用户名: 密码: 验证码:
废旧电视机外壳热解油的纳米Pd/C催化剂的脱溴与净化的实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废旧电子电气产品中的阻燃塑料大多以填埋或焚烧的方式进行处理,这两种方式不仅浪费资源而且对环境造成极大污染。高温热解是将阻燃塑料油化的唯一途径,也是资源化回收利用废旧电子电气中阻燃塑料的有效途径之一。但由于溴代物阻燃剂的存在,给塑料热解油的应用前景提出挑战。虽然经过脱溴净化处理后的热解油经进一步分离可作为化工原料,但由于热解油组成体系的复杂性,使工艺流程极大地复杂化,因此热解油作为化工原料的应用前景受到严重限制。燃料油在我国的需求量极大,如果阻燃塑料热解油的性能指标可以达到燃料油的相应标准,可代替燃料油作为炉燃料使用,在节能与环保方面将具有现实意义。
     以含有十溴联苯醚为主要阻燃剂的废旧电视机外壳为研究对象,本论文选用两级真空无害化热解处理的技术路线,并采用纳米金属催化脱溴的技术方案对第二段热解油中的主要溴代物和含有溴代物的热解油进行脱溴净化处理。相关的技术和理论研究内容与结果如下:
     本文首先采用SEM,FTIR,GC/MS,TG/DTG等技术手段,研究了废旧电视机外壳的塑料类型,主要元素组成,阻燃剂类型,真空热解过程和热解动力学。建立了热解动力学模型。结果表明,电视机外壳塑料是典型的高抗冲聚苯乙烯(HIPS);所含阻燃剂是以十溴联苯醚为主,并含有少量八溴联苯醚和九溴联苯醚;样品在整个真空热解过程中经历两个快速失重阶段,且真空条件可显著降低其表观活化能。
     以管式炉为热解设备,采用真空热解方式,研究了瞬态热解条件和两级慢速升温条件下液态产物的组成分布和溴代物的分布规律。结果表明,两级真空热解方式显著影响液体产品中主要成分的产率以及溴代物的分布。五溴苯和低溴代联苯醚是第二段热解油中主要的溴代物。
     以1,2,4,5-四溴苯和十溴联苯醚为脱溴对象,负载型纳米金属Pd/C为催化剂,异丙醇为主要溶剂和氢源,借助GC/MS, HPLC和SEM等分析测试手段,研究了温度、催化剂用量、pH值、反应时间和外加烃类化合物等因素对脱溴效率的影响。建立了1,2,4,5-四溴苯脱溴的动力学模型,探讨了1,2,4,5-四溴苯和十溴联苯醚的脱溴机理。研究发现实验操作条件对脱溴效率产生显著影响。较高温度,较多催化剂用量,较长反应时间和氢氧化钠浓度为100mmol.L-1时更有利于Br的脱除。外加烃类化合物由于性质的差异,对脱溴效率的影响也不同,甲苯对脱溴效率产生强烈的抑制作用,而正己烷对脱溴效率几乎不产生影响。异丙醇最终脱氢转化为丙酮,1,2,4,5-四溴苯和十溴联苯醚经脱溴分别转化为苯和联苯醚。
     采用与溴代物脱溴相同的实验方案,对两级真空热解所得的第二段热解油进行了脱溴净化研究,并分析了净化处理后的热解油组成和溴代物分布。根据燃料油的行业标准SH/T0356-1996,对脱溴处理后的热解油的主要物化性能指标进行测定,结果表明热解油中的溴代物没有完全脱溴转化,但脱溴率达95.5%。经处理之后的热解油闪点约为25℃,运动粘度为5.6mm2.s-1,硫含量为0.0738%,与SH/T0356-1996中规定的相应指标相比,闪点较低,但运动粘度适中,硫含量远低于燃料油中硫含量的限定标准。
The flame retarded plastics in waste electric and electronic equipments (WEEE) are usually disposed by landfill or incineration which not only wastes resource but also brings giant pollution on environment. Pyrolysis is the unique way to transform the plastics into oil, and is one of the effective approach to recycle plastics as well. However, because of the brominated flame retardants in WEEE plastics which raise a challenge of utilizing the oil with brominated compounds. Although the debrominated oil can be used as chemical feedstock after distillation, complexity of the oil hinders the development in industrialization. Fuel oil is in great need in China, if the physical and chemical properties of the treated pyrolysis oil can be up to the national standard of fuel oil ,and then can be used in industrial fields, that will have practical significance in energy saving and environmental protection.
