基于降解—渗流—压缩耦合模型的填埋场垃圾固液气相互作用分析及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内已建成和正在运行的城市生活垃圾填埋场主要存在四大环境土工问题,即填埋气泄露和爆炸、渗滤液的泄露和扩散、垃圾堆体的沉降变形以及失稳问题。与一般的土工构筑物相比,垃圾填埋场的物质组成、结构、性状及环境要复杂得多,填埋场的渗流、扩散、变形及稳定更是相互影响或耦合的。导致填埋场垃圾工程特性及变形、稳定、渗流与扩散机理复杂性的根本原因是填埋场垃圾固、液、气三相之间的相互作用。深入认识垃圾填埋场固液气相互作用机理及规律成为控制与解决目前填埋场环境土工问题的关键。
     本文以国家自然科学基金-国际(地区)合作与交流项目“城市垃圾填埋场水气产生、运移及系统化工程控制”(51010008)、国家自然科学基金-面上项目“固体废弃物力学中生化相变效应及应用”(10972195)及国家自然科学基金-重点资助项目“城市生活垃圾填埋场固、液、气相互作用及土力学机理”(50538080)为依托,结合“苏州七子山垃圾填埋场特殊土工测试”、“上海老港垃圾填埋场示范工程综合监测”等工程项目,针对城市生活垃圾填埋场降解、渗流和变形的耦合问题(BHM Coupling),通过模型试验、现场试验和数值模拟等手段开展了填埋场垃圾降解-渗流-压缩耦合模型研究及填埋场垃圾固液气相互作用分析,主要研究内容和研究成果包括:
     (1)基于室内试验数据和(C+H)/L比值与总产气量的线性相关性,提出以可降解固相的质量损失程度作为表征生活垃圾降解程度的简化指标。基于一阶动力学水解模型,建立了考虑含水量等因素影响的生化降解模型,该模型能够计算固相质量损失及降解产气,并能直接应用于生化降解程度的表征。基于所建立的生化降解模型,对垃圾组分和生化降解速率进行了参数敏感性分析,对于国内典型组分新鲜垃圾的研究表明:国内垃圾的产气潜力较大,每吨垃圾(湿基)的理论总产气量约为西方发达国家垃圾的1.32倍;国内垃圾易降解组分含量高,提高易降解组分的生化降解速率能够使得产气潜力在短时间内得到高效释放。
     (2)室内和现场试验数据的研究表明:垃圾的持水特性同时受到垃圾组分、降解程度和压实程度的影响。由于有机物含有大量固有水,而国内垃圾的有机物含量较高,导致国内垃圾的初始含水量相对国外要大很多。分析表明van-Genuchten模型能够很好的模拟国内垃圾的持水曲线。国内垃圾nvG值分布在1.35-1.68之间,新鲜垃圾nvG值并未显示与压实程度相关,但填埋场垃圾nvG值随着埋深和龄期的增加而有所减小;国内垃圾的αvG值分布范围较大,在1.3-25.6之间,新鲜垃圾的avG值与压实程度无明显相关性,而填埋场垃圾αvG值随着埋深与龄期的增加有增大的趋势。
     (3)基于Kozeny-Carmen模型对国内垃圾渗透性能室内试验数据的研究表明:垃圾的饱和渗透性能主要受到颗粒结构特性(反映在降解程度,即比表面积或颗粒级配)和孔隙结构特性(反映在压实程度,即孔隙比或孔隙率)的影响;随着填埋场垃圾埋深的增加,初始固有渗透系数k0逐渐减小,其值同时受到压实程度和降解程度的影响;基于气相渗透性能试验分析得到的k0值比基于液相饱和渗透性能试验分析得到的k0值约大一个数量级。在固液气相互作用分析中建议取根据气相渗透系数分析得到的k0值来代表垃圾的初始固有渗透系数。
     (4)基于van-Genuchten模型、Kozeny-Carmen模型和van-Genuchten-Mualem模型对国内垃圾渗透性能室内试验数据的研究表明:van-Genuchten-Mualem模型能够较好的模拟国内垃圾的水气非饱和渗透性能,模型参数yvG取值受渗流路径曲折性的影响,θe反映的是饱和度对水气非饱和渗透性能的影响,孔隙率对水气非饱和渗透性能的影响由饱和渗透系数ks来反映。基于以上垃圾水气运移特性的分析,结合多孔介质流体力学,建立了填埋场垃圾水气耦合运移模型。
     (5)国内外试验数据的研究表明,国内垃圾的主压缩性和降解次压缩性相对西方发达国家垃圾的均要高,国内垃圾填埋场的沉降变形潜力较大。基于国外室内降解压缩试验数据,分析了次压缩与降解产气的相关性,研究发现次压缩完成程度与降解产气程度的关系可以通过幂函数关系式描述。对应力-龄期耦合压缩进行了完善,对压缩模型参数的取值方法进行了研究分析。基于次压缩与降解产气相关性的研究,提出次压缩速率系数的取值方法;在固液气相互作用分析中可以采用可降解固相质量损失程度表征次压缩完成程度,以反映生化降解对次压缩的影响。提出根据新鲜垃圾的主压缩曲线确定初始应力水平,对压缩模型的其余参数取值给出了建议值。最终基于国外室内降解压缩试验数据对应力-龄期耦合压缩模型进行了验证分析,结果表明应力-龄期耦合压缩模型能够较好的模拟分级加载条件下垃圾的压缩变形。
     (6)基于所提出的生化降解模型、水气耦合运移模型及压缩模型,建立了降解-渗流-压缩耦合模型,对耦合模型所描述的填埋场垃圾固液气相互作用框架进行了分析,指出耦合模型的关键耦合变量包括固相质量损失量、水气源项、孔压、饱和度及孔隙率。采用有限差分法和Gauss-Newton法对耦合模型进行了数值求解。开展了室内降解压缩试验和现场示范工程监测,利用测试数据对降解-渗流-压缩耦合模型进行了验证。实测数据及模拟分析表明:渗滤液导排会造成产气潜力的流失;有利垃圾生化降解的环境条件是逐步建立的,它会推迟垃圾降解产气高峰的出现;渗滤液水位以下垃圾体的气压受到渗滤液水位高度的影响,气压随着渗滤液水位的升高而增大。
     (7)基于降解-渗流-压缩耦合模型,对新鲜垃圾的组分、含水量、压实程度及饱和度进行了参数敏感性分析,结果表明垃圾组分和含水量是影响填埋场垃圾固液气相互作用的最重要因素。有机质含量的提高和含水量的提高都会增大垃圾体的产气速率和沉降速率;含水量W,w(湿基)增加至37.5%(对应干基基础上的含水量wd为60%)的区间,产气速率和沉降速率提升最为明显。分析表明,液相饱和度的增加会使垃圾的气相渗透系数降低,使得垃圾体中的气压逐渐增加,在接近饱和时这种影响更为明显;如果垃圾降解产生的填埋气一直滞留在垃圾体中,气压可高达2.2×104kPa以上。而次压缩除了受生化降解影响外,还受到应力水平的影响,上覆应力的增加会增大次压缩的速率。此外,垃圾体孔隙率的变化规律同时受到生化降解和压缩变形的影响;国内垃圾填埋后孔隙率首先有所减小,但随后随着时间逐渐增大,这表示生化降解引起的孔隙率增加量大于压缩引起的孔隙率减小量,垃圾体后期一直趋于更加疏松,可能出现突然的次压缩。最终,根据本文研究所揭示的固液气相互作用规律,针对国内垃圾填埋场,对生物反应器填埋场的应用、水气控制、不均匀沉降控制及填埋场增容进行了分析研究,并提出了相应的工程建议。
Municipal solid waste (MSW) landfill is a new form of infrastructure resulted from urbanization. A municipal solid waste landfill in China is concerned with four main geoenvironmental problems including landfill gas emission or explosion, leachate emission, settlement and instability. Engineered landfill differs from the conventional earth structures in that its waste body, environment and design are more complex. Furthermore, fluid flow, settlement and stability are highly coupled with each other in a landfill. An improved understanding of the solid-liquid-gas interactions in MSW landfill will help to obtain a better prediction and controlling measures for the four main geoenvironmental problems.
