汽车双前桥转向系统的分析、建模仿真与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多轴转向汽车在社会中所发挥的作用日趋显著,其市场需求不断增加,但是相关的研究较少,不够深入和完善。在此背景下,本课题对双前桥转向车辆的转向系统进行了较为全面的研究.本文研究覆盖了双前桥转向的转向理论、转向系统结构模型及优化、转向系统的动力学分析、双前桥转向汽车的线性二自由度汽车模型以及其稳态响应.
     本文首先阐述多桥转向理论国内外的研究现状,总结了前人的主要研究工作和成果;同时指出了多桥转向中尚未解决、依然面临的难点和问题。其次介绍了双前桥转向车辆的转向机构和转向理论;重点阐明双前桥汽车在转向过程中的理想运动学特征,推导了转向轮转角之间的相互关系。
     随后建立了双前桥转向系统的整体数学模型及其优化模型。为便于分析与建模将转向系分成转向梯形、垂臂-节臂-直拉杆、双摆杆机构三部分,由局部到整体建立完整数学模型:深入地剖析了双前桥转向汽车的转向过程,分析了双前桥转向汽车在转向过程中理想化的内、外轮转角和实际操作过程中的差异,提出了以‘错位距离'最小为优化目标,瞬时转向中心线为约束条件的一个崭新的优化模型。并结合约束条件改进了原始优化目标函数,引申出了一种简单有效的可行性方案。
     之后将线性二自由度汽车模型理论应用于双前桥转向汽车,对双前桥转向汽车进行运动学分析。主要以牛顿力学原理为基础,结合各参量间的几何、动力学关系,以车辆转向过程中Y轴方向受力和绕车辆坐标系Z轴的转矩平衡为切入点推导了双前桥转向汽车的运动学微分方程组;并对其适当推广得出同样适用多轴转向车辆的微分运动学方程组。
     本文最后基于运动学微分方程组推导了双前桥转向车辆横摆角速度的表达式,同时以横摆角增益为对象考察双前桥转向的稳态转向特性。双前桥转向汽车的横摆角增益表达式比较复杂,为了便于定性分析本文作了一些必要的简化假设,和普通单轴转向汽车的横摆角增益进行了对比。
Multi-steering vehicles have been playing an increasingly significant role in society,with their ever-increasing market demand.However,relevant research about multi-steering vehicles is insufficient,facial and incomplete.In view of this, this context dedicated to a more comprehensive study of double-front-axle steering (DFAS) vehicle's steering system.This paper covers the foundation of DFAS steering theory,steering systems structure and its optimization,dynamics analysis of steering systems,DFAS vehicle's linear 2-DOF(two degrees of freedom) vehicle model and its steady-state response.
     This article first stated the current research of multi-axle steering both at home and abroad,and summed up the previous research work and achievements; also pointed out the underlying difficulties and problems.The author explained the DFAS vehicle steering mechanism and its steering theory,and focusing on the ideal kinematic characteristics of a DFAS vehicle in the course of making a turn, from which the relationship between each steering angle was deduced.
     Then the author established a whole mathematical model of a DFAS system and its optimization.In order to facilitate the analysis and modeling,the DFAS system was divided into three parts:steering linkage,pendant arm-knuckle arm-straight rod,double pendulum-bar.With a strategy of from partial to overall, establishment of a complete mathematical model of steering system was achieved. An in-depth analysis of the DFAS vehicle's steering procedure was carried out. The author proposed a creative model with the object of minimum 'dislocation distance'.Combined with restraints the original objective function was further improved.And a simple but effective proposal was derived,which is more feasible during application.
     In the following,the theory of linear 2-DOF vehicle model was applied during the kinematic analysis of DFAS vehicle.This part was built mainly based on the principle of Newtonian mechanics,with the combination of parameters geo-metric and dynamic relationship.Two kinematic differential equations are developed with regard to forces balance along Y-axis and torque balance about z-axis.Those equations were further discussed with their application for multi-axle steering vehicles.
