坚硬覆岩下重复采动离层水涌突机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
突水是我国煤矿存在的重大安全隐患,随着我国煤炭产量的不断增加,煤矿开采深度增大,多煤层开采等原因,一种新的顶板水害类型——覆岩离层水水害开始出现,并由于其具有瞬时水量大、突水征兆不明显、危害大等特点而逐渐引起重视。目前,国内外研究成果主要集中于离层形成机理、分布规律及离层注浆减沉的工程应用,对于离层水形成条件及其涌突水机理等研究很少。
     论文采用理论分析、现场试验、室内试验、数值模拟和工程实践应用等研究方法,以阐释淮北海孜矿5.21特大离层水涌突机理为主旨,在分析离层水害事故发生的背景条件基础上,围绕“离层的形成→离层水的形成→离层水突出”这一主线,对坚硬覆岩下重复采动离层水形成及涌突机理进行了深入的理论研究和探讨,提出了离层水防治的关键技术,并用于生产实践。取得以下成果:
     (1)利用地面钻探、注水流量测井、钻孔电视和离散元数值模拟综合研究了10煤、7煤重复采动情况下7煤覆岩离层的发育规律:1049面的开采破坏了7煤上覆地层的自然状态,火成岩底界、厚砂岩层内出现离层,随后745面的重复采动,使得先期形成的7煤覆岩中的离层规模进一步增大。由于厚砂岩本身为含水层,对其内的离层补给形成了“积水离层带”;其余发育在隔水层内的离层裂隙,则形成“真空离层带”。
     (2)提出离层水的形成需要具备4个基本条件:a、可积水离层——离层的发育位置位于导水裂隙带之上;b、离层周边存在补给水源;c、离层空间持续时间足够长;d、离层周围岩体的渗透能力较强。
     (3)考虑卸荷作用对渗透的影响,进行了人工制作裂隙砂岩试样卸除围压直至破坏的渗透试验;考虑岩体裂隙的影响,对由Monte-Carlo方法生成的砂岩复杂裂隙网络模型,进行了固定应力比、变应力比的渗流离散元模拟试验;卸荷渗透试验和裂隙网络渗流数值试验结果表明砂岩的渗透能力足以在较短时间形成大量的离层水,这是支持突水水源为离层水观点的重要依据。并根据渗流REV模拟结果,利用等效连续介质理论对砂岩水的渗流进行描述,得出了砂岩含水层水汇入离层水量的理论公式。
     (4)通过自行设计的动水压力模拟试验,发现岩石破坏瞬间会产生较高的动水压力。借助动水压力这一概念,将火成岩冲击动力作用下离层水突出危险性评价这一动力问题拟静力化,转换为采用动水压力计算突水系数进行危险性评价的问题,证实了突水事故必然发生。
     (5)采用物理模拟试验、离散元数值模拟方法对火成岩突然破断对岩层的冲击破坏效应进行了研究,结果表明,若火成岩发生突然破断,其冲击震动作用会使位于5.21突水位置上方的厚砂岩离层下位岩层的水平、垂直应力超过其强度能力、出现较大的变形速度、发生持续增大的水平、垂直变形量,瞬间发生失稳破坏,形成动力突破带,与其下的导水裂隙带沟通,整体构成5.21突水通道。
     (6)利用弹性理论、波动力学及弹性应力波等基础理论,对火成岩突然破断瞬间突破离层水体下完整岩层形成动力突破带的这一动力过程进行了理论推导,提出了动力突破带的理论表达式。
     (7)提出了坚硬覆岩下离层水突出的工程地质模型,指出离层积水的形成是发生离层水害事故的最根本、最重要的原因。由此提出防治离层水的关键技术是施工指向工作面外的离层水截流孔、指向预计离层发育位置的离层水导流孔来截断离层水补给水源、超前疏放离层水。并应用于745面恢复生产区段,实现了安全高效生产。
     该论文有图79幅,表22个,参考文献262篇。
Water inrush threats the coal safe production in China. Recently, because of the raise of the production of the coal, the raise of the mining depth and the multi-seam mining, a new type of the roof water disaster, the water in roof bedding separation inrush appears. It has characters of large instantaneous water quantity, no obvious Symptoms of the water inrush and great harmfulness, which receives more concerns in recent years. At present, the research work focuses on the formation mechanism of the bed separation, distribution regularity and the engineering applications of subsidence reduction with grouting in the bed separation. Few research work has been done on the formation conditions and the inrush mechanism of the water in bed separation
     By theory analysis, field tests, experiments in the lab, numerical simulation and application in practice, for the purport of the description the inrush mechanism of the water in bed separation in Haizi Colliery, this thesis deeply studies the formation and inrush mechanism of the water in bed separation under the hard overburden due to repeated mining. The study work is centering on the formation of the bed separation, the formation of the water in bed separation and the inrush of the water in bed separation, based on analyzing the background conditions the inrush disaster of the water in bed separation. the key control technology of the water in bed separation is presented, which has been used in practice. The following results are obtained.
     (1)With surface drilling, the well logging of the injection flow, borehole televiewer and discrete element method simulation, the development rule of the bed separation in Coal 7 overburden is studied due to the Coal 10 and Coal 7 repeated mining. The natural state of the Coal 7 overburden damaged after the mining of the 1049 work face. The bed separation in the thick sandstone occurs at the bottom of the igneous rock. The bed separation expands due to the repeated mining of the 745 work face. The thick sandstone is the aquifer, which promotes the accumulation of the water in bed separation by supply the water. The other bed separation is located in the aquifuge and becomes the vacuum bed separation.
     (2)The 4 basic conditions of the formation the water in bed separation are presented. The first, the bed separation is above the water flowing fractured zone. The second, the recharge water source is around the bed separation. The third, the bed separation sustains long enough. The last, the surrounding rock has high permeability.