     The research works in this paper are funded by the major international joint research project "Generation, transport and systems engineering control of leachate and gas in municipal solid waste landfill", the general project "'Biochemical phase transition in solid waste mechanics and its application" and the key program "Solid-liquid-gas interactions in municipal solid waste landfill" from the National Science Foundation of China. Based on laboratory experiments, field tests and numerical simulations, bio-hydro-mechanical coupled analysis of solid-liquid-gas interactions in landfilled MSW were carried out. The main research works and conclusions are as follows:
     (1) Linear relationship between (C+H)/L and landfill gas production was found based on available biodegradation testing results. The degree of biodegradable solid matter loss was brought up as an indicator representing the degree of biodegradation. A biodegradation model which can take the effect of water content was proposed based on the first-order kinetics. This model is able to analyze solid mass loss and landfill gas generation during biodegradation process, and can be applied to represent the degree of biodegradation directly. Parametric sensitivity analyses of this model showed that landfill gas production per wet ton for Chinese MSW is about 1.3 times the value for the MSW in western developed countries. Landfill gas generation and utilization can be enhanced efficiently for Chinese MSW as it contains a very high content of easily biodegradable matter.
     (2)The water retention characteristic of MSW was found to be dependent on waste composition, biodegradation and compression processes based on available testing results. As Chinese MSW has a very high content of organics which contain much water in intraparticle voids, initial water content of Chinese MSW is much greater than that of western developed countries. Simulation results showed that van-Genuchten model (van Genuchten,1980) could satisfactorily model the water retention curve of Chinese MSW. For Chinese MSW, the value of parameter nvc ranges between 1.35 and 1.68. There is no clear relationship between nvG and void ratio for fresh Chinese MSW. However, a decrease of nvG with depth was found for borehole waste samples. The value of ovG has a wide range from 1.3 to 25.6, and doesn't show any correlation to void ratio for fresh Chinese MSW. However, it tends to increase with depth for borehole waste samples.
     (3) Based on Kozeny-Carmen model (Kozeny,1927; Carmen,1938,1956) and available hydraulic conductivity testing results, hydraulic conductivity of Chinese MSW was found to be mainly affected by particle structural properties (i.e. specific area and particle size distribution) and pore structural properties (void ratio or porosity). Simulation results show that the value of initial intrinsic permeability k0 tends to decrease with depth in Chinese landfills, and it is influenced by both biodegradation and compression processes. For Chinese MSW, the value of ko obtained from gas permeability tests was found to be an order larger than that analyzed from hydraulic tests. It was suggested to assess the intrinsic permeability of Chinese MSW by means of gas permeability tests.
     (4) Based on simulation results of the water retention curve and intrinsic permeability for Chinese MSW from van-Genuchten model and Kozeny-Carmen model, van-Genuchten-Mualem model (van Genuchten,1980) was found to give a good simulation of unsaturated liquid and gas permeabilities of Chinese MSW. yvG can reflect the effect of tortuosity of the MSW porous media,θe represents the effect of liquid saturation on unsaturated permeability, and the effect of porosity is considered through saturated permeability ks. Finally, an unsaturated-saturated fluid flow model was established for landfilled MSW based on above studies.
     (5) Based on analyses of available compression testing results, it was found that fresh Chinese MSW, which has a very large content of organics, has a much higher potential of both primary and secondary compression than that of MSW in western developed countries. Correlativity analysis was carried out between secondary compression and gas production through available testing results. Results show that power function can describe the relationship between the degrees of secondary compression and gas generation. The degree of secondary compression can be simplified as the degree of biodegradable solid matter loss when considering the direct effect of biodegradation on secondary compression. Based on above correlativity analysis, the determination method of secondary compression rate constant c in the stress-age coupled compression model (Chen et al.2010a) was proposed. Determination of the values of other parameters in the compression model was also discussed. The stress-age coupled model was tested using published compression data from two laboratory long-term compression tests. Results show that this model can give a satisfactory simulation of MSW under staged long-term compression.
     (6) Based on the proposed biodegradation model, unsaturated-saturated fluid flow model and compression model, a bio-hydro-mechanical coupled model was established for landfilled MSW. The frame of solid-liquid-gas interactions in landfilled MSW was proposed based on the coupled model. Key coupled model parameters include solid mass loss, liquid/gas source terms, pore pressure, saturation and porosity. Finite difference method and Gauss-Newton method were used to numerically solve the coupled model. The bio-hydro-mechanical coupled model was tested through simulations of a laboratory biodegradation test under compression and a field-scale pilot project. Monitoring and simulation results show that part of landfill gas generation potential might be lost through leachate drainage. Building up of the optimum biodegradation conditions can postpone the onset of peak landfill gas generation period. Landfill gas pressure will increase during leachate elevation process.
     (7) It was found that waste composition and water content are the most important factors affecting biodegradation, fluid flow and compression behaviors of landfilled MSW. Increase of organic content and water content will enhance both landfill gas generation and settlement. It was found that an increase of ww to 37.5% can result in the most significant enhancement. Inrease of liquid saturation will lower gas permeability so that landfill gas pressure builds up within waste body, especially near fully saturated. Landfill gas pressure can grow up to more than 2.2×104kPa if landfill gas is trapped. Besides, secondary compression behavior of MSW is affected by both biodegradation process and above stress. An increase of above stress will increase secondary compression rate. Furthermore, porosity change behavior is affected by both biodegradation and compression processes. For Chinese MSW, a gradual increase of porosity was found after a certain period of porosity decrease, which indicates that waste body tends to be softened continuously and a sudden collapse might happen. Finally, the findings of solid-liquid-gas interactions through above researches were summarized for practical applications in Chinese MSW landfill. It includes three main topics invoving the application of bioreactor landfill, control of liquid/gas, control of differential settlement and increase of landfill capacity. Corresponding controlling measures were proposed.
引文
[1]AI-Khafaji A W H, Andersland O B. Compressibility and strength of decomposing fibre-clay soils. Geotechnique,1981,31(4):497-508.
