硅化钛纳米线电极对PST薄膜形成与介电可调性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AB03型钙钛矿结构铁电薄膜由于具有独特的介电、压电、热释电及铁电性能,在很多领域中有着广泛的应用前景。(Pb,Sr)TiO3(PST)铁电薄膜由于具有很好的介电可调性,是当前介电可调薄膜的研究热点之一。然而,对于介电可调薄膜来说,要想获得最大介电调制,必须施加足够高的调制电压来产生高调制电场,但对于电子元器件来说工作电压不宜太高。同时,随着电子器件的微型化和集成化,对介电可调薄膜性能的要求也越来越高。显然降低介电调制电压、提高PST薄膜的介电可调性已经成为PST在相关领域得到应用的关键。采用小尺度间距叉指电极可有效地降低介电调制电压,提高介电可调性。随着纳米科学的不断发展,导电纳米线的应用也逐渐进入人们的视线,考虑到硅化钛由于其低电阻率、高热稳定性、可以制备成纳米线/薄膜一体化结构和与当前硅基制备工艺相匹配等特点,利用硅化钛导电纳米线/硅化钛薄膜作为薄膜电极,能使材料在较低电压下获得较大介电常数调制。而且,对这种纳米线复合电极降低调制电压、提高介电可调性的作用机制还不清楚,进而不能很好地控制相应薄膜性能。因此深入研究这种复合电极结构显得尤为重要,进一步探索介电可调薄膜的形成机制并揭示其性能改善的基本原理将有利于实现薄膜的制备和性能可控,对开发其在新型高性能器件中的应用起到极其重要的推动作用。
     本论文全面综述了AB03型钙钛矿结构铁电薄膜的主要制备方法及其应用现状,总结了硅化钛薄膜及其纳米线的制备与应用。描述了铁电薄膜的介电可调原理和基于边缘电场的边缘电场电容器概况。通过引入在纳米线电极周围产生强大边缘电场的思想,首先采用常压化学气相沉积法在玻璃基板上制备了TiSi纳米线/Ti5Si3薄膜复合电极,并采用射频磁控溅射法在TiSi纳米线/Ti5Si3薄膜复合电极上制备了PST薄膜。利用XRD、SEM、TEM、Agilent 4294A型阻抗分析仪等多种测试手段对薄膜的相结构、结晶性能、表面形貌及介电可调性等进行了研究,详细讨论了电极对PST薄膜结构形成和介电可调性的影响,给出了电极对PST薄膜形成的影响过程和诱导形成的形成机理,并通过模拟研究确认了基于边缘电场的低调制电压高介电可调PST薄膜的调制行为。
     研究表明,在TiSi纳米线/Ti5Si3薄膜电极上制备的PST薄膜受到TiSi和Ti5Si3电极结构诱导作用的影响,PST薄膜析晶温度下降,同时PST晶相含量提高。这有利于PST薄膜的制备优化,性能提高及在相关微电子器件中的应用。同时,在TiSi纳米线/Ti5Si3薄膜电极上制备的PST薄膜受纳米线产生的强大边缘电场的作用,其介电调制电压降低了约9倍,介电可调性提高约一倍。边缘电场的强度受纳米线密度和长度等因素影响,随着纳米线密度增大和长度增加,边缘电场的作用增强。这种利用边缘电场降低介电调制电压和提高介电可调性对于铁电薄膜在介电可调领域的应用来说是一个很大的突破。
Ferroelectric thin film with ABO3 perovskite structure has a broad prospect for its application in many fields due to their sufficient advantages including dielectric, piezoelectric, pyroelectric and ferroelectric properties. (Pb, Sr)TiO3 (PST) ferroelectric thin film is a hot research material because it has great dielectric tunability. However, high tunability of dielectric tunable thin film has to be stimulated by high electric field, and high electric field is always obtained under high voltage. The high voltage contradicts with the development of micro-electric component. At the same time, with miniturazation and integration of micro-electric devices, the requirement of performances of PST thin film becomes higher and higher. Obviusly, in order to adapt miniturazation tendency of micro-electric devices, the decrease of modulation voltage and improvement tunability of PST thin film become an important factor to using PST in related application field. Interdigital electrodes with small distance would decrease modulation voltage and improve tunability effectively. With the development of nano science, applications of electric-conducted nanowire are put forward. Considering low resistivity, high heat-stability and great compatibility with silicon integrated technology of titanium silicide, embedding TiSi nanowires as electrode of ferroelectric thin film could improve tunability and decrease modulation voltage. What's more, the mechanism of the decrease in modulation voltage and improvement of tunability haven't clearly announced until now, and thus the properties of thin film couldn't be controlled greatly. Therefore, it's important to research the composite electrode structure, and the further study about the formation mechanism of dielectric tunable thin film and announcing the property improvement mechanism are beneficial for the preparation and properties comtrol of thin film, and promote its applications in high-performance devices greatly.