     At last,based on study of kinematic differential equations DFAS vehicle's yaw angular velocity(YAV) was derived with an explicit expression.The vehicle's Yaw Angular Velocity Gain(YAVG) was chosen as a main factor for the evaluation of DFAS vehicle's Steady-state Characteristics.The expression for DFAS vehicle's yaw angle gain is,in a way,pretty complex.For a qualitative analysis,some necessary simplification and assumptions was made,along with a comparison of YAVG between DFAS vehicle and uniaxial steering vehicle.
引文
[1]王望予,姜红军,林逸等.断开式转向梯形参数及其对实际转向特性曲线的影响[J].汽车工程,1994.
    [2]余志生.汽车理论[M].北京:机械工业出版社,2004.
    [3]石美玉主编.转向系统[M].北京:化学工业出版社,2005.
    [4]廖丹.重型汽车双前桥转向系统的优化设计及仿真研究.湖南大学硕士学位论文.2002.
    [5]姜明国、陆波.阿克曼原理与矩形化转向梯形设计[J].汽车技术,1994.5.
    [6]王辉,喻凡.基于Matlab的四轮转向车辆操纵稳定性仿真研究[J].系统仿真学报,2006.9:2620-2624.
    [7]喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2004.
    [8]李庆欢,张代胜,吕召全.基于Adams的双前桥重型汽车双摇臂设计及优化[J]合肥工业大学学报(自然科学版),2006,29(1):80-83.
    [9]唐应时,廖丹,李克安等.汽车双前桥转向系统的运动学模型及其最优化设计[J].湘潭大学自然科学学报,2006.9.
    [10]唐应时,占良胜,严仁军.重型汽车双前桥转向系统的运动学和动力学的建模与仿真分析[J].湖南大学学报(自然科学版),2003.6.
    [11]温圣灼.重型商用车双前桥转向系统设计与研究.吉林大学硕士学位论文,2006.
    [12]刘惟信.机械最优化设计[M].北京:清华大学出版社,1994.
    [13]吕召全,华从波,周福庚.MSC Adams在双前桥转向机构设计中的应用[J].计算机辅助工程,2006.9.153-155.
    [14]崔军华.双前轴转向汽车的摇臂机构优化设计[J].专用汽车,1999.4.
    [15]毛务本,耿坤龙,刁锦桥等.双前桥转向系统瞬时转动中心理论分析及二轴转角的确定[J].计算机辅助工程,2006(8).
    [16]姜启源,谢金星,叶俊编.数学模型[M].北京:高等教育出版社,2003.
    [17]张森,张正亮编著.MATLAB仿真技术与实例应用教程[M].北京:机械工业出版社,2006.
    [18]王彦会.多轴转向汽车转向特性研究.吉林大学硕士学位论文,2005.
    [19]彭长顺,鲁其青.多轴汽车转向分析.专用汽车,1997年第3期.
    [20]唐应时,李克,黄自强等.双前桥转向杆系的空间优化分析[J].汽车技术,2006.8.22-25.
    [21]杨占敏、葛安林.多轴车辆稳定转向分析.吉林工业大学学报,1994年第5期.
    [22]冯晋祥主编.专用汽车设计[M].北京:人民交通出版社,2007.
    [23]刘惟信主编.汽车设计[M].北京:清华大学出版社,2001.
    [24]王阳阳,靳晓雄,张代胜.双前桥转向机构优化设计方法研究[J].汽车工程,2006(28).574-577.
    [25]王望予.汽车设计[M].北京:机械工业出版社,2000.
    [26]徐达,蒋崇贤.专用汽车结构与设计[M].北京:北京理工大学出版社,1998.
    [27]Dave Crolla,喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2004.
    [28]陈家瑞主编.汽车构造(上册)[M].北京:人民交通出版社,2002.
    [29]孔宏伟,段家全,葛俊豪.对双前桥汽车转向系统设计的探讨[J].重型汽车.2004(4).