    [2]Andersen E O, Balanko L A L, Lem J M, Davis D H. Field monitoring of the compressibility of municipal solid waste and soft alluvium. Proceedings:Fifth International Conference on Case Histories in Geotechnical Engineering. New York, NY, April 13-17,2004.
    [3]Archer D B, Peck M W. Microbiology of Extreme Environments and its Potential for Biotechnology. New York, Elsevier Applied Science,1989:187-204.
    [4]Arigala S G, Tsotsism T T. Webster I A, Yortsos Y C, Kattapuram J J. Gas generation, transport and extraction in landfills. Journal of Environmental Engineering,1995,121(1): 33-44.
    [5]Augenstein D, Pacey J. Modeling landfill methane generations. Proceedings of Sardinia 91, 3rd International Landfill Symposium, Cagliari, Italy. October 14-18,1991.
    [6]Barlaz M A, Ham R K, Schaefer D M. Mass balance analysis of anaerobically decomposed refuse. Journal of Environmental Engineering,1989a,115(6):1088-1102.
    [7]Barlaz M A, Schaefer D M, Ham R K. Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Applied and Environmental Microbiology,1989b,55(1):55-65.
    [8]Barlaz M A, Reyes F, Ellis J C. Microbial community profiling of municipal solid waste at different stages of degradation. International Waste Working Group, Specialized Session F, October,2007.
    [9]Bear J. Dynamics of fluids in porous media. American Elsevier. New York,1972.
    [10]Beaven R P. Powrie W. Hydrogeological and geotechnical properties of refuse using a large scale compression cell. Proceedings of Sardinia 95,5th International Landfill Symposium, Cagliari, Italy,1995.
    [11]Bilitewski B, Hardtle G, Marek K, Weissbach A, Boeddicker H. Waste management. Springer-verlag.1996.
    [12]Bjarngard A, Edgers L. Settlement of municipal solid waste landfills. Proceedings of the 13th Annual Madison Waste Conference, WI:University of Wisconsin, Madison,1990.
    [13]Blight G E, Ball J M, Blight J J. Moisture and suction in sanitary landfills in semiarid areas. Journal of Environmental Engineering,1992,118(6):865-877.
    [14]Blight G E, Novella P H, Stowe J G. Increasing the field capacity of a landfill to retain leachate. Proceedings of an international conference on in-situ measurement of soil properties and case histories, Bali,2001:277-283.
    [15]Bouazza A, Pump W L. Settlement and the design of municipal solid waste landfills. Proc. Conference Geo-Environment,1997.
    [16]Brandl H. Vertical barriers for municipal and hazardous waste containment. Proc, Development in Geotechnical Engineering. Balkema, Rotterdam, The Netherlands,1994: 301-320.
    [17]Brady N C. The Nature and Properties of Soils. Upper Saddle River, NJ:Prentice-Hall.1999: 183-9.
    [18]Breitmeyer R, Benson C, Edil T, Barlaz M. Hydrologic Properties of Municipal Solid Waste. http://geotech.engr. wisc.edu/pdf/MS W_Hydrology_.pdf
    [19]Brooks R, Corey A. Hydraulic Properties of Porous Media. In Hydrol. Pap., Band 3, Fort Collins, Colorado State University.1964.
    [20]Burlingame M J, Egin D, Armstrong W B. Unit weight determination of landfill waste using sonic drilling methods. Journal of Geotechnical and Geoenvironmental Engineering,2007, 133(5):609-612.
    [21]Carman P C. The determination of the specific surface of powders. Journal of the Chemical Society,1938,57:225-234.
    [22]Carman P C. Flow of gases through porous media, Butterworths Scientific Publications, London.1956.
    [23]Carrier W D. Goodbye, Hazen; Hello, Kozeny-Carman. Journal of Geotechnical and Geoenvironmental Engineering.2003,129(11):1054-1056.
    [24]Cestaro S, Cossu R, Lanzoni S, Raga R. Analysis of pressure field in a landfill during in-situ aeration for waste stabilization. Proceedings Sardinia 2003, Ninth International Waste Mangement and Landfill Symposium, Cagliari, Italy,6-10 October,2003.
    [25]Chen T H, Chynoweth D P. Hydraulic conductivity of compacted municipal solid waste. Bioresource Technology.1995,51:205-212.
    [26]Chen W H. Time-settlement behavior of milled refuse. PhD dissertation. Evansion: Northwestern University,1974.
    [27]Chen Y M, Zhan T L T. Geoenvironmental issues associated with landfills of municipal solid wastes. Keynote lecture,13rd Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Kolkata,2007,2:169-192.
    [28]Chen Y M, Zhan T L T, Wei H Y, Ke H. Aging and compressibility of municipal solid wastes. Waste Management 2009,29(1):86-95.
    [29]Chen Y M, Ke H, Fredlund D G, Zhan T L T, Xie Y. Secondary compression of municipal solid wastes and a compression model for predicting settlement of MSW landfills. Journal of Geotechnical and Geoenvironmental Engineering,2010a,136(5),706-717
    [30]Chen Y M, Zhan T L T, Li Y C. Development of Leachate Mounds and Control of Leachate-Related Failures at MSW Landfills in Humid Regions. Invited Lecture. The Sixth International Congress on Environmental Geotechnics. New Delhi, India.8-12 Nov,2010b.
    [31]Christensen T H, Cossu R, Stegmann R. Landfill of waste:biogas. London:E&FN spon,1996.
    [32]Clark R H. Speece R E. The pH tolerance of anaerobic digestion.5th International Conference on Water Pollution Research Ⅱ,1971,27:1-4.
    [33]Coduto D P. Huitric R. Monitoring landfill movements using precise instruments. Geotechnics of waste fill-Theory and practice, ASTM STP 1070, Philadelphia,1990:358-370.
    [34]Colberg P J. Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. Biology of anaerobic microorganisms. Wiley-Liss, New York,1988:333-372.
    [35]Cortazar A L G, Monzon I T. Application of simulation models to the diagnosis of MSW landfills:An example. Waste Management.2007.27(5):691-703.
    [36]Corti A, Lombardi L. Frassinetti L. Landfill gas energy recovery:economic and environmental evaluation for a study case. Proceedings of Sardinia 2007, 11th International Waste Management and Landfill Symposium, Cagliari, Italy,2007.
    [37]CPCB. Status of solid waste generation,collection,treatment and disposal in metrocities.2000.
    [38]Diamadopoulous E. Characterization and treatment of recirculation-stabilized leachate. Water Research.1994.28(12):2439-2455.
    [39]Dixon N, Langer U. Development of a MSW classification system for the evaluation of mechanical properties. Waste Management,2006,26(3):220-232.
    [40]Durmusoglu E. Municipal landfill settlement with refuse decomposition and gas generation. PhD Dissertation. Texas A&M University.2002.
    [41]Durmusoglu E, Corapcioglu M, Tuncay K. Modelling of settlement in saturated and unsaturated municipal landfills. International Journal of Geomechanics,2006a,6(4):269-278.
    [42]Durmusoglu E, Sanchez I M, Corapcioglu M Y. Permeability and compression characteristics of municipal solid waste samples. Environmental Geology,2006b,50(6):773-786.