     Taking the waste brominated flame retarded TV shells as research object, we select the technical route of two-step vacuum pyrolysis to degrade the brominated flame retarded WEEE, furthermore the nanotechnology is adopted to debrominate the main bromides in the oil collected from the second step. The related technical and theoretical studies are as follows: Several analytical techniques such as SEM, FTIR, GC/MS and TG/DTG were used to study the TV shells′physical and thermal properties. It has been found that TV shells are the typical high impact polystyrene(HIPS), and contain three polybrominated diphenyl ether(decabrominated diphenyl ether, nanobrominated diphenyl ether and octabrominated diphenyl ether in which decabrominated diphenyl ether is the major component ). As for the thermal property, the TV housings underwent two weight loss step, and the vacuum can significantly decrease the apparent activation energy.
     Pyrolysis experiments of TV housings under vacuum were carried out in a tube furnace. Influence of flash pyrolysis and two-step controlled pyrolysis on the products yield and distribution was studied. Experimental results showed, two-step controlled pyrolysis remarkably influence on the distribution and yield of main components and bromides. Pentabromobenzene and low bromine number polybrominated diphenyl ether are the main bromides.
     Taking 1,2,4,5-tetrabromobenzene (1,2,4,5-TBB) and decabrominated diphenyl ether as debrominated objects, nanoscaled Pd/C as catalyst, isopropyl alcohol as main solvent and hydrogen donor, meanwhile by means of GC/MS, HPLC and SEM, various factors which have effects on debromination were probed into. The debromination kinetics mode of 1,2,4,5-TBB was developed and the debromination mechanism was studied. The following conclusions could be drown: the reaction conditions remarkably influence the debromination efficiency. The high temperature, the more catalysts, the longer reaction time and temperate pH are benefit to debromination. Because of different properties, the additional hydrocarbons produce different influence on debromination rates and effects. The debromination rates are strongly suppressed in the presence of aromatic hydrocarbon such as toluene, but the debromination rates are hardly affected by the addition of aliphatic hydrocarbon such as n-hexane.
     Catalytic debromination and purification studies on pyrolysis oil of TV shells were carried out. The main components and bromides in the treated oil were analyzed, meanwhile the main physical and chemical properties were tested based on the standard of SH/T0356-1996. The results showed that the debromination efficiency was up to 95.5%. As for the oil quality, three indexes were obtained, flashpoint is about 25℃, kinematic viscosity is 5.6 mm2.s-1, sulfur content is 0.0738%. Comparing with the fuel oil, the flashpoint is lower, kinematic viscosity and sulfur content is both up to the standard of SH/T0356-1996.
引文
[1]李金惠,温雪峰,刘彤宙,等.我国电子电器废物处理处置政策、技术及设施[J].家电科技, 2005, (1): 31-34
    [2]李金惠,温雪峰.电子废物处理技术[M].北京:中国环境科学出版社, 2005: 1-20
    [3] Luda M.P., Euringer N., Moratti U., et al. WEEE recycling: pyrolysis of fire retardant model polymers[J]. Waste Management, 2005, 25(2): 203-205
    [4]约翰.沙伊斯.聚合物回收-科学、技术与应用[J].纪奎江,陈占勋译.北京:化学工业出版社, 2004: 349
    [5] Gamse T., Steinkellner F., Marr R., et al. Solubility studies of organic flameretardants in supercritical CO2[J]. Industrial & Engineering Chemistry Research, 2000, 39:4888-4890
    [6] Suzuki M. Method for treating flame retardant resin composition [P]. US: 6429284, 2002-08-06
    [7] Bhaskar T., Kaneko J., Muto A., et al. Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products[J]. Journal of Analytical and Applied Pyrolysis, 2004, 72: 27-33
    [8] Uddina M.A., Bhaskara T., Kaneko J., et al. Dehydrohalogenation during pyrolysis of brominated flame retardant containing high impact polystyrene (HIPS-Br) mixed with polyvinylchloride (PVC)[J]. Fuel, 2002, 81: 1819-1825
    [9] Brebu M., Bhaskar T., Murai K., et al. Thermal degradation of PE and PS mixed with ABS-Br and debromination of pyrolysis oil by Fe- and Ca-based catalysts[J]. Polymer Degradation and Stability, 2004, 84: 459-467