     (3)To study the unloading influence on the rock permeability, the man-made fractured rock samples permeability tests are done with unloading the confining pressure to failure. Used random fracture network model by Monte-Carlo method, the numerical simulation is done to study the fixed stress ratio, variable stress ratio. The results show that the permeability of sandstone is big enough to accumulate much water in bed separation in some time. It is important. Used discrete element method, the permeability REV is decided as 8m. The mathematical model of the water flow in thick sandstone aquifer injection into the bed separation is obtained by describing the permeability of the water in sandstone with equivalent continuum theory.
     (4)Whether the inrush of the water in bed separation occurs is judged by the water inrush coefficient method. Based on excess hydrostatic pressure test’s results, the water inrush coefficient of the water in bed separation loaded by the igneous rock impact is calculated. If the calculated value is higher than the critical water inrush coefficient, the water inrush must occur.
     (5)The impact damage effect of the igneous rock sudden failure is studied by similar model test and discrete element method. The results show that if the igneous rock sudden failure occurs, its impact shock effect causes the horizontal and vertical stress of the strata under the thick sandstone bed separation higher than the capacity strength, and the high deformation velocity occurs. The horizontal and vertical deformation increases continuously, which cause the sudden failure and connects with the lower water flowing fractured zone. The inrush channel of the 5.21 Water Inrush Disaster forms.
     (6)Using elastic theory, wave mechanics and elastic stress wave theory, theoretical derivation on the dynamic process of the igneous rock sudden failure damaging the lower strata is done. The calculation formula of the dynamic breakthrough zone is presented.
     (7)The engineering geological model of the water in bed separation under the hard overburden is proposed, which points that the accumulation of the water in bed separation is the critical reason of the inrush disaster of the water in bed separation. Based on the research results, the control technology of the water in bed separation is presented, which contains using the water closure and diversion borehole of the water in bed separation to truncate the recharge the water in bed separation and advance dewatering the water in bed separation. The technology was used in the resumption production of the 745 workface of Haizi Colliery, which insures safety and high effective product.
     The thesis has 79 figures, 22 tables and 262 references.
引文
[1]谢宪德.浅谈南桐煤矿采区顶板离层裂隙透水[J].矿山测量,1992,(02):15-19.
    [2]谢宪德.南桐煤矿深部采区离层裂隙突水的原因及其防治[J].技术经验,1997,(01):31-35.
    [3]张金涛.华丰煤矿第三系砾岩水与开采四层煤关系[J].煤田地质与勘探,2002,30(05): 35-38.
    [4]李文平等.淮北矿区整体结构顶板特大动力突水水害查治试验研究[R].中国矿业大学,2007.
    [5]李伟,李文平,程新明,李小琴,李成明,孙如华.整体结构顶板特大动力突水水害查治方法[M].徐州:中国矿业大学出版社,2008.
    [6]李伟.海孜矿特殊突水事故发生的原因及对策[J].煤炭科学技术,2006,34(01):35-38.
    [7]李忠凯,胡杰.工作面顶板动态离层水治理研究[J].中国煤田地质,2007,19(02):35-37.
    [8]程新明,赵团芝,李小琴等.离层积水存在的矿井工作面涌水量预计[J].煤田地质与勘探,2007,35(04):34-37.
    [9]赵团芝,李文平等.顶板覆岩离层水体分布规律勘查研究[J].矿业安全与环保,2008,35(05):4-6.
    [10]赵团芝.煤层顶板离层水体形成机理及水量计算研究[D].中国矿业大学,2008.
    [11]任春辉,李文平等.巨厚岩层下煤层顶板水突水机理及防治技术[J].煤炭科学技术,2008,36(15):46-48.
    [12]程新明,王经明.海孜煤矿顶板动力冲击水害的成因研究[J].河北工程大学学报(自然科学版),2008,25(01):35-37.
    [13]程新明,王经明.海孜煤矿顶板离层水害的成因与防治研究[J].煤炭工程,2008,(07):60-62.
    [14]韩东亚,王经明.海孜煤矿顶板次生离层水的形成与防治[J].华北科技学院学报,2008,05(01):9-12.
    [15]李凤荣,陈真富,王和志.煤层顶板离层水体分布规律及防治技术探讨[J].采矿与安全工程学报,2009,26(02):239-243.
    [16]朱卫兵,王晓振等.覆岩离层区积水引发的采场突水机制研究[J].岩石力学与工程学报,2009,28(02):306-311.
    [17]李文平等.采场顶板离层水涌水机理与防治技术研究[R].中国矿业大学,2009.
    [18]乐建.采场顶板离层水涌水机理及其危险性评价研究[D].中国矿业大学,2009.
    [19]王争鸣,王经明.新集矿区推覆体下采煤离层水的成因与防治[J].能源技术与管理,2008,(03):55-57.
    [20]李吴波,吴鹏,王现金,赵忠宜.缓倾斜地层顶板离层水对综采工作面的危害及防治探讨[J].中国煤炭地质,2009,21(10):42-45.
    [21] Jincai Zhang. Investigations of water inrushes from aquifers under coal seams[J]. International Journal of Rock Mechanics & Mining Sciences ,2005 ,42(03):350–360.
    [22] Jincai Zhang, Baohong Shen. Coal mining under aquifers in China: a case study [J]. International Journal of Rock Mechanics & Mining Sciences ,2004,41(04):629–639.
    [23] K B Singh,T N Singh. Ground movements over longwall workings in the Kampteecoalfield [J]. India, Engineering Geology , 1998,50(01-02):125–139.
    [24]黄德发.地层注浆堵水与加固施工技术[M].徐州:中国矿业大学出版社,2003.