    [43]Edgers L, Noble J J, Williams E. A biologic model for long term settlement in landfills. Proc. Mediterranean Conference on Environmental Geotechnology,1992:177-184.
    [44]Edil T B, Ranguette V J, Wuellner W W. Settlement of municipal refuse:Geotechnics of waste fills-Theory and practice.ASTM Spec. Tech. Publ.,1990:225-239.
    [45]Edil T B. A review of aqueous-phase VOC transport in modern landfill liners. Waste Management.2003,23(7):561-571.
    [46]Eleazer W E, Olde-Ⅲ W S, Wang Y S, Barlaz M A. Biodegradability of municipal solid waste components in laboratory-scale. Environmental Science & Technogoly,1997,31(3):911-917.
    [47]EMCON. Methane generation and recovery from landfills. Ann Arbor Science Publishers, Inc., Ann Arbor, Mich.1980.
    [48]EMCON. Feasibility study-utilization of landfill gas for a vehicle fuel system. EMCON Associates, san jose, CA, Ann arbor,1981.
    [49]EI-Fadel M, Findikakis A N, Leckie J O. Numerical modelling of generation and transport of gas and heat in landfills. Ⅰ. model formulation. Waste Management and Research,1996a,14(5): 483-504.
    [50]EI-Fadel M, Findikakis A N, Leckie J O. Numerical modelling of generation and transport of gas and heat in landfills. Ⅱ. Model application. Waste Management and Research,1996b. 14(6):537-551.
    [51]EI-Fadel M, Findikakis A N, Leckie J O. Numerical modelling of generation and transport of gas and heat in landfills. Ⅲ. Sensitivity analysis. Waste Management and Research,1997, 15(1):87-102.
    [52]EI-Fadel M. Leachate recirculation elects on settlement and biodegradation rates in MSW landfills. Environmental Technology,1999,20(2):121-133.
    [53]EI-Fadel M, Khoury R. Modelling settlement in MSW landfills:a critical review. Critical Reviews in Environmental Science and Technology,2000,30(3):327-361.
    [54]Elagroudy S A, Ghobrial F H, Abdel Razik M H, Warith M A. Effect of solid waste composition on the biodegradation of municipal solid waste in bioreactor landfills. In:Proc. 60th Canadian Geotechnical Conference,22-24 October, Ottawa, Canada,2007:1383-1389.
    [55]Elagroudy S A, Abdel-Razik M H, Warith M A, Ghobrial F H. Waste settlement in bioreactor landfill models. Waste Management,2008,28(11):2366-2374.
    [56]Emberton J R, Parker A. The problems associated with building on landfill sites. Waste Management and Research,1987,5(4):473-482.
    [57]EPA. First-order kinetic gas generation model parameters for wet landfills. EPA-600/R-05/072, 2005a.
    [58]EPA. Municipal solid waste in the United States. Facts and Figures,2005b.
    [59]EPA. Bioreactor Performance. EPA530-R-07-007. August 15,2007.
    [60]EPA.中国填埋气估算模型用户手册(版本1.1).EP,W-06-022,2009.
    [61]Ettala M. Infiltration and hydraulic conductivity at a sanitary landfill. Aqua Fennicia,1987, 17(2):231-237.
    [62]European Parliament and Council of the European Union. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal L 182,0001-0019.1999.
    [63]Findikakis A N. Leckie J O. Numerical simulation of gas flow in sanitary landfills. Journal of Environmental Engineering,1979,105(5):927-945.
    [64]Findikakis A N, Papelis C, Halvadakis C, Leckie J. Modeling gas production in managed sanitary landfills. Waste Management and Research,1988,6(2):115-123.
    [65]Fricke K, Muller W, Bartetzko C, Einzmann U, Franke J, Heckenkamp G, Kellner-Aschenbrenner K, Kolbl R, Mellies R, Niesar M, Wallmann R, Zipfel H. Biological pre-treatment of waste for landfills:stabilization of residual waste by mechanical and biological pre-treatment and effects on landfilling (in German). German Federal Ministry of Education and Research (BMBF), Witzenhausen, Germany,1480945. Extended Final Verstion.1999.
    [66]Fungaroli A A, Steiner R L. Investigation of a sanitary landfill behavior. U.S. EPA 600/2-79-053a, Washington, D.C.1979.
    [67]Gabr M A, Valero S N. Geotechnical properties of municipal solid waste. Geotechal Testing Journal,1995.18(2):241-251.
    [68]Gandolla M, Dugnani L, Bressi G, Acaia C. The determination of subsidence effects at municipal solid waste. Proc.6th Int. Solid Wastes Congress, Madrid, Spain,1992.
    [69]Gawande N A, Reinhart D R, Yeh G T. Modeling microbiological and chemical processes in municipal solid waste bioreactor, part I:Development of a three-phase numerical model BIOKEMOD-3P. Waste management,2010a,30(2):202-210.
    [70]Gawande N A, Reinhart D R., Yeh Gour-Tsyh. Modeling microbiological and chemical processes in municipal solid waste bioreactor, part II:Application of numerical model BIOKEMOD-3P. Waste Management,2010b,30(2):211-218.
    [71]Gholamifard S, Duquennoi C, Eymard R. A multiphase model of bioreactor landfill with heat and gas generation and transfer. Eurotherm Seminar N° 81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France, June 4-6,2007.
    [72]Gholamifard S, Eymard R, Duquennoi C. Modeling anaerobic bioreactor landfills in methanogenic phase:Long term and short term behaviours. Water Research,2008,42(20): 5061-5071.
    [73]Gibson R E, Lo K Y. A theory of soils exhibiting secondary compression. Acta Polytech. Scand,1961.10(296):1-15.
    [74]Gil Diaz J L, Szanto Narea M, Sanchez Alciturri J M, Arias Ibarra A. Estimating Material Losses in Sanitary Landfills Through Biological Degradation. Proceedings of Sardinia 95,5th International Landfill Symposium, Cagliari, Italy,1995.
    [75]Gourc J P, Staub M J. The bio-hydro-mechanical behaviour of MSW and the improvement of landfill environmental sustainability. Invited Lecture. Proceedings of the 6th International Congress on Environmental Geotechnics. New Delhi, India.8-12 Nov.2010.
    [76]Grellier S, Guerin R, Robain H, Bobachev A, Vermeersch F, Tabbagh A. Monitoring of leachate recirculation in a bioreactor landfill by 2-D electrical resistivity imaging. Journal of Environmental and Engineering Geophysics,2008,13(4):351-359.
    [77]Guber A, Pachepsky Y, Shein E, Rawls W J. Soil aggregates and water retention. In: Development of Pedomovement in soils (in Polish). Skrypty Akademii Rolniczej we Wroc3awiu, nr 462.2004.
    [78]Halvadakis C. Methanogenesis in Solid-Waste Landfill Bioreactors. PhD Dissertation, Dept. of Civil Eng. Stanford University, Stanford CA.1983.
    [79]Halvadakis C, Robertson A, Leckie I. Landfill methanogenesis:Literature Periew and Critique. Technical ReportNo.271, Palo Alto, Calif:Stanford University,1983.