     This paper reviewed preparation methods and applications of ferroelectric thin film with ABO3 perovskite structure, described dielectric tunability theory and current situation of dielectric tunable thin film based on fringing electric. Through the introduction of idea of using TiSi nanowires to generate large fringing electric field for stimulating tunability of PST thin film, TiSi nanowires/Ti5Si3 thin films were prepared by chemical vapor deposition method, and PST thin films were prepared on TiSi nanowires/Ti5Si3 thin film electrodes by magnetron sputtering method respectively. The phase structure, crystalline condition, morphology, and tunability were measured by XRD, FESEM and Agilent 4294A respectively. Effect of TiSi nanowires/Ti5Si3 thin film electrodes on structure formation and tunability of PST ferroelectric thin films was detailedly analysised. and the effect of TiSi nanowires/Ti5Si3 thin film electrode on tunability of PST ferroelectric thin films was simulated.
     Reserch shows that:As inducing effect of TiSi and Ti5Si3 structure, PST thin films sputtered on TiSi nanowires/Ti5Si3 thin films electrode have lower crystalline temperature and more phase content. This is favorable for the optimization of preparation, the improvement of properties, and the application to micro-electric devices of PST thin films. At the same time, modulation voltage of PST thin film sputtered on TiSi nanowires/Ti5Si3 thin film electrode decreases by about nine times at the same condition because of large fringing electric field generated by TiSi nanowires, and tunability improves by one time. Fringing electric field is affected by density and length of nanowires:the larger the nanowires density and the longer the nanowires, the larger intensity of fringing electric field. The application of fringing electric field to decrease modulation voltage and increase tunability is a great breakthrough for the application of ferroelectric thin film in dielectric tunable field.
引文
[1]殷之文,周志刚,李从周,电介质物理学,科学出版社,第二版,2003:307-308.
    [2]王中林,康振川,功能与智能材料结构演化与结构分析,科学出版社,第一版,2002,103.
    [3]Anuranjan Srivastava, Valentin Craciun, Joshua M. Howard, Rajiv K. Singh. Enhanced Electrical Properties of Ba0.5Sr0.5TiO3 Thin Films Grown By Ultraviolet-assisted Pulsed-laser Deposition. Appl. Phys. Lett.,1999,75(19):3002-3004.
    [4]M. Lippmaa, N. Nakagawa, M. Kawasaki. Step-flow Growth of SrTiO3 Thin Films With a Dielectric Constant Exceeding 104. Appl. Phys. Lett.,1999,74(23):3543-3545.
    [5]Wuxing Zhang, Zhongyang Xu, Changan Wang, Bofang Zhao. Self-buffered BaxSr1-xTiO3 Films By Sol-gel and RF Magnetron Sputtering Method. Mater. Res. Bull.,2003,38: 133-139.
    [6]Dingbua Bao, Zhihong Wang, Wei Ren, Liangying Zhang and Xi Yao. Crystallization Kinetics of Ba0.8Sr0.2TiO3 Sols and Sol-gel Synthesis of Ba0.8Sr0.2TiO3 Thin Films. Ceram. Int.,1999, 25:261-265.
    [7]M. E. Drougard, R. Landauer, D. R. Young. Dielectric Behavior of Barium Titanate in the Paraelectric State. Phys. Rev. Lett.,1955,98(4):1010-1014.
    [8]钟维烈,铁电体物理学,科学出版社,第一版,1996:155-156.