    [10]徐敏,李光明,贺文智.废弃电子设备中塑料的回收利用[J].塑料工业, 2006, 34(4): 62-65
    [11] http://www.stats.gov.cn
    [12] Yang J.X., Lu B., Xu C. WEEE flow and mitigating measures in China [J]. Waste Management, 2008, 28: 1589-1597
    [13] Polo M., Gomez-Noya G., Quintana J.B., et al. Development of a solid-phase microextraction gas chromatography/tandem mass spectrometry method for polybrominated diphenyl ethers and polybrominated biphenyls in water samples[J]. Analytical Chemistry, 2004, 76(4): 1054-1062
    [14] Sjodin A., McGahee E.E., Focant J., et al. Semiautomated high-throughput extraction andcleanup method for the measurement of polybrominated diphenyl ethers and polybrominated and polychlorinated biphenyls in breast milk[J]. Analytical Chemistry, 2004, 76(15): 4508-4514
    [15]王亚伟,张庆华,刘汉霞,等.高分辨气相色谱-高分辨质谱测定活性污泥中的多溴联苯醚[J].色谱, 2005, 23(5): 492-495
    [16] Li Q.Q., Loganath A., Chong Y.S., et al. Determination and occurrence of polybrominated diphenyl ethers in maternal adipose tissue from inhabitants of Singapore[J]. Journal of Chromatography B, 2005, 819(2): 253-257
    [17] Sj?din A., Jakobsson E., Kierkegaard A., et al. Gas chromatographic identification and quantification of polybrominated diphenyl ethers in a commercial product, Bromkal 70-5DE[J]. Journal of Chromatography A, 1998, 822(1): 83-89
    [18] Cochran J.W., Frame G.M. Recent developments in the high-resolution gas chromatography of polychlorinated biphenyls[J]. Journal of Chromatography A, 1999, 843(122): 323-368
    [19] Ikonomou M.G., Rayne S., Fischer M., etal. Occurrence and congener profiles of polybrominated diphenyl ethers (PBDEs) in environmental samples from coastal British Columbia, Canada[J]. Chemosphere, 2002, 46(5): 649-663
    [20] Pettersson-Julander A., van Bavel B., Engwall M., et al. Personal air sampling and analysis of polybrominated diphenyl ethers and other bromine containing compounds at an electronic recycling facility in Sweden[J]. Journal of Environmental Monitoring, 2004, 6(11): 874-880
    [21] Schlummer M., Brandl F., M?urer A., et al. Analysis of flame retardant additives in polymer fractions of waste of electric and electronic equipment (WEEE) by means of HPLC–UV/MS and GPC–HPLC–UV[J]. Journal of Chromatography A, 2005, 1064(1): 39-51
    [22]吴惠勤,黄晓兰,黄芳,等.气相色谱-质谱法测定电子电气产品中多溴二苯醚及多溴苯[J].分析化学, 2007, 35(3): 325-329
    [23]萧达辉,肖前,周明辉,等.红外光谱法定性筛选电子电气产品中多溴联苯和多溴联苯醚[J],中国塑料, 2005, 19(12): 74-78
    [24] 2002/96/EC, Directive on Waste Electrical and Electronic Equipment (WEEE)[S]. European Union: The European Parliament and European Council, 2003
    [25] 2002/95/EC, Directive on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS)[S]. European Union: The EuropeanParliament and European Council, 2003
    [26]朱国辉,丘泰球,黄卓烈.超声波在萃取中的应用[J].声学技术, 2001, 20(4): 188-190
    [27]马荣骏,罗电宏.溶剂萃取的新进展及其在新世纪中的发展方向[J].矿冶工程, 2001, 21(3): 6-11
    [28]彭绍洪,陈烈强,蔡明招.含卤废旧塑料的脱卤技术研究进展[J].塑料工业, 2004, 32(11): 4-7
    [29]符嫦娥,韩伟.微波萃取技术[J].化工技术与开发, 2004, 33(1): 22-25
    [30] Covaci A., Voorspoels S., de Boer J. Determination of brominated flame retardants, with emphasis on polybrominated diphenly ethers in environmental and human samples—a review[J]. Environment International, 2003, 29: 735-756
    [31]肖睿,金保升,章名耀.废旧含氯塑料热解及其能源利用研究[J].热能动力工程, 2003, 104(18): 194-196
    [32]韩建多,王辰,杨春光,等.废旧塑料的处理和利用[J].化工环保, 1994, 14(5): 274-280
    [33] Cornelia V., Mihai A.B., Tamer K., et al. Feedstock recycling from plastics and thermosets fractions of used computers. II. Pyrolysis oil upgrading[J]. Fuel, 2007, 86: 477-485
    [34] Mihai B., Thallada B., Kazuya M., et al. Removal of nitrogen, bromine, and chlorine from PP/PE/PS/PVC/ABSeBr pyrolysis liquid products using Fe- and Ca-based catalysts[J]. Polymer Degradation and Stability, 2005, 87: 225-230
    [35] Blazso M.,Czegeny Z.,Csoma C. Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2002, 64(2): 249-261
    [36] Thallada B., Maki T., Akinori M., et al. Pyrolysis study of a PVDC and HIPS-Br containing mixed waste plastic stream: Effect of the poly(ethylene terephthalate)[J]. Journal of Analytical and Applied Pyrolysis, 2006, 77: 68-74