    [80]Hashemi M, Kavak H I, Tsotsis T T, Sahimi M. Computer simulation of gas generation and transport in landfills-I. Quasi-steadystate condition. Chemical Engineering Science.2002, 57(13):2475-2501.
    [81]Hertiarachchi C H. Mechanics of Bioreactor Landfill Settlements. PhD dissertation. New Jersey Institute of Technology, Newark, New Jersey,2005.
    [82]Hettiarachchi C H, Meegoda J N, Tavantzis J, Hettiaratchi P. Numerical model to predict settlements coupled with landfill gas pressure in bioreactor landfills. Journal of Hazardous Materials,2007,139(3):514-522.
    [83]Hettiarachchi H, Meegoda J, Hettiaratchi P. Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Management,2009.29(3):1018-1025.
    [84]Hilger H H, Barlaz M A. Anaerobic decomposition of refuse in landfills and methane oxidation in landfill cover soils. Manual of environmental microbiology,2nd Ed., American Society of Microbiology, Washington, D.C.,2001.
    [85]Hoeks J. Significance of biogas production in waste tips. Waste Management and Research 1983,1(1):323-335.
    [86]Holmes R. The Absorptive capacity of domestic refuse from a full-scale active landfill. Waste Management,1983,73(11):581-594.
    [87]Hossain M S, Gabr M A, Barlaz M A. Relationship of compressibility parameters to municipal solid waste decomposition. Journal of Geotechnical and Geoenvironmental Engineering,2003. 129(12):1151-1158.
    [88]Hossain M S, Gabr M A. Prediction of municipal solid waste landfill settlement with leachate recirculation. GSP142. Waste Containment and Remediation.2005.
    [89]Hossain M S, Penmethsa K K, Hoyos L. Permeability of municipal solid waste in bioreactor landfill with degradation.2009,27(1):43-51.
    [90]IPCC. Guidelines for National Greenhouse Gas Inventories:waste generation, composition and management data.2006.
    [91]Ivanova L K. Quantification of Factors Affecting Rate and Magnitude of Secondary Settlement of Landfills. PhD Dissertation, University of Southampton, UK,2007.
    [92]Ivanova L K, Richards D J, Smallman D J. The long-term settlement of landfill waste. Proc. Institution of Civil Engineers, Waste and Resource Management,2008,161(3):121-133.
    [93]Jain P, Powell J, Townsend T G, Reinhard D R. Air permeability of waste in a municipal solid waste landfill. Journal of Environmental Engineering,2005,131(11):1565-1572.
    [94]Jain P, Powell J, Townsend T G, Reinhart D R. Estimating the hydraulic conductivity of landfilled municipal solid waste using borehole permeameter test. Environmental Engineering, 2006,132(6):645-653.
    [95]Jang Y S, Kim Y W, Lee S I. Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea. Waste Management,2002,22(3):261-267.
    [96]Jing L R, Feng X T. Numerical modelling for coupled thermo-hydro-mechanical and chemical processes (THMC) of geological media-international and Chinese experiences. Chinese Journal of Rock Mechanics and Engineering,2003,22(10):1704-1715.
    [97]Jin H. Decomposition of high organic and moisture content municipal solid waste in bioreactor landfills. Master Dissertation, Ryerson Polytechnic University, Ontario, Canada, 2005.
    [98]Kasali G B. Optimization and control of methanogenesis in refuse fractions. PhD Dissertation, University of Strathciyde, Glasgow, U.K.,1986.
    [99]Kazimoglu Y K, McDougall J R, Pyrah I C. Unsaturated hydraulic conductivity of landfill waste. Unsaturated Soils, ASCE,2006.
    [100]Keely D K H. A model for predicting methane gas generation from MSW landfills. Master Thesis, Dept of Civil and Environ. Eng. University of Central Florida, Orlando, FL. 1994
    [101]Kim 1 S, Kim D H, Hyun S H. Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion. Water Science and Technology,2000, 41(3):67-73.
    [102]Koerner R M, Soong T Y. Leachate in landfills:The stability issues. Geotextiles and Geomembranes,2000,18(5):293-309.
    [103]Korea Ministry of Environment. Waste Management & Recycling Bureau. Generation of wastes.2003:137-141.
    [104]Korfiatis G P, Demetracopoulos A C, Bourodimos E L, Nawy E G. Moisture transport in a solid waste column. Environmental Engineering,1984,110(4):780-796.
    [105]Kozeny J. Ueber kapillare Leitung des Wassers im Boden. Wien. Akad. Wiss.Wein, Math.-Naturw,1927:271-306.
    [106]Landva A O, Weisner W R, Burwash W J. Geotechnical engineering and refuse landfills. Proceedings of the Sixth International Conference on Waste management in Canada,1984.
    [107]Landva A O, Clark J I. Geotechnical testing of wastefill. Proc.,39th Canadian Geotechnical Conf., Canadian Geotechnical Society, Ottawa, Ont., Canada,1986:371-385.
    [108]Landva A O, Clark J I. Geotechnics of waste fills. In Geotechnics of waste fills-theory and practice, ASTM STP 1070, Philadelphia. PA:American Society for Testing and Materials, 1990.
    [109]Landva A O. Pelkey S G, Valsangkar A J. Coefficient of permeability of municipal refuse. Proa,3rd Int. Congress on Environmental Geotechnics, Lisbon, Portugal,1998:163-167.
    [110]Leonard M L, Floom K J, Brown S. Estimating method and use of landfill settlement. Environmental Geotechnics. Proceedings of Sessions, Geo-Denver, Denver. Colorado,2000.
    [111]Ling H I, Leshchinsky D, Mohri Y, Kawabata T. Estimation of municipal solid waste landfill settlement. Journal of Geotechnical and Geoenviromental Engineering,1998,124(1): 21-28.
    [112]Liu J Y, Xu D M, Zhao Y C, Chen S W, Li G J, Zhou Q. Long-term monitoring and prediction for settlement and composition of refuse in Shanghai Laogang municipal landfill. Environmental Management,2004,34(3):441-448.
    [113]Lloyd B. The impact of elevated leachate level on LFG generation and recovery at MSW landfills in Asia. Methane to Markets-Partnership Expo, New Delhi. India,2-5 March, 2010.
    [114]Lobo A, Herrero J, Montero O, Fantelli M, Tejero I. Modeling for environmental assessment of municipal solid waste landfills (part 1:hydrology). Waste Management and Research,2002a,20(2):198-210.
    [115]Lobo A, Herrero J, Montero O, Fantelli M, Tejero I. Modeling for environmental assessment of municipal solid waste landfills (part 2:biodegradation). Waste Management and Research,2002b,20(6):514-528.
    [116]Lobo A, Munoz J, Tejero I. Assessment of a new waste biodegradation model for MODUELO. Waste Management and the Environment,2004, Ⅱ:419-428.
    [117J Lobo A, Tejero Ⅰ. MODUELO 2:A new version of an integrated simulation model for municipal solid waste landfills. Environmental Modelling & Software,2007a,22(1):59-72
    [118]Lobo A, Tejero 1. Application of simulation models to the diagnosis of MSW landfills: An example. Waste Management,2007b.27(5):691-703.