    [9]Kenneth M. Johnson. Variation of Dielectric Constant with Voltage in Ferroelectrics and its Application to Parametric Devices. J. Appl. Phys.,1962,33(9):2826-2831.
    [10]J. M. Worlock, P. A. Fleury. Electric Field Dependence of Optical-phonon Frequencies. Phys. Rev. Lett.,1967,19(20):1176-1179.
    [11]1. A. Akimov, A. A. Sirenko, A. M. Clark, J.-H. Hao, X. X. Xi. Electric-Field-Induced Soft-Mode Hardening in SrTiO3 Films. Phys. Rev. Lett.,2000,84(20):4625-4628.
    [12]Huey-Daw Wu, Zhihang Zhang, Frank Barnes, Charles M. Jackson. Voltage Tunable Capacitors using High Temperature Superconductors and Ferroelectrics. IEEE T. Appl. Supercon.,1994,4(3):156-160.
    [13]S. Y. Wu. A New Ferroelectric Memory Device-Metal-Ferroelectric-Semiconductor Transistor. IEEE Trans. Electr. Dev.,1974, ED-21(8):499-504.
    [14]Hang-Ting Lue, Chien-Jang Wu, Tseung-Yuen Tseng. Device Modeling of Ferroelectric Memory Field-effect Transistor for the Application of Ferroelectric Random Access Memory. IEEE T. Ultrason. Ferr.,2003,50(1):5-14.
    [15]P Muralt. Ferroelectric Thin Films for Micro-sensors and Actuators:a review. J. Micromech. Microeng.,2000,10:136-146.
    [16]Chun Huy Wang. Elastic Moduli and Piezoelectric Constants of Pb0.96Sr0.04[(Zr1-xTix)0.74(Mg1/3Nb2/3)0.20(Zn1/3Nb2/3)0.06]O3 Ceramics. Mater. Lett,2004,58: 1557-1560.
    [17]K. Bult, A. Burstein, D. Chang. Wireless Integrated Microsensors. Proc. Tech. Dig. Sol id-State Sensor and Actuator Workshop,1996:205-210.
    [18]Minoru Noda, Yoshinobu Sasaki, Daniel Popovici, Masanori Okuyama, Makio Komaru. A 20 GHz MOD-made BST Thin Film Tunable Phase Shifter for Phase Adjustment of Digital 360-degree PHEMT Phase Shifter. IEEE,2005:1267-1270.
    [19]D. Kuylenstierna, A. Vorobiev, S. Gevorgian.40 GHz Lumped Element Tunable Bandpass Filters with Transmission Zeros Based on Thin Ba0.25Sr0.75TiO3 (BST) Film Varactors. IEEE, 2006:342-345.
    [20]David B. Fraser. Sputtered films for display devices. Proceedings of the IEEE,1973,61(7): 1013-1018.
    [21]Henry F. Taylor. Polarization Independent Guided-wave Optical Modulators and Switches. J. Lightwave. Technol.,1985, LT-3(6):1277-1280.
    [22]R. D. Richtmyer. Dielectric Resonators. J. Appl. Phys.,1939,10:391-398.
    [23]R. C. Neville, B. Hoeneisen, C. A. Mead. Permittivity of Strontium Titanate. J. Appl. Phys., 1972,43(5):2124-2131.
    [24]Jerzy Krupka, Richard G. Geyer, Matthias Kuhn. Johann Heyen Hinken. Dielectric Properties of Single Crystals of Al2O3, LaAlO3, NdGaO3, SrTiO3, and MgO at Cryogenic Temperatures. IEEE T. Microw. Theroy.,1994,42(10):1886-1890.
    [25]Guru Subramanyam, Fred Van Keuls, Felix A. Miranda. A K-band Tunable Microstrip Bandpass Filter using a Thin-film Conductor/ferroelectric/dielectric Multilayer Configuration. IEEE Microw. Guided. W.,1998,8(2):78-80.
    [26]Felix A. Miranda, Guru Subramanyam. Design and Development of Ferroelectric Tunable Microwave Components for Ku-and K-band Satellite Communication Systems. IEEE T. Microw. Theroy.,2000,48(7):1181-1189.