    [25]李兆祥.采煤工作面特大型突水水源及突水因素分析[J].煤矿安全,2004,35(01):26-27.
    [26]马培智,郑士田,黄贤瑞.范各庄井田奥灰水NO3-离子形成机理及在水源判别中的应用[J].煤田地质与勘探,1998,26(01):48-50.
    [27]王兰健,韩仁桥.水情监测预警系统在海下采煤中的应用[J].煤田地质与勘探,2006,34(06):54-56.
    [28]李向全,张莉,于开宁.西北干旱区深层岩溶地下水系统的水化学同位素研究[J].吉林大学学报(地球科学版),2003,33(04):524-527.
    [29]煤炭科学研究总院西安分院.渭北地区地下水水化学研究[R]. 1996.
    [30]煤炭科学研究总院西安分院.焦作地区底板突水模型及突水水源判别[R]. 1995.
    [31]韩宝平,冯启言,曹丁涛.滕县、兖州煤田红层的富水性及其对煤炭开采的影响量[J].工程地质学报,1995,03(03):55-61.
    [32]卜庆林,陈成星,杨成超,孟祥军,官云章.煤层顶板岩层富水性分区指标及其涌水量预测[J].山东科技大学学报(自然科学版),2005,24(03):28-31.
    [33]吕保民.矿井导水通道类型及其突水防治[J].山东煤层科技,2006,(02):8-10.
    [34]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社,1997.
    [35]苏宝成.华丰煤矿顶板突水机理及防治技术研究[D].山东科技大学,2005.
    [36]景继东,施龙青,李子林等.华丰煤矿顶板突水机理研究[J].中国矿业大学学报,2006,35(05):642-646.
    [37]景继东.巨厚砾岩顶板突水机理及防治技术研究[D].山东科技大学,2007.
    [38]孙本魁,吴基文,杨永林,赵开全,贺兆礼,唐东旗.淮北刘桥二矿七含涌(突)水机理研究[J].中国地质灾害与防治学报,2005,16(03):126-129.
    [39]管恩太,武强.矿井涌水量预测评述[J].中州煤炭,2005,(01):7-8.
    [40]陈兆炎,苏文智,郑世书等.煤田水文地质学[M].北京:煤炭工业出版社,1989.
    [41]薛禹群,朱学愚.地下水动力学[M].北京:地质出版社,1997.
    [42]林杭等.顶板突水分析的研究方法[J].煤炭学报,2002,22(01):12-15.
    [43]张利标.“大井”法防治煤层顶板水[J].采矿技术,2003,03(03):37-38.
    [44]周笑绿,杨国勇.一种矿井突水量预测的近似方法[J].西安科技大学学报,2005, 25(03):341-344.
    [45] Maged Hussein, Franklin W. Schwartz. Modeling of flow and contaminant transport in coupled stream–aquifer systems[J]. Journal of Contaminant Hydrology, 2003, 65(01):41-64.
    [46]凌成鹏,孙亚军,杨兰和,姜素,邵飞燕.基于BP神经网络的孔隙充水矿井涌水量预测[J].水文地质工程地质,2007,(05):55-58.
    [47]李保珠,李峰,薛传东,吴志亮.有限单元法在涌水量预测中的应用[J].矿业工程,2003,01(05):56-58.
    [48]武强,黄晓玲,董东林等.评价煤层顶板涌(突)水条件的“三图一双预测法”[J].煤炭学报,2000,25(01):60-65.
    [49]张海荣,周荣福,郭达志,杜培军.基于GIS复合分析的煤矿顶板水害预测研究[J].中国矿业大学学报,2005,34(01):112-116.
    [50]周笑绿,孙亚军.东滩煤矿3煤顶板水害预测[J].矿业研究与开发,2005,25(04):74-77.
    [51]郑纲.模糊聚类分析法预测顶板砂岩含水层突水点及突水量[J].煤炭安全,2004,35(01):24-25.
    [52]王新.煤矿顶板突水机理探讨[J].煤矿开采,2007,12(05):74-76.
    [53]袁亮,吴侃.淮河堤下采煤的理论研究与技术实践[M].徐州:中国矿业大学出版社,2003.
    [54]陈朝阳等.焦作矿区突水水源判别模型[J].煤田地质与勘探,1996,24(04):38-40.
    [55]洪雷等.最大效果测度值法研究矿井突水水源[J].中国煤田地质,2002,14(02):45-46.
    [56]马广明等.回采工作面顶板突水预报与防治对策[J].煤矿安全,2001,32(03):16-17.
    [57]刘小松等.基于GIS的东滩煤矿顶板突水预测预报[J].河北建筑科技学院学报,2002,19(03):66-68.
    [58]曹立洲.卧龙湖煤矿主井井筒K3砂岩突水治理[J].建井技术,2006,27(05):17-18.
    [59]张凰.孤岛工作面覆岩运动破坏规律研究[D].山东科技大学,2004.
    [60]新汉矿业(集团)公司华丰煤矿,山东矿业学院特采所.大倾角厚覆盖层采煤后地表下沉和斑裂研究与控制[D]. 2000.
    [61] Crouch S L. Two-dimensional analysis of near-surface, single-seam extraction[J]. International Rock Journal of Mechanics Mining Science Geomechanical Abstract, 1973,10(02):34-39.
    [62]白海波.徐州矿区P1煤顶板砂岩突水量动态特征及形成机制[J].徐煤科技,1994,(02):25-26.
    [63]吴祥,赵全富,周霄鹏,魏裕博.采面出现含黄泥、细沙淋水异常现象的分析[J].煤矿开采,2002,(04):57-58.
    [64]桑红星,王传民,胡凤义.承压水上泥灰岩顶板人工放顶技术[J].山东科技大学学报(自然科学版),1999,18(03):41-43.