    [119]Machado S L, Carvalho M F, Vilar O M. Constitutive model for municipal solid waste. Journal of Geotechnics and Geoenvironmental Engineering,2002,128(11):940-951.
    [120]Machado S L, Carvalho M F, Dourado K A, Rocha M B, Nascimento J C F. Study of the MSW time differed compressibility in the Metropolitan Center Landfill. Proc.5th International Conference on Environmental Geotechnics, London:Thomas Telford,2006: 1447-1453.
    [121]Marques A C M, Filz G M, Vilar O M. Composite compressibility model for municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(4): 372-378
    [122]McBean E A. Rovers F A, Farquhar G J. Solid waste landfill engineering and design. Prentice-Hall, Englewood Cliffs, N. J,1995.
    [123]McDougall J. A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Computers and Geotechnics,2007,34(4):229-246.
    [124]McDougall J, Pyrah I. Simulating transient infiltration in unsaturated soils. Canadian Geotechnical Journal,1998,35(6):1093-1100.
    [125]McDougall J, Pyrah I. Phase relations for decomposable soils. Geotechnique,2004, 54(7):487-493.
    [126]Meima J A, Naranjo N M, Haarstrick A. Sensitivity analysis and literature review of parameters controlling local biodegradation processes in municipal solid waste landfills. Waste Management.2008,28(5):904-918.
    [127]Maren P. Simulation of two-phase flow processes in heterogeneous porous media with adaptive methods. PhD Dissertation. Institut fur Wasserbau, Universit"at Stuttgart.-Stuttgart: Inst.f" urWasserbau.2003.
    [128]Miller P A. Clesceri N L. Waste sites as biological reactors:characterization and modeling. Lewis Publishers.2003.
    [129]Morris D V, Woods C E. Settlement and engineering considerations in landfill cover design. Geotechnics of waste fills-theory and practice, ASTM STP 1070. Philadelphia, PA: American Society for Testing and Materials,1990.
    [130]Nastev M, Therrien R, Lefebvre R. Ge'linas P. Gas production and migration in landfills and geological materials. Journal of Contaminant Hydrology,2001,52(1-4):187-211.
    [131]New York State Energy Research and Development Authority (NYSERDA). Leachate recirculation at the Nanticoke Sanitary Landfill using a bioreactor trench. Final Report 98-6. February.1998.
    [132]Noble J J, Arnold A E. Experimental and mathematical modeling of moisture transport in landfills. Chemical Engineering Communications,1991.100:95-111.
    [133]Oldenburg C M. Borglin S E, Hazen T C. Multiphase modeling of flow, transport and biodegradation in a mesoscale landfill bioreactor. Earth Sciences Division Lawrence Berkeley National Laboratory Berkeley. CA 94720.2002.
    [134]Orta V M T, Cruz-Rivera R, Rojas-Valencia N, Monje-RamiRez I, SaNchez-GoMez J. Determination of field capacity of municipal solid waste with surcharge simulation. Waste Management and Research,2003.21(2):137-144.
    [135]Oweis 1 S, Smith D A. Ellwood R B, Greene D. Hydraulic characteristic of municipal refuse. Journal of Geotechnical Engineering,1990,116(4):539-553.
    [136]Parker A. Chapter 7. Behavior of Wastes in Landfill-Leachate. Chapter 8. Behaviour of Wastes in Landfill-Methane Generation. Practical Waste Management, John Wiley & Sons, Chichester, England.1983:225-207.
    [137]Park H I. Lee S R. Long-term settlement behavior of landfills with refuse decomposition. Journal of Solid Waste Technology and Management,1997,24(4):159-165.
    [138]Park H I, Lee S R. Long-term settlement behaviour of MSW landfills with various fill age. Waste Mangement and Research,2002.20(3):259-268.
    [139]Park H I, Park B, Lee S R. Hwang D J. Journal of Environmental Engineering,2007, 133(1).64-72
    [140]Palmisa A C, Schwab B S, Maruscik D A. Hydrolytic enzyme of activity in landfills refuse. Applied Microbial Biotechnology.1993,38(6):828-832.
    [141]Penmethsa K K. Permeability of municipal solid waste in bioreactor landfill with degradation. Master Dissertation, University of Texas at Arlington, Arlington, Tex.2007.
    [142]Pichtel J. Waste management practices:municipal, hazardous, and industrial. CRC Press. 2005
    [143]Pohland F G. Landfill bioreactor:fundamental and practice. Water Quality International. 1996,9(10):18-22.
    [144]Porebska D, Slawinski C, Lamorski K, Walczak R T. Relationship between van Genuchten's parameters of the retention curve equation and physical properties of soil solid phase. International Agrophysics,2006,20:153-159.
    [145]Powrie W, Beaven R P. Hydraulic properties of household waste and applications for landfills. Proceedings of the Institute of Civil Engineers (Geotechnical Engineering),137(4): 235-247.
    [146]Qian X D, Koerner R M, Gray D H. Geotechnical aspects of landfill design and construction. New Jersey:Prientice-Hall Inc.2002.
    [147]Qu X, Mazeas L, Vavilin V A, Epissard J, Lemunier M, Mouchel J-M, He P J, Bouchez T. Combined monitoring of changes in 813CH4 and archaeal community structure during mesophilic methanization of municipal solid waste. FEMS Microbiol Ecol,2009,68(2): 236-245.
    [148]Rao S K, Moulton L K, Seals R K. Settlement of refuse landfills. In Geotechnical practice for disposal of solid waste materials, Ann Arbor, MI.1977.
    [149]Reddy K R, Bogner J E. Bioreactor landfill engineering for accelerated stabilization of municipal solid waste. Invited Theme Paper on Solid Disposal, International e-Conference on Modern Trends in Foundation Engineering:Geotechnical Challenges and Solutions, Indian Institute of Technology, Madras, India, October 2003.
    [150]Reddy K R, Hettiarachchi H, Parakalla N S, Gangathulasi J, Bogner J E. Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill. USA. Waste Management, 2008,29(2):952-959.
    [151]Reddy K R, Hettiarachchi H, Parakalla N, Gangathulasi J, Bogner J, Lagier T. Hydraulic conductivity of MSW in landfills. Journal of Environmental Engineering,2009a,135(8): 677-683.
    [152]Reddy K R, Hettiarachchi H, Parakalla N S, Gangathulasi J, Bogner J E. Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill. USA. Waste Management, 2009b,29(2):952-959.
    [153]Rees J F. The fate of Carbon compounds in the landfill disposal of organic mater. Journal of Chemical technology & biotechnology,1980,30(1):161-175.
    [154]Sanchez R, Hashemi M, Tsotsis T T, Sahimi M. Computer simulation of gas generation and transport in landfills II:Dynamic conditions. Chemical Engineering Science,2006,61(14): 4750-4761.
    [155]Sanchez R, Tsotsis T T, Sahimi M. Computer simulation of gas generation and transport in landfills. Ⅲ:Development of lanfills'optimal model. Chemical Engineering Science.2007, 62(22):6378-6390.