    [27]B. A. Baumert, L.-H. Chang, A. T. Matsuda. Characterization of Sputtered Barium Strontium Titanate and Strontium Titanate-thin Films. J. Appl. Phys,1997,82(5):2558-2566.
    [28]Geyer R. G, Cole M W and Joshi P C. Correlation of Microwave Dielectric Properties and Microstructure of Unpatterned Ferroelectric Thin Films. Mater. Res. Soc. Symp. Proc.,2002, 720(2-3):123-128.
    [29]R. S Katiyar, M. Jain and S. B. Majumder. Investigations on Sol-gel Derived Ba0.5Sr0.5Ti1-δMnδO3 (δ=0.0 to 5.0 at%) Thin Films for Phase Shifter Applications. Mater. Res. Soc. Symp. Proc.,2002,720(2-3):3-14.
    [30]Imai K, Takeno S, Vakamura K. Effect of Fe Doping of Thin (Ba,Sr)TiO3 Films on Increase in Dielectric Constant. Jpn. J. Appl. Phys.,2002,41(10):6060-6064.
    [31]Jeon Y. A, Seo T. S, Yoon S. G. Effect of Ni Doping on Improvement of the Tunability and Dielectric Loss of Ba0.5Sr0.5TiO3 Thin Films for Microwave Tunable Devices. Jpn. J. Appl. Phys.,2002,40(11):6496-6500.
    [32]Shoichiro Nomura, Shozo Sawada. Dielectric Properties of Lead Strontium Titanate. J. Phys. Soc. Jpn.,1955,10(2):108-111.
    [33]Yoshitaka Somiya, Amar S.Bhalla, L. Eric Cross. Study of (Sr,Pb)TiO3 Ceramics on Dielectric and Physical Properties. Int. J. Inorg. Mater.,2001,3:709-714.
    [34]R. J. Nemanich, R. W. Fiordalice and H. Jeon. Raman Scattering Characterization of Titanium Silicide Formation. IEEE J. Quantum Electronics,1989,25(5):997-1002.
    [35]E. H. Lim, G. Karunasiri, S. J. Chua, Z. X. Shen, et al. Characterization of Titanium Silicide by Raman Spectroscopy for Submicron IC Processing. Microelectronic Eng.,1998,43-44: 611-617.
    [36]T. Stark, L. Gutowski, M. Herden, H. Grunleitner, et al. Ti-silicide Formation during Isochronal Annealing Followed by in Situ Ellipsometry. Microelectronic Eng.,2001,55: 101-107.
    [37]F. Cazzaniga, G. Pavia, A. Sabbadini, S. Spiga and G. Queirolo. AFM Measurement of the Grain Size in Polycrystalline Titanium Silicides. Microelectronic Eng.,2001,55:93-99.
    [38]J. H. Schneibel and C. J. Rawn. Thermal Expansion Anisotropy of Ternary Titanium Silicides based on Ti5Si3. Acta Mater.,2004,52:3843-3848.
    [39]S. Kal, I. Kasko, and H. Ryssel. Noncontacting Measurement of Thickness of Thin Titanium Silicide Films using Spectroscopic Ellipsometer. IEEE Electron Dev. Lett.,1998,19(4): 127-130.
    [40]C. Bresolin, M. Pesaturo, P. Paruzzi, and V. Soncini etal. Application of Atomic Force Microscopy to Detect Edge of Mask Contaminations that may Hinder Titanium Silicide Formation. Microelectronic Eng.,2003,70:196-200.
    [41]I. Goldfarb, S. Grossman, G. Cohen-Taguri and M. Levinshtein. Scanning Tunneling Microscopy of Titanium Silicide Nanoisiands. Appl. Surf. Sci.,2004,238:29-35.
    [42]J. J. Williams, Y. Y. Ye, M. J. Kramer, K. M. Ho, L. Hong, C. L. Fu and S. K. Malik. Theoretical Calculations and Experimental Measurements of the Structure of Ti5Si3 with Interstitial Additions. Intermetallics,2000.8:937-943.