    [65]李世新,李永.大刘井田9煤顶板多层含水层防治技术[J].煤炭科技,2000,(03):48-49.
    [66]武强,江中云,孙东云等.东欢砣矿顶板涌水条件与工作面水量动态预测[J].煤田地质与勘探,2000,28(06):32-35.
    [67]段中会,牛建国,崔帮军.神府矿区首采高产高效工作面疏降水方法[J].中国煤田地质,1996,08(02):31-33.
    [68]冯玉明.太原西山隐伏岩溶区陷落柱的成因及其水文地质意义分析[J].山西水利科技,1996,(S1):12-13.
    [69]袁小明.安庆铜矿水文地质特征及矿坑水害防治[J].有色金属设计,2003,30(01):13-16.
    [70]高明飞,邢程,刘武章,吴高明.北皂煤矿4301工作面综放开采煤4层开采上限的验证[J].煤矿开采,2000,(S1):28-29.
    [71]刘德山,张化军,崔亚文,李胜玉,张伟.大明二矿水体下采煤可行性研究[J].煤炭技术,2001,20(05):25-26.
    [72]刘红梅.复合水体下急倾斜煤层开采的水害防治研究[J].河北建筑科技学院学报,2001,18(02):83-86.
    [73]章永凤.复杂地质条件下防治老窑水害的综合分析方法[J].煤炭技术,2000,19(05):34-36.
    [74]黎汝发,黎祖明.国有煤矿防治水面临的新问题及对策[J].煤炭科学技术,2003,31(09):27-29.
    [75]简兴仁.积水区下煤层的安全回采[J].煤矿安全,2003,34(04):25-26.
    [76]李沛涛,郭启文,陈晓国,孙长军,乔留军.井筒开凿遇老空区突水的治理技术[J].矿业安全与环保,2004,(01):22-23.
    [77]俞志新,丛振,朱学军.矿井防治水安全技术探讨[J].辽宁工程技术大学学报,2002,21(03):284-285.
    [78]刘国林,段绪华.老空、老窑水的充水特征及防治对策[J].中国煤炭,2004,(03):12-14.
    [79]滕永海.老窑积水区下急倾斜煤层开采的安全监测与预报[J].矿山测量,2000,(03):30-31.
    [80]范振忠,朱志学,张庆民.利用老空区调控矿井水技术[J].山东煤炭科技,2002,(05):17-19.
    [81]于刚,于静荣,逢云峰.梁家煤矿2210工作面老空水探查预测与治理[J].山东煤炭科技2003,(06):25-26.
    [82]高卫东,何元东,李新社.水化学法在矿井突水水源判断中的应用[J].矿业安全与环保,2001,28(05):44-45.
    [83]吴祥,赵全富,周霄鹏,李祥华等.水淹积水区下工作面的安全防治水[J].矿业安全与环保,2003,30(S1):128-129.
    [84]任瑞章.水峪煤矿山西组2号煤古空水体下采煤可行性论证[J].山西煤炭,2003,23(04):2-4.
    [85]郭正义.物探技术在煤矿老空区探测中的应用[J].江西煤炭科技,2002,(04):12-13.
    [86]李惠萍.杨桥煤矿水库水害的治理[J].煤矿安全,2001,32(09):22-23.
    [87]陈建生.郑州矿区水害与防治技术[J].煤炭科学技术,2001,29(07):21-23.
    [88]肖民.榆神矿区榆树湾矿保水开采注桨离层参数研究[D].西安:西安科技大学,2006.
    [89]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1991.
    [90]钱鸣高,朱德仁.老顶岩层断裂型式及其对采面来压的影响[[J].中国矿业业学院学报,1986,(02):9-16.
    [91]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [92]朱德仁,钱鸣高,徐林生.坚硬顶板来压控制的探讨[J].煤炭学报,1991,(02):11-19.
    [93]赵国景,钱鸣高.采场上覆坚硬岩层的变形运动与矿山压力[[J] .煤炭学报,1987,(03):1-8.
    [94]何富连.综采工作面直接顶稳定性与支架-围岩控制论[D].徐州:中国司矿业大学,1993.
    [95]刘长友.采场直接顶整体力学特性及支架围岩关系的研究[D].徐州:中国司矿业大学,1996.
    [96]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[[J] .矿山压力与顶板管理,1995,34(Z1):3 -12.
    [97]宋振骐.采场上覆岩层运动的基本规律[[J].山东矿院学报,1997,(01):64-77.
    [98]宋振骐,宋扬等.内外应力场理论及其在矿压控制中的应用[A],中国北方岩石力学与工程应用学术论文文集[C].郑州:科学出版社,1991.
    [99]宋振琪,蒋金泉.煤矿岩层控制的研究重点与方向[[J].岩石力学与工程学报,1996,15(02):128-134.
    [100]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [101]钱鸣高,缪陇兴等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [102]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[[J].中国矿业大学学报,1998, 11(01):39-42.
    [103]缪协兴,茅献彪,钱鸣高.采场覆岩中关键层的复合效应分析[[J] .矿山压力与顶板管理,1999,(03- 04):19-21.
    [104]许家林.岩层移动控制的关键层理论及其应用[D].徐州:中国司矿业大学,1999.
    [105]许家林,钱鸣高.覆岩关键层位置的判断方法[[J].中国矿业大学学报,2000,29(05):463-467.
    [106]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[[J] .煤炭学报,2000,25(02):122-126.
    [107]许家林,钱鸣高,朱卫兵.覆岩卞关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(05):787-791.
    [108] S S彭.煤矿地层控制[M].北京:煤炭工业出版社,1984.
    [109] Z T比尼斯基著,孙恒虎等译.矿业工程岩层控制[M].徐州:中国矿业大学出版社,1990.