    [156]Sadek S. Ghanimeh S, EI-Fadel M. Predicted performance of clay-barrier landfill covers in arid and semi-arid environments. Waste Management,2007,27(4):572-583
    [157]Sah R. Stabilization of paper waste in bioreactor landfills using soybean peroxidase enzymes. Master Dissertation, Ryerson Polytechnic University, Ontario, Canada,2006.
    [158]Shank K L. Determination of hydraulic conductivity of the Alachua County Southwest Landfill. Master Dissertation, University of Florida, Gainesville, Fla.1993.
    [159]Sharma H D, Lewis S P. Waste containment systems, waste stabilization, and landfills: design and evaluation. John Wiley&Sons.1994.
    [160]Sharma H D, De A. Municipal solid waste landfill settlement:postclosure perspectives. Journal of Geotechnical and Geoenvironmental Engineering.2007,133(6):619-629.
    [161]Singh M K. Characterization of stress-deformation behaviour of municipal solid waste. PhD Dissertation. University of Saskatchewan, Saskatoon, Canada,2008.
    [162]Sowers G F. Settlement of waste disposal fills. Proc.8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, USSR,1973,2 (2):207-210.
    [163]Staub M, Galietti B, Oxarango L, Khire M V, Gourc J P. Porosity and hydraulic conductivity of MSW using laboratory-scale tests. Third International Workshop "Hydro-Physico-Mechanics of Landfills", Braunschweig, Germany,10-13 March 2009.
    [164]Stearns R P. Settlement and gas control:Two key post-closure concerns. Waste Age, 1987,18(3):55-60.
    [165]Stoltz G, Gourc J P, Oxarango L. Liquid and gas permeabilities of unsaturated municipal solid waste under compression. Journal of Contaminant Hydrology,2010a,118(1-2):27-42.
    [166]Stoltz G, Gourc J P, Oxarango L. Characterisation of the physico-mechanical parameters of MSW. Waste Management 2010b,30(8-9):1439-1449.
    [167]Tang W H, Gilbert R B, Angulo M, Williams R S. Probabilistic observation method for settlement-based design of a landfill cover. In Vertical and horizontal deformations of foundations and embankments, eds. A. T. Yeung and G. Y. Felio. Geotechnical Special Publication 1994,40:1573-1589.
    [168]The Interstate Technology & Regulatory Council-Alternative Landfill Technologies Team. Technical/Regulatory Guideline:Characterization, design, construction, and monitoring of bioreactor landfills.2006.
    [169]Townsend T G, Miller W L, Earle J F K. Leachate recycle infiltration ponds. Environmental Engineering,1995,121(6):465-471.
    [170]Uguccioni M, Zeiss C. Improvement of leachate prediction through municipal solid waste layers. Journal of the American Water Resources Association,1997,33(6):1265-1278.
    [171]Van Genuchten M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Science Society of America Journal,1980,44:892-898.
    [172]Van Zanten B, Scheepers M J J. Modeling of landfill gas potentials. In Proceedings of SWANA 18th Annual Landfill Gas Symposium. New Orleans, LA.1995.
    [173]Vavilin V A, Vasiliev V B, Rytov S V, Ponomarev A V. Modelling ammonia and hydrogen sulphide inhibition in anaerobic digestion. Water Research,1995,29(3):827-835.
    [174]Vavilin V A, Rytov S V, Lokshina L Y. A description of hydrolysis kinetics in anaerobic degradation of particulated organic matter. Bioresource Technology,1996,56(2-3):229-237.
    [175]Vavilin V A, Rytov S V, Lokshina L Y, Pavlostathis S G, Barlaz M A. Distributed model of solid waste anaerobic degradation-effects of leachate recirculation and pH adjustment. Biotechnology and Bioengineering,2003,81(1):66-73.
    [176]Vavilin V A, Jonsson S, Ejlertsson J, Svensson B H. Modelling MSW decomposision under landfill conditions considering hydrolytic and methanogenic inhibition. Biodegradation, 2006,17(5):389-402.
    [177]van Genuchten M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal,1980,44(5):892-898.
    [178]Wall D K, Zeiss C. Municipal landfill biodegradation and settlement. Journal of Environmental Engineering,1995,121(3):214-224.
    [179]Walsh P, O'Leary F. Bioreactor landfill design and operation. Waste Age. June,2002: 72-76.
    [180]Watts K S, Charles J A. Settlement of recently placed domestic refuse landfill. Proceedings of the Institution of Civil Engineers Part 1,1990,88:971-993.
    [181]Watts K S, Charles J A. Settlement characteristics of landfill wastes. Proceedings of the Institution of Civil Engineers (Geotechnical Engineering),1999,137(4):225-233.
    [182]Watts K S, Charles J A, Blaken N J R. Settlement of landfills:measurements and their significance. Waste 2002. Integrated Waste Management and Pollution Control:Research, Policy and Practice,2002:673-682.
    [183]White J. Robinson J, Ren Q C. Modelling the biochemical degradation of solid waste in landfills. Waste Management,2004,24(3):227-240.
    [184]Wysocki E J, Nabavi T R, Djafari S. The use of leachate recovery wells to evaluate municipal solid waste hydraulic characteristics at Fresh Kills Landfill. Paper Presented at 8th Annual Landfill Symp., Solid Waste Association of North America, Silver Spring, Md,2003.
    [185]Young A. Mathematical modeling of landfill gas extraction. Journal of Enviromental Engineering,1989,115(6):1073-1087.
    [186]Yuen S T S, Styles J R, McMahon T A. Process-based landfills achieved by leachate recirculation-a critical review and summary. Centre for Environmental Applied Hydrology Report. University of Melbourne, November 1994.
    [187]Zeiss C, Uguccioni M. Mechanisms and patterns of leachate flow in municipal solid waste landfills. Journal Environmental Systems,1995,23(3):247
    [188]Zhao Y C, Liu J Y, Huang R H, Gu G W. Long-term monitoring and prediction for leachate concentration in Shanghai refuse landfill. Water, Air and Soil Pollution,2000, 122(3-4):281-297.
    [189]Zornberg J G, Jernigan B L, Sanglerat T R, Cooley B H. Retention of free liquids in landfills undergoing vertical expansion. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(7):583-594.
    [190]陈家军,王浩,张娜,解剑波,章馨予.厨余垃圾填埋产气过程实验模拟研究.中国沼气,2008,26(3):22-25.
    [191]陈云敏,谢焰,詹良通.城市生活垃圾填埋场固液气相互作用性状研究.第2届全国非饱和土学术会议论文集,杭州,2005.
    [192]陈云敏,谢焰,詹良通.城市生活垃圾填埋场固液气耦合一维固结模型.岩土工程学报,2006,28(2):184-190
    [193]邓舟,蒋建国,黄中林,冯向明,周胜勇,杨国栋.渗滤液回灌对其最终处理的影响中试研究.环境科学,2006,27(6):1240-1243.
    [194]郭辉东,何品晶,邵立明,李国建.渗滤液回灌的氨氮和凯氏氮变化规律.中国给水排水,2004,20(1):18-21.
    [195]何品晶,冯肃伟,邵立明.城市固体废物管理.北京:科学出版社,2003.
    [196]黄文雄.垃圾填埋气产生过程与产气量预测模型的研究.硕士学位论文.重庆大学.2002.