    [43]张澜庭,吴建生.D88型金属键化合物Ti5Si3晶体结构分析及断裂面构造.上海交通大学学报,1996,30(9):86-91.
    [44]F. Weitzer, P. Rogl and H. Noel. The Ternary System:Silicon-titanium-uranium. J. Alloys Compd.,2003,350:155-159.
    [45]Z. Lin and Y. K. Lee. Effect of Multi-cycle Annealing on the C49-54 Phase Transformation in TiSi2 Thin Film. Mat. Sci. Semicon. Proc.,2000,3:215-219.
    [46]H. Jeon, G. Yoon and R. J. Nemanich. Dependence of the C49-C54 TiSi2 Phase Transition Temperature on Film Thickness and Si Substrate Orientation. Thin Solid Films,1997,299: 178-182.
    [47]J. H. Schneibel and C. J. Rawn. Thermal Expansion Anisotropy of Ternary Titanium Silicides based on Ti5Si3. Acta Mater.,2004,52:3843-3848.
    [48]A. S. Ozcan. Evolution of Texture in Titanium Silicide Thin Films. Dissertation of Boston University,2003.
    [49]F. La Via, S. Privitera, F. Mammoliti and M. G. Grimaldi. Effects of a Ta Interlayer on the Titanium Silicide Reaction:C40 Formation and Scalability of the TiSi2 Process. Microelectronic Eng.,2002,60:197-203.
    [50]M. S. Alessandrino, M. G. Grimaldi and F. La Via. C49-C54 Phase Transition in Nanometric Titanium Disilicide Nanograins. Microelectronic Eng.,2002,64:189-196.
    [51]J. P. Gambino and E. G. Colgan. Silicides and Ohmic Contacts. Mater. Chem. Phys.,1998,52: 99-146.
    [52]C. Bernard, R. Madar and Y. Pauleau. Chemical Wapor Deposition of Refractory Metal Silicide for VLSI Metallization. Solid-state Techn.,1989,32(2),79-84.
    [53]L. A. Clevenger, J. M. Harper, and C. Cabral, et al. Kinetic analysis of C49-TiSi2 and C54-TiSi2 Formation at Rapid Thermal Annealing Rates. J. Appl. Phys.,1992,72(10): 4978-4980.
    [54]R. P. Southwell, M. A. Mendicino and E. G. Seebauer. Optimization of Selective TiSi2 Chemical Vapor Deposition by Mechanistic Chemical Kinetics. J. vac. Sci. Technol. A,1996, 14(3):928-934.
    [55]O. A. Fouad, M. Yamatazo, H. Ichinose and M. Nagano. Titanium Disilicide Formation by Rf Plasma Enhanced Chemical Vapor Deposition and Film Properties. Appl. Surf. Sci.,2003, 206:159-166.
    [56]K. Varahramyan and E. J. Verret. A model for Specific Contact Resistance Applicable for Titanium Silicide-silicon Contacts. Solid-State Electronics,1996,39(11):1601-1607.
    [57]K. Saito, T. Amazawa and Y. Arita. Selective Titanium Silicide Chemical Vapor Deposition with Surface Cleaning by Silane and Ohmic Contact Formation to Very Shallow Junctions. J. Electrochem. Soc.,1993,140(2):513-519.
    [58]K. Ezoe, H. Kuriyama, and T. Yamamoto, et al. Scanning Tunneling Microscopy Study of Initial Growth of Titanium Silicide on Si (111). Appl. Surf. Sci.,1998,130-132:13-17.
    [59]M. takai, T. Iriguchi, H. Morimoto, A. Hosono and S. Kawabuchi. Electron Emission from Gated Silicide Field Emitter Arrays. J. Vac. Sci. Technol. B,1998,16(2):790-792.
    [60]S. Zhou, X. H. Liu and D. W. Wang. Si/TiSi2 Heteronanostructures as High-Capacity Anode Material for Li Ion Batteries. Nano Lett.,2010,10(3) 860-863.
    [61]S. Zhou and D. W. Wang. Unique Lithiation and Delithiation Processes of Nanostructured Metal Silicides. ACS Nano,2010,4(11):7014-7020.
    [62]李新勇,张桂兰,汤国庆,陈文驹.纳米晶体材料研究进展.化学进展,1996,8:231-239.