    [37] Marianne B., Zsuzsanna C. Catalytic destruction of brominated aromatic compounds studied in a catalyst microbed coupled to gas chromatography/mass spectrometry[J]. Journal of Chromatography A, 2006, 1130: 91-96
    [38] Ruuskanen J., Vartiainen T., Kojo I., et al. Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in co-combustion of mixed plastics with coal: Exploratory principal component analysis[J]. Chemosphere, 1994, 28(11): 1989-1999
    [39] Mihai B., Thallada B., Akinori M., et al. Alkaline hydrothermal treatment of brominated high impact polystyrene (HIPS-Br) for bromine and bromine-free plastic recovery[J]. Chemosphere, 2006, 64: 1021-1025
    [40] Miho U., Masaaki F., Akitsugu O. Decomposition of 2-bromophenol in NaOH solution at high temperature[J]. Journal of Hazardous Materials, 2003, 101(3): 231-238
    [41] Yoshiki S.,Yasuhiko K.,Satoshi K.,et al. Transactions of the materials research society of Japan[J]. Energy Fuel, 2004, 29(5): 1853-1856
    [42] Rosa M., Jin Y., Christian R., et al. Vacuum pyrolysis of PVC I. Kinetic study[J]. Polymer Degradation and Stability, 1999, 64: 127-144
    [43]陈烈强,彭绍洪,蔡明招,等.含卤废旧电子塑料两级真空热化学处理回收方法及其装置[P].中国: 200610032661.8, 2006-1-12
    [44]彭绍洪.废旧电路板的热解及热解油制备酚醛树脂的工艺研究[D].广州:华南理工大学, 2006
    [45] Zhang W.X., Wang C.B., Lien H.L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J]. Catalysis Today, 1998, 40: 387-395
    [46] Lien H.L., Zhang W.X. Transformation of chlorinated methanes by nanoscale iron particles[J]. Journal of Environmental Engineering-ASCE, 1999, 125(11): 1042-1047
    [47] Feng J., Lim T.T. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn[J]. Chemosphere, 2005, 59: 1267-1277
    [48] Wang C.B., Zhang W.X. Synthesizing nanoscale iron partical for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31: 2154-2156
    [49] Li F., Vipulanandan C., Mohanty K.K. Microemulsion and solution approaches to nanoparticles iron production for degradation of trichloroethylene[J]. Journal of Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 223: 103-112
    [50] Lowry G.V., Johnson K.M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution[J]. Environmental Science & Technology, 2004, 38: 5208-5216
    [51] Kanel S.R., Manning B., Charlet L., et al. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron[J]. Environmental Science & Technology, 2005, 39: 1291-1298
    [52] Liou Y.H., Lo S.L., Kuan W.H., et al. Effect of precursor concentration on thecharacteristics of nanoscale zerovalent iron and its reactivity of nitrate[J]. Water Reshearch, 2006, 40: 2485-2492
    [53]高鸿宾.有机化学[M].第三版.北京:高等教育出版社, 1999(2003重印): 185-186
    [54] Lim T.T., Feng J., Zhu B.W. Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles[J]. Water Reshearch, 2007, 41: 875-883
    [55] Arnold W.A., Roberts A. L. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles[J]. Environmental Science & Technology, 2000, 34: 1794-1805
    [56]阎子峰.纳米催化技术[M].北京:化学工业出版社, 2003: 269
    [57] Lien H.L., Zhang W.X. Nanoscale iron particles for complete reduction of chlorinated ethenes[J]. Journal of Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 191: 97-105
    [58] Sun Y.P., Li X.Q., Zhang W.X., et al. A method for the preparation of stable dispersion of zero-valent iron nanoparticles[J]. Journal of Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 308: 60-66
    [59] Matheson L.J., Tratnyek P.G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 30(12): 2045-2053
    [60] Schreier C.G., Reinhard M. Transformation of chlorinated organic compounds by iron and manganese powders in buffered water and in landfill leachate[J]. Chemosphere, 1994, 29(8): 1743-1753
    [61] Johnson T.L., Scherer M.M., Tratnyek P.G. Kinetics of halogenated organic compound reduction by iron metal[J]. Environmental Science & Technology, 1996, 23(2): 2634-2640
    [62] Roberts A.L., Totten L.A., Arnold W.A., et al. Reductive elimination of chlorinated ethylenes by zero-valent metals[J]. Environmental Science & Technology, 1996, 31(15): 2654-2659
    [63] Arnold W.A., Roberts A.L. Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0)[J]. Environmental Science & Technology, 1998, 32(19): 3017-3025