    [197]焦学军,邵军,杨承休.城市生活垃圾填埋产气规律研究.上海环境科学,1996,15(9):30-33.
    [198]介玉新,丹增顿珠,魏戈峰.垃圾土的渗透特性试验.岩土工程技术,2005,19(6):307-310.
    [199]柯翰,冉龙,陈云敏,冯世进.垃圾体渗透性试验及填埋场水文分析研究.岩土工程学报,2006,28(5):631-634.
    [200]柯翰,陈云敏,谢焰,詹良通.适宜降解条件下填埋场的沉降模型及案例分析.岩土工程学报,2009,31(6):929-938.
    [201]柯翰,刘骏龙,陈云敏,詹良通,徐晓兵.不同压力下垃圾降解压缩试验研究.岩土工程学报,2010,32(10):1610-1615.
    [202]柯秋菊,涂帆,解仲明,肖朝昀.填埋场不同深度垃圾土压缩性室内试验研究.环境工程学报,2010,4(1):199-203.
    [203]黎青松,郭祥信,梁顺文.城市生活垃圾填埋场产气规律研究.上海环境科学,1999,18(6):270-272.
    [204]廖志强.卫生填埋降解试验研究及沉降机理分析.博士学位论文.河海大学.2006.
    [205]廖志强,施建勇,冒俊.MSW主压缩指数变化规律试验研究及机理分析.河海大学学报(自然科学版),2007,35(3):326-329.
    [206]刘东燕,冯国建,罗云菊,侯龙.含水量对垃圾土中有机物降解的影响.地球与环境,201 0,38(1):26-30.
    [207]刘富强,唐薇,聂永丰.城市生活垃圾填埋的产气过程实验室模拟.中国沼气,2001,19(1):22-26.
    [208]龙焰,沈东升,劳慧敏,胡宏.填埋场中垃圾降解微生物机理研究进展.浙江大学学报(农业与生命科学版),2006,32(1):9-13.
    [209]潘修疆,何品晶,吕凡,邵立明.pH值与乙酸对易腐有机垃圾水解过程的抑制.环境化学,2006,25(4):450-453.
    [210]彭绪亚,黄文雄,刘国涛.城市生活垃圾填埋产沼的模拟实验.城市环境与城市生态,2003,16(3):5-7.
    [211]瞿贤,何品晶,邵立明,李国建.城市生活垃圾渗透系数测试研究.环境污染治理技术与设备.2005,6(12):13-17.
    [212]瞿贤.何品晶,邵立明,Theodore Bouchez生物质组成差异对生活垃圾厌氧产甲烷化的影响.中国环境科学,2008a,28(8):730-735.
    [213]瞿贤,何品晶,Mazeas Laurent, Bouchez Theodore甲烷13C同位素比值表征温度对甲烷生成途径的影响.环境科学,2008b,29(11):3252-3257.
    [214]瞿贤,何品晶,邵立明,Bouchez Theodore含水率对生活垃圾甲烷化过程的影响.环境科学,2009a,30(3):918-923.
    [215]瞿贤,何品晶,谷惠丽,邵立明.生物反应器填埋的沉降加速效应.环境工程学报,2009b,3(1):165-168.
    [216]邵立明,何品晶,张晓星.添加污泥对渗滤液循环垃圾填埋层甲烷产生的影响.上海交通大学学报,2005,39(5):840-844.
    [217]沈东升.生活垃圾填埋生物处理技术.化学工业出版社.北京.2003.
    [218]孙晓杰,徐迪民,李雄,李兵.上海城市生活垃圾的组成及热值分析.同济大学学报(自然科学版),2008,36(3):356-378.
    [219]涂帆,钱学德.中美垃圾填埋场垃圾土的重度、含水量和相对密度.岩石力学与工程学报,2008,27(增1):3075-3081.
    [220]王浩.不同渗滤液回灌条件下MSW实验室模拟填埋产气研究.硕士学位论文.北京 师范大学.2008.
    [221]王伟,韩飞,袁光钰,蒋建国,王治仁.垃圾填埋场气体产量的预测.中国沼气,2001,19(2):20-24.
    [222]魏海云.城市生活垃圾填埋场气体运移规律研究.博士学位论文.浙江大学.2007.
    [223]魏海云,詹良通,陈云敏,凌道盛.分层填埋垃圾体中气体一维稳态运移规律.岩土工程学报,2009,31(11):1665-1671.
    [224]谢焰,陈云敏,唐晓武.城市生活垃圾降解压缩试验仪研制及应用.岩土工程学报,2005,27(5):571-576.
    [225]谢焰.城市生活垃圾固液气耦合压缩试验和理论研究.博士学位论文.浙江大学.2006.
    [226]谢焰,陈云敏,唐晓武,凌道盛,柯翰.考虑气固耦合填埋场沉降数学模型.岩石力学与工程学报,2006,25(3):601-608.
    [227]谢焰,陈云敏,柯瀚.考虑降解和分级堆填的填埋场一维沉降计算.水文地质工程地质,2008,1:102-106.
    [228]薛强,梁冰,孙可明,刘晓丽.填埋气体迁移气-热-力耦合动力学模型的研究.应用力学学报,2003,20(2):54-59.
    [229]薛强,冯夏庭,刘建军.填埋气体运移过程的多场耦合模型及仿真分析.系统仿真学报,2005,17(1):20-24.
    [230]薛强,刘磊,梁冰,赵颖,王永波.垃圾填埋场沉降变形条件下气水固耦合动力学模型研究.岩石力学与工程学报,2007,26(增1):3473-3478.
    [231]杨渤京,王洪涛,陆文静,牟子申.A-O脱氮型生物反应器填埋技术试验研究.北京大学学报(自然科学版),2008,44(6):953-957.
    [232]杨晗熠,吴育华.组合预测模型在城市垃圾产量预测中的研究与应用.北京理工大学学报(社会科学版).2009.11(2):54-57.
    [233]杨军,黄涛,张西华.温度对填埋垃圾渗滤液特性的影响.生态环境,2007,16(2):799-801.
    [234]张海莲,Raninger B,冯磊,陈晓艳.渗滤液流失造成的MSW填埋气潜能减量.可再生能源,2009,27(1):73-76.
    [235]张文杰.城市生活垃圾填埋场中水分运移规律研究.博士学位论文.浙江大学.2007.
    [236]张文杰,陈云敏,邱战洪.垃圾土渗透性和持水性的试验研究.岩土力学,2009,30(]1):3313-3317.
    [237]张晓星,何品晶,邵立明,李国建.渗滤液循环对填埋气体产生量影响的实验研究.环境科学学报,2005,25(2):264-268.
    [238]浙江大学岩土工程研究所软弱土与环境土工教育部重点实验室.苏州市七子山垃圾填埋场扩建工程关键岩土工程问题研究报告.苏州市市政公用局委托项目.2009.
    [239]中国固体废弃物处理行业研究报告2008. http://wenku.baidu.com/view/bcac30a1284 ac850ad02426e.html
    [240]中国统计年鉴.中华人民共和国国家统计局.中国统计出版社.2008-2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700