    [63]张立德,牟季美.纳米材料与纳米结构.科学出版社,2001:15-52.
    [64]N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff and J. R. Heatn. Ultrahigh-Density Nanowire Lattices and Circuits. Science,2003,300:112-115.
    [65]P. A. Bennett, B. Ashcroft, Z. He and R. M. Tromp. Growth Dynamics of Titanium Silicide Nanowires Observed with Low-energy Electron Microscopy. J. Vac. Sci. Technol. B,2002, 20(6):2500-2504.
    [66]B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu and D. P. Yu. Synthesis and Field Emission Properties of TiSi2 Nanowires. Appl. Phys. Lett.,2005,86:243103.
    [67]李欣欣,李均,一种新型的电容传感器-基于边缘效应原理的传感器,光学精密工程,1994,2(1):49-53.
    [68]李勇,李玉和,李庆祥,訾艳阳,计及边缘效应的非平行梳妆驱动器的静电力的计算,清华大学学报(自然科学版),2003,43(8):1024-1026.
    [69]M. C. Hegg, A. V. Mamishev, Influence of Variable Plate Separation on Fringing Electric Fields in Parallel-plate Capacitors, Comfer. Record of the 2004 Ieee Internat. Symposium on electr. Insul.2004:384-387.
    [70]A. V. Mamishev, Interdigital sensors and transducers. Proceedings of the Ieee,2004,92(5): 808-845.
    [71]X. B. Li, S. D. Larson, A. S. Zyuzin, and A. V. Mamishev, Low voltage tunable capacitors for RF MEM filters and antenna applications, Ieee Sensors J.2006,6(2):670-673.
    [72]A. V. Marnishev, A. R. Takahashi, Y. Du. B. C. Lesieutre and M. Zahn, Assessment of performance of fringing electric field sensor arrays,2002 Annual Report conference on Electr. Insulation and Dielectr. Phenomena,2001:918-921.
    [73]E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, T. L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science 2005 37(5717):1942-1945.
    [74]R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, High-resolution Liquid-crystal phase grating formed by fringing fields from interdigitated electrodes. R. G. Optics Lett.1994,19(9):670-672.
    [75]Y. K. Yoon and M. A. Allen, Tunable ferroelectric capacitor with low loss electrodes facricated using reverse side exposure, leee 2003 electronic components and technology conference,2003:1534-1540.
    [76]J. S. Kenney, Y. K. Yoon, M. Ahn, and M. G. Allen. Low-Voltage Ferroelectric Phase Shifters from L-to C-Band and their applications. leee AC Paper#1530, Version 4,2005:1-9
    [77]Y. C. Lee, Y. P. Hong, D. M. Kim, and K. H. Ko. Very High Tunable Inter-digital Capacitor Embedded Fully Into BZN Thin Film Dfielectrics for Microwave Applications. leee proceedings of the 36th European microwave conference,2006:1347-1349
    [78]胡安红,硅化钛纳米线电极及低调制电压和高介电可调薄膜研究.浙江大学硕士学位论文,杜丕一,天津,浙江大学,2008,03.
    [79]J. Du, Z. D. Ren, K. Y. Tao, A. H. Hu, P. Hao, Y. F. Huang, G. L. Zhao, W. J. Weng, G. R. Han and P. Y. Du. Self-induced Preparation of Assembled Shrubbery TiSi Nanowires by Chemical Vapor Deposition. Crystal Growth & Des.,2008,8:3543-3548.
    [80]J. F. Fang, Y. B. Su, M. R. Li, G. R. Han, W. J. Weng, N. Ma and P. Y. Du. Cooperation Control of Permittivity and Low Dissipation Factor in Dielectric Ceramics with Doping. J. Mater. Chem., under review, JM-ART-02-2012-030887.
    [81]何菊生,张萌,肖祁陵,半导体外延层晶格失配度的计算,2006,30(1):64-69.
    [82]曹丽冉,ITO薄膜及其在柔性硅基薄膜太阳电池中的应用研究.南开大学硕士学位论文,薛俊明,陈新亮,天津,南开大学,2009,06.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700