    [64] Arnold W.A., Roberts A.L. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reduction with Fe(0) particles[J]. Environmental Science & Technology, 2000, 34(9): 1794-1805
    [65] Choe S., Lee S.H., Chang Y.Y., et al. Rapid reductive destruction of hazardous organiccompounds by nano-scale Fe0[J]. Chemosphere, 2001, 42(4):367-372
    [66] Morales J., Hutcheson R., Cheng I.F. Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles[J]. Journal of Hazardous Materials, 2002, 9(1): 97-108
    [67] Clayton J.C.II, Rao P.S.C., Michael D. Degradation of perchloroethylene in cosolvent solution by zero-valent iron[J]. Journal of Hazardous Materials, 2003, 96(1): 65-78
    [68] Wei J.J., Xu X.H., Liu Y., et al. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: Reaction pathway and some experimental parameters[J]. Water Research, 2006, 40: 348-354
    [69] Lin C.J., Lo S.L., Liou Y.H. Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron[J]. Journal of Hazardous Materials, 2004, 116: 219-228
    [70] Feng J., Lim T.T. Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe: Analysis of linear free energy relationship[J]. Chemosphere, 2007, 66(9):1765-1774
    [71] Ukisu Y., Kameoka S., Miyadera T. Catalytic dechlorination of aromatic chlorides with noble-metal catalysts under mild conditions: approach to practical use[J]. Applied Catalysis B: Environmental, 2000, 27:97-104
    [72] Ukisu Y., Kameoka S., Miyadera T. Rh-based catalysts for catalytic dechlorination of aromatic chloride at ambient temperature[J]. Applied Catalysis B: Environmental, 1998, 18: 273-279
    [73] Ukisu Y., Miyadera T. Dechlorination of polychlorinated dibenzo-p-dioxins catalyzed by noble metal catalysts under mild conditions[J]. Chemosphere, 2002, 46: 507-510
    [74] Ukisu Y., Miyadera T. Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts[J]. Applied Catalysis B: Environmental, 2003, 40: 141-149
    [75] Ukisu Y., Miyadera T. Dechlorination of dioxins with supported palladium catalysts in 2-propanol solution[J]. Applied catalysis A: General, 2004, 271: 165-170
    [76] Ukisu Y., Miyadera T. Dechlorination of hexachlorocyclohexanes with alkaline 2-propanol and a palladium catalyst[J]. Journal of Hazardous Materials A, 2005, 122: 1-6
    [77] Ukisu Y. Complete dechlorination of DDT and its metabolites in an alcohol mixture using NaOH and Pd/C catalyst[J]. Journal of Hazardous Materials, 2008, 152: 287-292
    [78] Marques C.A., Rogozhnikova O., Selva M., et al. Selectivity in hydrodehalogenation of polychloro- and polybromobenzenes under multiphase condition[J]. Journal ofMolecular Catalysis A: Chemical, 1995, 96: 301-309
    [79] Wee H.Y., Cunningham J.A. Palladium-catalyzed hydrodehalogenation of 1,2,4,5-tetrachlorobenzene in water-ethanol mixtures[J]. Journal of Hazardous Materials, 2008, 155: 1-9
    [80] Lien H.L., Zhang W.X. Enhangced dehalogenation of halogenated methanes by bimetallic Cu/Al[J]. Chemosphere, 2002, 49: 371-378
    [81] Wu W.H. Xu J., Zhao H., et al. A practical approach to the degradation of polychlorinated biphenyls in transformer oil[J]. Chemosphere, 2005, 60: 944-950
    [82] Lien H.L. Nanoscale bimetal particles for reduction of halogenated aliphatic compounds[D]. Bethlehem: Lehigh University, 2000
    [83]郭灿城.有机化学[M].第二版.北京:科学出版社, 2006, 195-197
    [84] Siantar D.P., Scheier C.G., Chou C.S., et al. Treatment of 1,2-Dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts[J]. Water Research, 1996, 30: 2315-2322
    [85] Liou Y.H., Lo S.L., Lin C.J. Size effect in reactivity of copper nanoparticles to carbon tetrachloride degradation[J]. Water Research, 2007, 41: 1705-1712
    [86] Xu X.H., Zhou M., He P., et al. Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water[J]. Journal of Hazardous Materials, 2005, B123: 89-93
    [87] Liu Y.H., Yang F.L., YUE P.L., et al. Catalytic dechlorination of chlorophenols in water by palladium/iron[J]. Water Research, 2001, 35(8): 1887-1890
    [88] Zhang W.H., Quan X., Wang J.X., et al. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound[J]. Chemosphere, 2006, 65: 58-64