    [30]王振华,董小瑞.ADAMS在双前桥转向机构方案设计中的应用[J].内燃机,2007.6.1-3.
    [31]王阳阳,张代胜,孙海涛.重型汽车双前桥转向运动学仿真模拟[J].合肥工业大学学报(自然科学版),2005.5.
    [32]Edward B Magrab等,高会生等译.Matlab原理与工程应用[M].北京:电子工业出版社.2002.
    [33]李仲奎.基于虚拟样机技术的双前桥重型汽车转向系统仿真研究.合肥工业大学硕士学位论文,2006.
    [34]张代胜,肖海萍,周福庚等.双前桥重型汽车轴间距及操纵稳定性分析[J].合肥工业大学学报(自然科学版),2007.2.156-159.
    [35]郭孔辉.汽车操纵动力学.长春:吉林科学技术出版社,1991.
    [36]Kageyama,Ichiro,Jo,Hee-Young.Advanced vehicle control method using independent four-wheel-steering system.IEEE Conference on Intelligent Transportation Systems,Proceedings,ITSC,1997,954-959.
    [37]Taheri.Analysis and Optimization Of Vehicle Steering System SAE Special Publications,1998.
    [38]Edward A.Bender.An Introduction to Mathematical Modeling[M].Courier Dover Publications,2000.
    [39]Ronald K.Jurgen.Automotive Electronics Handbook[M].McGraw-Hill Professional,1999.
    [40]Ferdinand P.Beer,Jr.Johnston.Vector Mechanics for Engineers:Statics(seventh edition).2005.
    [41]Cho,Young H;Kim,J.Design of optimal four-wheel steering system[J].Vehicle System Dynamics,1995,10.
    [42]Hemami,Ahmad.Control scheme for low speed automated vehicles with double steering.Proceedings of the 33rd IEEE Conference on Decision and Control,1994.
    [43]J.Lowen Shearer,Herbert H.Richardson.Introduction to System Dynamics[M].Addison-Wesley:1987.
    [44]Tim Gilles.Automotive Chassis:Brakes,Suspension,and Steering.Thomson Delmar Learning[M],2005.
    [45]Hingwe,P.,Tai,M.,Tomizuka,M.Modeling and robust control of power steering system of heavy vehicles for AHS.IEEE Conference on Control Applications - Proceedings,v 2,1999,1365-1370.
    [46]姜玉明,蔡敏.矢量力学与分析力学的解法比较沈阳工业大学学报,1999年06期:550-551.
    [47]贾利群,张耀宇,刘沛龙等.力学理论的矢量分析力学方法.江南大学学报(自然科学版),2007年05期:615.
    [48]赵礼东、杨新明.多轴转向汽车转向系的运动分析与优化.专用汽车,2003.3.
    [49]王萍、李成刚.重型特种车辆多轴转向技术的优化设计.专用汽车,2002,1.
    [50]高举成,张兆合,罗丽君,崔胜民,汽车操纵稳定性的广义汽车转向稳态响应模型.公路交通科技,2005.6.
    [51]BOSCH汽车工程手册.(德)Bosch公司;顾柏良等译.北京理工大学出版社,2001.12:705.
    [52](加)唐·诺里斯,(美)杰克·尔贾维克著,李卓森等译.悬架系统及转向系统[M].长春:吉林科学技术出版社,1998.
    [53]郭宽友.汽车操纵稳定性的影响因素及评价方法研究.重庆工学院学报(自然科学版),2007年7月.
    [54]李白娜,杨家军,麦源源.基于ADAMS/Car的汽车操纵稳定性仿真分析.机械与电子,2006.6.
    [55]张会明.汽车操纵稳定性的研究.华东交通大学学报,2004年第02期.
    [56]王会义,宋健.汽车电子稳定程序的控制算法.清华大学学报.自然科学版,2007年第47卷第2期:225.
    [57]肖悦;张代胜;周福庚等.重型汽车转向双摇臂机构的优化设计.合肥工业大学学报(自然科学版).2006年02期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700