Geotech. J.,1988, 25(3):500-510.
    [147]Gan J K M, Fredlund D G Shear strength characteristics of two saprolitic soils[J]. Can. Geot. J.,1996,33:595-609.
    [148]Escario V, Juca J F T. Strength and deformation of partly saturated soils[C].//Proc.12th Int. Conf. Soil Mech. Found. Eng., Rio de Janeiro,1989, vol.1:43-46.
    [149]Toll D G A framework for unsaturated soil behaviour[J]. Geotechnique,1990,40(l):31-44.
    [150]Cui Y J, Delage P. Yielding and plastic behaviour of an unsaturated compacted silt[J]. Geotechnique,1996,46:291-311.
    [151]缪林昌,仲晓晨,殷宗泽.膨胀土的强度与含水量的关系[J].岩土力学,1999,20(2):71-75.
    [152]陈敬虞,FREDLUND D G.非饱和土抗剪强度理论的研究进展[J].岩土力学,2003,24(Supp.):654-660.
    [153]Toll D G, Ong B H. Critical-state parameters for an unsaturated residual sandy clay[J]. Geotechnique,2003,53(1):93-103
    [154]Lloret A, Alonso E E. State surfaces for partially saturated soils[C].//Proc.11th ICSMFE, S. Fransisco,1985, Vol.2:557-562.
    [155]Fredlund D G. Appropriate concepts and technology for unsaturated soils[J]. Can. Geotech. J. 1979,16(1):121-139.
    [156]Alonso E E, Gens A, Hight D W. Special problems soils[C].//Proc.9th Eur. Conf. Soil Mech., Dublin,1987,1087-1146.
    [157]Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils. Geotechnique, 1990,40(3):405-430.
    [158]Wheeler S J, Sivakumar V. An elastoplastic critical state framework for unsaturated soil[J]. Geotechnique,1995,45(1):35-53.
    [159]Sivakumar V, Wheeler S J. Influence of compaction procedure on the mechanical behaviour of an unsaturated compacted clay. Part 1:Wetting and isotropic Compression[J]. Geotechnique, 2000,50(4):359-368.
    [160]Josa A, Balmaceda A, Gens A, Alonso E E. An elastoplastic model for partially saturated soils exhibiting a maximum of collapse[C].//Proc.3rd Int. Computational Plasticity, Barcelona. 1992,815-826.
    [161]Cunningham M R. The mechanical behaviour of a reconstituted, unsaturated Soil[D]. Imperial College of Science, Technology and Medicine, University of London.2000.
    [162]陈正汉.重塑非饱和黄土的变形强度、屈服和水量变化特性[J].岩土工程学报,1999,21(1):82-90.
    [163]Maatouk A, Leroueil S, La Rochelle P. Yielding and critical state of a collapsible unsaturated silty soil[J]. Geotechnique,1995,45:465-477.
    [164]Gallipoli D, Wheeler S J, Karstunen M. Modelling the variation of degree of saturation in a deformable unsaturated soil. Geotechnique,2003,53,(2):105-112
    [165]Gallipoli D, Gens A, Sharma R, Vaunat J. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour[J]. Geotechnique,2003,53(1):123-135.
    [166]Wheeler S J, Sharma R J, Buisson M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils. Geotechnique,2003,53(1):41-54.
    [167]缪林昌.非饱和土的本构模型研究[J].岩土力学,2007,28(5):855-860.
    [168]Head K H. Manual of soil laboratory testing[M]. Pentech Press London 1992.
    [169]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996
    [170]Mein R G., Larson C L. Modeling infiltration during a steady rain[J], Water Resour. Res., 1973,9(2):384-394.
    [171]Carsel R F, Parrish R S. Developing joint probability distributions of soil water retention characteristics[J]. Water Resour. Res.,1988,24:755-769.
    [172]彭素琴,杨兴国,柯晓新,张旭东.甘肃河东地区降雨特征分析研究[J].水利科学进展,1996,7(1):73-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700