    [89] Chen J.L., Al-Abed S.R., Ryan J.A., et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Journal of Hazardous Materials, 2001, 83: 243-254
    [90] Dombek T., Dolan E., Schultx J., et al. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions[J]. Environmental Pollution, 2001, 111: 21-27
    [91] Song H., Carraway E.R. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions[J]. Environmental Science & Technology, 2005, 39: 6237-6245
    [92] Jovanovic G.N., Znidarsic-Plazl P., Sakrittichai P., et al. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pb/Fe catalyst[J]. Industrial &Engineering Chemistry Research, 2005, 44(14): 5099-5106
    [93] Xu X.H., Zhou H.Y., Wang D.H. Structure relationship for catalytic dechlorination rate of dichlorobenzenes in water[J]. Chemosphere, 2005, 58: 1497-1502
    [94] Bransfield S.J., Cwiertny D.M., Livi K., et al. Influence of transition metal additives and temperature on the rate of organohalide reduction by granular iron: Implications for reaction mechanisms[J]. Applied Catalysis B: Environmental, 2007, 76: 348-356
    [95] Wang X.S., Li X.G., Yan D.Y., et al. Thermal decomposition kinetics of poly(trimethylene terephthalate)[J]. Polymer Degradation and Stability, 2000, 69: 361-372
    [96] Chen J.H., Chen K.S., Tong L.Y. On the pyrolysis kinetics of scrap automotive tires[J]. Journal of Hazardous Materials, 2001, B84: 43-55
    [97] Holland B.J., Hay J.N.. The value and limitations of non-isothermal kinetics in the study of polymer degradation[J]. Thermochimica Acta, 2002, 388(1-2): 253-273
    [98] Ruseckaite R.A., Jiménez A. Thermal degradation of mixtures of polycaprolactone with cellulose derivatives[J]. Polymer Degradation and Stability, 2003, 81: 353-358
    [99] Vrandecic N.S., Klaric I., Kovacic T. Kinetics of thermooxidative degradation of poly(vinyl chloride)/chlorinated polyethylene blends[J]. Polymer Degradation and Stability, 2004, 84:31-39
    [100] Budrugeac P., Segalb E., Perez-Maquedac L.A., et al. The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data[J]. Polymer Degradation and Stability, 2004, 84(2): 311-320
    [101] Pielichowski K., Flejtuch K. Non-oxidative thermal degradation of poly(ethylene oxide):kinetic and thermoanalytical study[J]. Journal of Analytical Applied Pyrolysis, 2005, 73: 131-138
    [102] Ukisu Y., Miyadera T. Hydrogen-transfer hydrodechlorination of aromatic halides with alcohols in the presence of noble metal catalysts[J]. Journal of Molecular Catalysis A: Chemical, 1997, 125: 135-142
    [103] Ukisu Y., Miyadera T. Dehydrogenation of 2-propanol with suspended noble metal catalysts: activity enhancement by the addition of sodium hydroxide[J]. Reaction Kinetics and Catalysis Letters, 2004, 81: 305-311
    [104] Janiak T. Kinetics of o-chlorotoluene hydrogenolysis in the presence of 3%, 5% and 10% Pd/C catalysts[J]. Applied Catalysis A: General, 2008, 335: 7-14
    [105] Riess M., Ernst T., Popp R., et al. Analysis of flame retarded polymers and recyclingmaterials[J], Chemosphere, 2000, 40(9-11): 937-941
    [106] Bergman ?. Brominated flame retardants in a global environmental perspective[R]. Sweden: Swedish National Chemicals Inspectorate, 1989
    [107] Manchester-Neesvig J.B., Valters K., Sonzogni W.C. Comparison of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in Lake Michigan Salmonids[J]. Environmental Science & Technology, 2001, 35: 1072-1077
    [108] Rahman F., Langford K.H., Scrimshaw M.D., et al. Polybrominated diphenyl ether (PBDE) flame retardants[J]. The Science of The Total Environment, 2001, 275(1-3): 1-17
    [109] de Wit C.A. An overview of brominated flame retardants in the environment[J]. Chemosphere, 2002, 48: 583-624
    [110]张梅,林匡飞,刘莉莉,等.光源和溶剂对十溴联苯醚光降解的影响[J].环境污染与防治, 2009, 31(1): 26-30
    [111] European Commission, COM (2000-0158). 347 2000. Final, 2000/0158 (COD), Proposal for a Directive of the European Parliament and of the Council on waste electrical and electronic equipment[Z]. Official Journal of the European Communities C 365, 19.12.2000, Brussels, Belgium 2000
    [112]吴用,曾文茹.聚苯乙烯在空气中热降解的化学动力学研究[J].安徽化工, 2006, 144(6): 24-26