    [110] Kratcsch H. Mining Subsidence Engineering Springer Verlag[M]. Berlin,1983.
    [111]煤科院北京开采所.煤矿地表移动与覆岩破坏规律及应用[M].北京:煤炭工业出版社,1981.
    [112]杜计平,汪理全.煤矿特殊开采方法[M].徐州:中国矿业大学出版社,2003.
    [113]姜福兴.岩层质量指数及其应用[J].岩石力学与工程学报,1994,13(03):270-278.
    [114] C Mark,G M Molinda. The Coal Mine Roof Rating (CMRR)--a decade of experience[J]. International Journal of Coal Geology,2005,64(01):85-103.
    [115] S K Das. Observations and classification of roof strata behaviour over longwall coal mining panels in India[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(04):585-597.
    [116] D N Whittlesa,D J Reddishb,I S Lowndes. The development of a coal measure classification (CMC) and its use for prediction of geomechanical parameters [J]. International Journal of Rock Mechanics & Mining Sciences,2007,44(04):496–513.
    [117]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M] .徐州:中国矿业大学出版社,2003.
    [118]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用研究[J].岩土工程学报,2004,24(05):632-636.
    [119]高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996,21(01):51-55.
    [120]高延法,邓智毅,杨忠东等.覆岩离层带注浆减沉的理论探讨[J].矿山压力与顶板管理,2001,(04):65-67.
    [121]姜岩.采动覆岩离层及其分布规律[J].山东矿业学院学报,1997,16(01):19-23.
    [122]姜岩,徐永梅.采动覆岩离层计算[J].煤矿开采,1997,26(03):41-42.
    [123]郭惟嘉等.华丰煤矿采动覆岩移动变形与治理的研究[J].山东矿业学院学报,1995,14(04):359-364.
    [124]郭惟嘉,徐方军.覆岩体内移动变形及离层特征[J] .矿山测量,1999,(03):36-38.
    [125]郭惟嘉,毛仲玉.覆岩沉陷离层及工程控制[M].北京:地震出版社,1997.
    [126]张玉卓.煤矿覆岩运动竖向不连续位移分析——跨世纪的矿业科学与高新技术[M].北京:煤炭工业出版社,1996.
    [127]张玉卓,陈立良.长壁开采覆岩离层产生的条件[J].煤炭学报,1996,21(06):576-581.
    [128]张玉卓,徐乃忠.地表沉陷控制新技术[C].徐州:中国矿业大学出版社,1998.
    [129]张玉卓,王明立. Modeling of overburden failure under the condition of mining two close-rangeseams using room-and-pillar andlongwall mining[J]. Journal of Coal Science & Engineering(CHINA),2000,06(01):10-13.
    [130]王金庄,康建荣.煤矿覆岩离层注浆减缓地表沉降机理与应用探讨[J].中国矿业大学学报,1999,28(04):331-334.
    [131]赵德深.开采空间在覆岩中的传播规律[D].硕士学位论文.阜新:阜新矿业学院,1986.
    [132]赵德深.煤矿区采动覆岩离层分布规律与地表沉陷控制研究[D].博士学位论文.阜新:辽宁工程技术大学,2000.
    [133]赵德深,王世平.地质采矿因素对离层分布规律的影响分析[J].辽宁工程技术大学学报(自然科学版),1998,17(02):119-123.
    [134]赵德深,朱广轶等.覆岩离层分布时空规律的实验研究[J].辽宁工程技术大学学报(自然科学版),2002,21(01):4-7.
    [135]赵德深,徐涛等.水平及缓倾斜煤层开采条件下离层值的计算[J].岩石力学与工程学报,2005,24(A02):5767-5772.
    [136]赵德深,陈雄,覃丽坤,徐涛,关萍.采动覆岩离层的数值模拟研究[J].岩石力学与工程学报,2005,24(S1):5164-5167.
    [137]郝延锦,吴立新,胡金星.采动过程中离层出现的机理研究[J].煤炭技术,1999,18(06):40-41.
    [138] S Lin. Dsiplacement discontinuities and stress changes between roof strata and their influence on longwall mining under aquifers[J]. Geotechnical and Geological Engineering,1993,11(01):37-50.
    [139]张建全,廖国华.覆岩离层产生的机理及离层计算方法的探讨[J].地下空间,2001,21(05):407-411.
    [140]张建全,闫保金,廖国华.采动覆岩移动规律的相似模拟实验研究[J].采矿工程,2002,314(08):10-13.
    [141]张建全,戴华阳.采动覆岩应力发展规律的相似模拟实验研究[J].矿山测量,2003,(04):49-51.
    [142]滕永海,阎振斌.采动过程中覆岩离层发育规律的研究[J].煤炭学报, 1999, 24(01):25-28.
    [143]苏仲杰.采动覆岩离层变形机理研究[D].辽宁工程技术大学,2001.
    [144]苏仲杰,于广明,杨伦.覆岩离层变形力学机理数值模拟研究[J].岩石力学与工程学报,2003,22(08):1287-1290.
    [145]李树刚.关键层破断前后覆岩离层裂隙当量面积计算[J].西安矿业学院学报,1999,19(04):289-292.
    [146]李树刚,钱鸣高,石平五.综放开采覆岩离层裂隙变化及空隙渗流特性研究[J].岩石力学与工程学报,2000,19(05):604-607.
    [147]涂敏,刘泽功.综放开采顶板离层裂隙变化研究[J].煤炭科学技术,2004,32(04):44-47.
    [148]段欣,于广明,钟紫娟.地下大空间开挖引起覆岩离层的空间模型[J].青岛理工大学学报,2006, 27(02):28-30.
    [149]古全忠,史元伟等.放顶煤采场顶板运动规律的研究[J].煤炭学报,1996,21(01):45-50.
    [150] N P Kripakov, M C Sun and D A Donato. Adina applied toward simulation ofprogressive failure in underground mine structures[J]. Computer & Strucrures. 1995, 56(02):329-344.
    [151] B Unver,N E Yasitli. Modelling of strata movement with a special reference to caving mechanism in thick seam coal mining[J]. International Journal of Coal Geology,2006,(66):227-252.
    [152] Cundall P A. A computer model for simulating progressive,large scale movements in blocky rock systems[C]. Proceedings of the International Symposium Rock Fracture, ISRM,Nancy,1971,(01):8-12.
    [153] Cundall P A,Strack O D L. A discrete numerical model for granular assembles[J]. Geotechnique,1979,29(01):47-65.
    [154] M A Coulthard. Applications of numerical modelling in underground mining and construction [J]. Geotechnical and Geological Engineering. 1999,17(03-04):373–385.
    [155] Shou Gen Chen,Hua Guo. Numerical Simulation of Bed Separation Development and Grout Injecting into Separations[J]. Geotechnical and Geological Engineering, 2008,26(04):375-385.
    [156] S T Kuznetsov,B Z Amusin,D G Pekarskii. Approximate of the risk of bed separation in coal seam roofs[J]. fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 1976,(04):359-364.
    [157] S T Kuznetsov,N A Filatov,N F Dontsul. Predicting bed separation in roof rocks of rooms[J]. fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 1980,(04): 316-319.
    [158]唐春安,徐曾和.岩石破裂过程分析RFPA-2D系统在采场上覆岩层移动规律研究中的应用[J].辽宁工程技术大学学报(自然科学版),1999,18(05):456-458.
    [159]刘红元,唐春安等.采动影响下覆岩垮落过程的数值模拟[J].岩土工程学报,2001,23(02):201-204.
    [160]唐春安,徐曾和,徐小荷.岩石破裂过程分析RFPA系统在采场上覆岩层移动规律研究中的应用[J].阜新矿业学院学报,1999,l8(05):456-458.
    [161]徐涛,唐春安,杨天鸿等.采场覆岩关键层破断规律的数值模拟[J].岩石力学与工程学报,2002,21(S1):2129-2133.
    [162] Bello G A,Menendez D A,Ordieres J B,et al. Generalization of the influence function method in mining subsidence[J]. International Journal of Surface M ining, Reclamation and Environment,1996,10(04):195-202.
    [163] Sheorey P R, Loui J P, Singh K B, et a1.Ground subsidence observations and a modified influence function method complete subsidence prediction [J].International Journal of Rock Mechanics Mining Science,2000,37(05):801-818.
    [164] Ambromic T, Turk G. Prediction of subsidence due to underground mining by artificial neural networks[J].Computers& Geosciences, 2003, 29(05):627-637.
    [165] Alejano L R, Oyanguren P R, Taboada J.Numerical prediction of subsidence phenomena due to flat coal seam mining[J].International Journal of Rock Mechanics Mining Science,1998,35(04-05):440-441.
    [166] Donnelly L J, Cruzb H D L, Asmarb I, et a1.The monitoring andprediction of mining subsidence in the Amaga Angelopolis Venetiaand Bolombolo regions Antioquia t Colombia[J]. Engineering Geology,2001,59(11):103-114.
    [167]张百胜,康立勋,杨双锁.大断面全煤巷道层状顶板离层变形模拟研究[J].采矿与安全工程学报,2006,23(03):264-266.
    [168]姚精明,窦林名.采矿振动法在巷道顶板离层中的应用[J].江苏煤炭,2004,(01):1-3.
    [169]文振明,张宏伟.顶板离层与监测[J].煤炭技术,2006,25(25):49-51.
    [170]陈勇,柏建彪,李传坤.顶板离层主要影响因素分析[J].能源技术与管理,2007,(06):29-31.
    [171]刘文生,范学理.覆岩离层产生机理及离层充填控制地表沉陷技术的工程实施[J].煤矿开采,2002,07(03):53-55.
    [172]程军,姚光华.鱼田堡煤矿水文地质特征及深部突水模式分析[J].中国煤田地质,2007,19(05):31-34.
    [173]钱鸣高,刘听成.矿山压力与及其控制[M].北京:煤炭工业出版社,1984.
    [174] Yuji Kanaori. Observation of crack development around an underground rock chamber by borehole television system[J]. Rock Mechanics and Rock Engineering,1983,16(02):133-142.
    [175] Beyer R,Jacobs A M. Borehole TV[J]. Engineering and Mining Journal,1986,187(05):36-8.
    [176] Beyer R,Jacobs A M. Borehole television for geotechnical investigations[J]. Int. J. Water Power and Dam Construction,1986,38(09):16-18.
    [177]于景良,王德福,倪志刚等.全景电视系统的研究[J].天津大学学报,1990,03(02):91-97.
    [178]于景良,王德福,孙鼎俊.全景式孔内彩色电视系统的研制及其应用[J].大坝观测与土工测试,1996,20(04):30-32.
    [179]王川婴,葛修润,白世伟.前视全景钻孔电视及其应用[J].岩石力学与工程学报,2001,20(S1):1 687-1 691.
    [180] Joel Barbour. Side scan down hole video tool having two camera[P]. United States Patent(US 5652617),1996.
    [181]王川婴,葛修润,白世伟.数字式全景钻孔摄像系统及应用[J].岩土力学,2001,22(04):523-526.
    [182]葛修润,王川婴.数字式全景钻孔摄像技术与数字钻孔[J].地下空间,2001,21(04):254-261
    [183]王川婴,葛修润,白世伟.数字式全景钻孔摄像系统研究[J].岩石力学和工程学报,2002,21(03):398-403.
    [184]王川婴,Law K T.钻孔摄像技术的发展和现状[J].岩石力学和工程学报,2005,24(19):3 440-3 448.