    [113] Jin Y., Zhang P., Zhang J. The Effect of Heating Rate on Pyrolysis Kinetics of Polymers[J]. Journal of Qingdao University of Science and Technology, 2003, 24(6): 511-515
    [114] Williams E.A., Williams P.T. Analysis of products derived from the fast pyrolysis of plastic waste[J]. Journal of Analytical Applied Pyrolysis, 1997, 40/41: 347-363
    [115] Bhaskar T., Matsui T., Uddin M.A., et al. Effect of Sb2O3 in brominated heating impact polystyrene (HIPS-Br) on thermal degradation and debromination by iron oxide carbon composite catalyst (Fe-C)[J]. Applied Catalysis B: Environmental, 2003, 43 (3): 229-241
    [116] William J.H., Williams P.T. Pyrolysis of brominated feedstock plastic in a fluidized bed reactor[J]. Journal of Analytical Applied Pyrolysis, 2006, 77(1): 75-82
    [117] Luijk R., Govers H.A.J., Eijkel G.B., et al. Thermal degradation characteristics of high impact polystyrene/decabromodiphenylether/antimony oxide studied by derivative thermogravimetry and temperature resolved pyrolysis—mass spectrometry: formation of polybrominated dibenzofurans, antimony (oxy)bromides and brominated styreneoligomers[J]. Journal of Analytical Applied Pyrolysis, 1991, 20: 303-319
    [118]曹声春,胡艾希,尹笃林.催化原理及其工业应用技术[M],长沙:湖南大学出版社, 2001: 87
    [119] Aramendía M.A., Burch R., García I.M., et al. The effect of the addition of sodium compounds in the liquid-phase hydrodechlorination of chlorobenzene over palladium catalysts[J]. Applied Catalysis B: Environmental, 2001, 31(3): 163-171
    [120] Concibido N.C., Okuda T., Nakano Y., et al. Enhancement of the catalytic hydrodechlorination of tetrachloroethylene in methanol at mild conditions by water addition[J]. Tetrahedron Letters, 2005, 46(21): 3613-3617
    [121] Hoke J.B., Gramiccioni G.A., Balko E.N. Catalytic hydrodechlorination of chlorophenols[J]. Applied Catalysis B: Environmental, 1992, 1(4): 285-296
    [122] Xia C.H., Xu J., Wu W.Z., et al. Pd/C-catalyzed hydrodehalogenation of aromatic halides in aqueous solutions at room temperature under normal pressure[J]. Catalysis Communications, 2004, 5(8): 383-386
    [123] Ukisu Y., Miyadera T. Catalytic dechlorination of aromatic chlorides with Pd/C catalyst in alkaline 2-propanol: activity enhancement by the addition of methanol[J]. Reaction Kinetics and Catalysis Letters, 2006, 89(2): 341-347
    [124] Ukisu Y., Miyadera T. Catalytic dechlorination of aromatic chloride with supported palladium cayalysts in alkaline 2-propanol: influence of hydrocarbon solvents[J]. Reaction Kinetics and Catalysis Letters, 2006, 88(2): 209-215
    [125]高正中.实用催化剂[M].北京:化学工业出版社, 1996: 143-144
    [126] Urbano F.J., Marinas J.M. Hydrogenolysis of organohalogen compounds over palladium supported catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2001, 173: 329-345
    [127] Aramendía M.A., Boráu V., García I.M., et al. Influence of the reaction conditions and catalytic properties on the liquid-phase hydrodechlorination of chlorobenzene over palladium-supported catalysts: activity and deactivation[J]. Journal of Catalysis, 1999, 187(2): 392-399
    [128] Choi H.C., Choi S.H., Yang O.B., et al. Hydrodechlorination of Carbon Tetrachloride over Pt/MgO[J]. Journal of Catalysis, 1996, 161(2): 790-797
    [129] Forni P., Prati L., Rossi M. Catalytic dehydrohalogenation of polychlorinated biphenyls Part II: Studies on a continuous process[J]. Applied Catalysis B: Environmental, 1997, 14(1-2): 49-53
    [130] Andersson O., Blomkvist G. Polyrbominated aromatic pollutants found in fish in Sweden[J]. Chemosphere, 1981, 10, 1051-1060
    [131] Watanable I., Kashimoto T., Tatsukawa R. Confirnation of the presence of the flame retardant decabromobiphenyl ether in river sediment from Osaka. Japan[J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36: 839-842
    [132] Watanable I., Kashimoto T., Tatsukawa R. Polybrominated biphenyl ethers in marine fish, shellfish and river and marine sediment in Japan[J]. Chemosphere, 1987, 16: 2389-2396
    [133] Sellstr?m U., Jansson B., Kierkegaard A., et al. Polybrominated diphenyl ethers (PBDE) in Biological samples from the Swedish environment[J]. Chemosphere, 1993, 26: 1703-1718