    [185]秦英译,王川婴.前视井下电视和数字钻孔摄像在工程中的应用.岩石力学与工程学报,2007,26(S1):2834–2840.
    [186]葛亮涛,顾谦隆,高洪烈.多含水层混合井流理论及流量测井法[M].北京:煤炭工业出版社,1984.
    [187]郭崇光,李振栓,赵莹等.水文地球物理测井方法与应用[M].北京:煤炭工业出版社,2006.
    [188]林保政,梁鹏.简易流量测井法在红四井田中的应用[J].宁夏工程技术,2010,09(04):369-371.
    [189]潘树仁,李宾亭.流量测井存在的问题及其解决方法探讨[J].中州煤炭,1994,(01):19-22.
    [190]马兆荣,郑军.流量测井技术的理论研究及应用.北京地质,1998,(01):32-33.
    [191]杨杰.流量测井理论基础及其在水文地质工作中的应用[J].物探与化探,1985,09(03):183-191.
    [192]双鸭山矿务局地质队.用流量测井法确定导水裂缝带高度[J].煤炭科学技术,1978,(05):31-34.
    [193]韩强,黄小清,宁建国.高等板壳理论[M].北京:科学出版社,2002.
    [194] Nelson R. Fracture Permeability in Porous reservoirs:experimental and field approach [D]. Department of Geology Texas A&M University,1975.
    [195] Gale J E. The effeets of fracture type (induced versus natural) on the stress-fracture closure permeability relationship[C]. Proc. 23rd symp. On rock mechanics, 1982.
    [196] Kranz R L, Frankel A D, Engelder T, Scholz C H. The permeability of whole and jointed barre granite [J]. International Journal of Rock Mechanics and Mining Seience & Geomeehanies Abstract,1979,(16):225-334.
    [197] Esaki T,Du S,Mitani Y,Ikusada K,Jing L. Development of a shear-flow test apparatus and determination of coupled Properties for a single rock joint [J] .International Journal of Rock Mechanies and Mining Sciences,1999,36(05):641-650.
    [198] Chen Z, Nyrayan S P, rallg Z,Rahman S. An experimental investigation of hydranlic behavior of fractures and joints in granitic rock [J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(07):1061-1071.
    [199] Olsson R,Barton N. An improved model for hydromeehanical coupling during shearing of rock joints [J]. International Journal of Rock Mechanics and Mining science,2001,38(03):317-329.
    [200]速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究[J].岩土工程学报,1997,19(04):73-77.
    [201]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学,1997,18(04):59-62.
    [202]张金才,张玉卓.应力对裂隙岩体渗流影响的研究[J].岩土工程学报,1998,20(02):19-22.
    [203]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,15(02):133-136.
    [204]徐德敏.高渗压下岩石(体)渗透及力学特性试验研究[D].成都:成都理工大学,2008.
    [205]贺玉龙,陶玉敬,杨立中.不同节理粗糙度系数单裂隙渗流特性试验研究.岩石力学与工程学报,2010,29(S1):3235-3240.
    [206] Zhang X, Sanderson DJ. Numerical modelling and analysis of fluid flow and deformation of fractured rock masses. Oxford: Pergamon; 2002.
    [207] Zhang X, Sanderson DJ, Harkness RM, Last NC. Evaluation ofthe 2-D permeability tensor for Fractured Rock masses[J]. Int JRock Mech Min Sci & Geomech Abstr ,1996; 33(01):17-37.
    [208] Zhang X, Sanderson DJ. Effects of stress on the 2-D permeabilitytensor of natural fracture networks[J]. Geophys J Int, 1996, 125(03):912-24.
    [209] Zhang X, Sanderson DJ. Effects of loading direction on localizedflow in fractured rocks. Computer methodsand advances in geomechanics. Rotterdam:Balkema,1997.
    [210] Ki-Bok Mina, J Rutqvistb, Chin-Fu Tsangb, Lanru Jinga. Stress-dependent permeabilityof fractured rock masses: a numerical study[J]. International Journal of Rock Mechanics & Mining Sciences,2004 , 41(07): 1191–1210.
    [211] Alireza Baghbanan, Lanru Jing. Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture[J]. Internationa lJournal of Rock Mechanics & Mining Sciences,2008, 45(08):1320–1334.
    [212] Cappa F,Guglielmi Y,Soukatchoff V M,Mudry J,Bertrand C,Channoille A. Hydromechanieal modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemieal monitoring: example of the La Clapiere landslide(Southern AIPs,Franee)[J]. Joumal of Hydrology,2004,291(0l-02):67-90.
    [213]焦玉勇,葛修润,谷先荣.三维离散元法中地下水及锚杆的模拟[J].岩石力学与工程学报,1999,18(01):6-11.
    [214]王洪涛.裂隙网络渗流与离散元耦合分析充水岩质高边坡的稳定性[J].水文地质工程地质,2000,(02):30-33.
    [215]陶连金,姜德义,孙广义,张东日.节理岩体中地下水流动的离散元模拟[J].煤炭学报,2000,25(0l):l-4.
    [216]刘泉声,吴月秀,刘滨.应力对裂隙岩体等效渗透系数影响的离散元分析[J].岩石力学与工程学报,2011,30(01):176-183.
    [217]李小琴.岩体裂隙网络与双重介质渗流模型的研究与应用[D].徐州:中国矿业大学,2005.
    [218] Muller L著,李世平,冯震海译.岩石力学[M].北京:煤炭工业出版社,1981.
    [219] Mckee C R, Bumb A C, Koenig R A. Stress-dependent permeability and porosity of coal and other geologic formations[J]. SPE Formation Evaluation, 1988, (01):81-91.
    [220]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004.