    [134] Sj?din A., Hagmar L.K., Klasson-Wehler L.K., et al. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers[J]. Environmental Health Perspectives, 1999, 107(8): 643-648
    [135] Ikonomou M.G., Rayne S. Chromatographic and ionization properties of polybrominated diphenyl ethers using GC/high-resolution MS with metastable atom bombardment and electron impact ionization[J]. Analytical Chemistry, 2002, 74(20): 5263-5372
    [136] Nose K., Hashimoto S., Takahashi S., et al. Degradation pathways of decabromodiphenyl ether during hydrothermal treatment[J]. Chemosphere, 2007, 68: 120-125
    [137] Young-soo, Keum, Qing X.L. Reductive Debromination of Polybrominated Diphenyl Ethers by Zerovalent Iron[J]. Environmental Science & Technology, 2005, 39: 2280-2286
    [138] He J.Z., Robrock K.R., Alvarez-Cohen L. Microbial reductive debromination of polybrominated diphenyl Ethers (PBDEs)[J]. Environmental Science & Technology, 2006, 40(14): 4429-4434
    [139] Konstantinov A., Bejan D., Bunce N.J., et al. Electrolytic debromination of PBDEs in DE-83TM technical decabromodiphenyl ether[J]. Chemosphere, 2008, 72: 1159-1162
    [140]祖耕武,文晟,盛国英,等.颗粒物上十溴联苯醚的光降解反应[J].生态环境学报, 2009, 8(1): 205-209
    [141] Shih Y.H., Wang C.K. Photolytic degradation of polybromodiphenyl ethers under UV-lamp and solar irradiations[J]. Journal of Hazardous Materials, 2009, 165: 34-38
    [142] Fang L., Huang J., Yu G., et al. Photochemical degradation of six polybrominateddiphenyl ether congeners under ultraviolet irradiation in hexane[J]. Chemosphere, 2008, 71: 258-267
    [143] Arulmozhiraja S., Morita M. Electron affinities and reductive dechlorination of toxic polychlorinated dibenzofurans: a density functional theory study[J]. Journal of Physical Chemistry A, 108: 3499-3508
    [144] Fueno H., Tanaka K., Sugawa S. Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin[J]. Chemosphere, 2002, 48: 771-778
    [145] Zhang F., Chen J., Zhang H., et al. The study on the dechlorination of OCDD with Pd/C catalyst in ethanol–water solution under mild conditions[J]. Chemosphere, 2007, 68: 1716–1722
    [146] Burrow P.D., Aflatooni K., Gallup G.A. Dechlorination rate constants on iron and the correlation with electron attachment energies[J]. Environmental Science & Technology, 2000, 34: 3368-3371
    [147] Gillham R.W., O’Hannesin S.F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Ground Water, 1994, 32: 958-967
    [148] Klausen J., Vikesland P.J., Kohn T., et al. Longevity of granular iron in groundwater treatment processes:solution composition effects on reduction of organohalides and nitroaromatic compounds[J]. Environmental Science & Technology, 2003, 37:1208-1218
    [149] Zhu B.W., Lim T.T., Jing Feng. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica[J]. Chemosphere, 2006, 65: 1137-1145
    [150] Mackenzie K., Frenzel H., Kopinke F.D. Hydrodehalogenation of halogenated hydrocarbons in water with Pd catalysts: Reaction rates and surface competition[J]. Applied Catalysis B: Environmental, 2006, 63: 161-167
    [151] Kopinke F.D., Mackenzie K., K?hler R. Catalytic hydrodechlorination of groundwater contaminants in water and in the gas phase using Pd/γ-Al2O3[J]. Applied Catalysis B: Environmental, 2003, 44: 15-24
    [152] Aramendía M.A., Boráu V., García I.M., et al. Influence of the reaction conditions and catalytic properties on the liquid-phase hydrodebromination of bromobenzene over palladium supported catalysts: activity and deactivation[J]. Applied Catalysis B: Environmental, 1999, 20(2): 101-110
    [153] Aramendía M.A., Boráu V., García I.M., et al. Liquid-phase hydrodechlorination of chlorobenzene over palladium-supported catalysts: Influence of HCl formation and NaOH addition[J]. Journal of Molecular Catalysis A: Chemical, 2002, 184(1-2): 237-254
    [154] Janiak T., B?a?ejowski J. Kinetics of 10% Pd/C-catalysed hydrogenolysis of chlorobenzene dissolved in n-heptane by gaseous hydrogen in contact with aqueous NaOH or water[J]. Applied Catalysis A: General, 2004, 271: 103-108
    [155] Bernard Miller.高等有机化学-反应及机理[M].吴范宏译.上海:华东理工大学出版社, 2005: 1-3
    [156] http://www.chinafueloil.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700