    [221]周志芳.任意各向异性岩体渗透系数张量的半解析计算.水利学报,1999,(10):65-70.
    [222] Wittke W. Three Dimensional Perco1tion of Fissured Rock, Planning Open pit mines[M]. Symposium on the Theoretical Background to the Planning of Open Mines with Special Reference to Slope Stability, Iohannesburg, 1970.
    [223] Barenblatt G E. Basic Flow Equations of Homogeneous Liquids in Fissured Rock. Nauk SSSR, 132(3): 169-183.
    [224]张红亮.节理岩体变形与强度的尺度效应及REV问题研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [225]张贵科,徐卫亚.裂隙网络模拟与REV尺度研究[J].岩土力学,2008,29(06):1675-1680.
    [226] Bear J. Hydraulics of groundwater[M]. Mc Graw Hill,1979.
    [227] Brown E T. Gonano L P. Improved compression test technique for soft rock [J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1974, 100(02):196-199.
    [228] M Rocha, F Franciss. Determination of permeability in anisotropic rock-masses from integral samples[J]. Rock Mechanics, 1977, 09(02):0723-2632.
    [229] Neuman. Recursive Conditional Moment Equations for Advective Transport in Randomly Heterogeneous Velocity Fields[J]. Transport in Porous Media, 2001, 42(01):1573-1634.
    [230] Kulatilake. Panda B B. Effect of block size and joint geometry on jointed rockhydraulics and REV[J]. ASCE Eng Mech, 2000, 126(08):850-861.
    [231]周创兵等,论岩体表征单元体积REV-岩体力学参数取值的一个基本问题.工程地质学报,1999,7(4):332-337.
    [232] Long J C S, Witherspoon P A. The relationship of the degree of interconnection to permeability in fractured networks[J]. Journal of Geophysical Research,1985,90(B4):3087-3097.
    [233] P H S W Kulatilake. Estimating elastic constants and strength of discontinuous rock[J]. Journal of Getotechnical Engineering, ASCE, 1985, 111(07):847-864.
    [234] Wang M ,Kulatilake P H S. Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling[J]. Int.J.Rock Mech.Min.Sci, 2002,39(07):887–904.
    [235] K B Min, L R Jing. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. Int J Rock Mech Min Sci, 2003, 40(06):795–816.
    [236] Witherspoon P A. An investigation of laminar flow in fractured porous rocks[M]. University of California, Berkalay, California, 1970.
    [237]庞作会.基于节理网络模型的岩体REV数值估算与无网格伽辽金法[D].武汉:中科院武汉岩土力学研究所, 1998.
    [238]周创兵,熊文林.论岩体的渗透特性[J].工程地质学报. 1996,04(02):69-74.
    [239] Huang RQ, Wang XN. Analysis of dynamic disturbance on rock burst[J]. Bulletin of Engineering Geology and the Environment, 1999, 57(03): 281-284.
    [240]李夕兵,李地元,郭宙.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007, 26(05):922-928.
    [241]高明仕.冲击矿压巷道围岩的强弱强结构控制机理研究[D].徐州:中国矿业大学,2006.
    [242]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学,2005.
    [243]曹安业.采动煤岩冲击破裂的震动效应及其应用研究[D].徐州:中国矿业大学,2009.
    [244]闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报,2005,24(16):2894-2899.
    [245]陈占军,朱传云,周小恒.爆破荷载作用下岩石边坡动态响应的FLAC3D模拟研究[J].爆破,2005,22(4):8-13.
    [246]姜耀东,赵毅鑫,宋彦琦等.放炮震动诱发煤矿巷道动力失稳机理分析[J].岩石力学与工程学报,2005,24(17):3131-3136.
    [247]刘国华,王振宇.爆破荷载作用下隧道的动态响应和抗爆分析[J].浙江大学学报(工学版),2004,38(2):15-18.
    [248]卢爱红.应力波诱发冲击矿压的动力学机理研究[D].徐州:中国矿业大学,2005.
    [249]雷光宇,卢爱红,茅献彪.应力波作用下巷道层裂破坏的数值模拟研究[J].岩土力学,2005,26(05):1477-1480.
    [250]朱万成,唐春安,黄志平.静态和动态载荷作用下岩石劈裂破坏模式的数值模拟[J].岩石力学与工程学报,2006,24(01):1-7.
    [251]朱万成,左宇军,尚世明.动态扰动触发深部巷道发生失稳破裂的数值模拟[J].岩石力学与工程学报,2007,26(05):915-921.
    [252]赵坚,陈寿根,蔡军刚,宋宏伟.用UDEC模拟爆炸波在节理岩体中的传播[J].中国矿业大学学报,2002,31(02):111-115.
    [253] Itasca Consulting Group Inc. UDEC (Universal Distinct Element Code) online manual table of contents (UDEC Version 3.1) [R]. USA: Itasca Consulting Group Inc.
    [254]李玉,黄梅,廖国华等.冲击地压发生前微震活动时空变化的分析特征[J].北京科技大学学报,1995,17(1):10-13.
    [255]陆菜平,窦林名,吴兴荣等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
    [256]曹安业,窦林名,秦玉红等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146-149.
    [257]姜福兴,Xun Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.
    [258]布霍依诺G,李玉生译.矿山压力和冲击地压[M].北京:煤炭工业出版社,1985.
    [259]李翼棋,马素贞.爆炸力学[M].北京:科学出版社,1992.
    [260]杜俊林,罗云滚.水不耦合炮孔装药爆破冲击波的形成和传播[J].岩土力学,2003,24(S1):616-618.
    [261]张强.水耦合爆破机理及参数计算[J].新疆有色金属,1997,(4):21-23.
    [262]宗琦.水不耦合装药爆破时的破岩特征[J].工程爆破,1997,3(4):9-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700