化学浴沉积法制备铜铟镓硒薄膜太阳能电池缓冲层材料CdS
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着化石能源的日益枯竭以及环境污染等问题迫使人们寻求可替代的再生新能源。而且光伏产业正在成为各国经济发展的战略新兴产业。其中作为第三代的薄膜太阳能电池铜铟镓硒(CIGS)也在逐渐产业化。然而,在如何进一步提高电池效率以及大规模产业化确保重复性方面还存在很多障碍。铜铟镓硒太阳能电池涉及很多层薄膜材料的制备,工艺复杂,每一层材料的制备都会对电池性能有影响。本论文就化学浴沉积法合成缓冲层材料CdS薄膜的工艺及其生长机制进行了一些研究。
     化学浴沉积法制备CdS薄膜主要涉及到两种机制:ion-by-ion和cluster-by-cluster;两种机制生长出来的薄膜具有不同的物理性质。条件的改变(如温度、浓度、pH值、沉积时间等)会对薄膜的生长速率,表面形貌,晶体结构,光学性质等产生很大的影响。由于反应物浓度和pH值的影响在文献中已经有很多报道,本文着重选取了沉积温度和时间对薄膜性能的影响。
     在60oC、70oC、80oC、90oC条件下,沉积不同时间得到CdS薄膜,对其进行SEM、XRD以及OT表征,根据Urbach公式计算带隙。随着沉积温度的增加,薄膜生长速率加快直到达到饱和厚度,然后由于剥蚀,进一步反应薄膜厚度会降低。本文提出,不论温度,薄膜的生长一开始由ion-by-ion机制占主导,随着时间的进行,cluster-by-cluster机制控制着反应。并从表面形貌,晶体结构,带隙值变化等方面对这一生长机制作出了合理的解释。
     另外,尽管铜铟镓硒太阳能电池在未来几年仍有很大发展潜力,但由于铟在地壳中的分布量比较小,其最终势必会受到限制。类似铜铟镓硒(CuInxGa1‐xSe2)薄膜的铜锌锡硫薄膜(Cu2ZnSnS4)正在引起实验室的广泛关注。它们具有相同的黄铜矿晶体结构,类似的光电性质。铜锌锡硫薄膜的直接带隙为1.4ev‐1.5ev,其中的各种基本元素在地壳中分布广泛且无毒。且目前采用共蒸发法,效率为6.77%的CZTS太阳能电池已经被制备出。因此,本论文在非真空法制备CZTS薄膜方面也做了一些初步的探索。
     利用Sol‐Gel法合成金属前驱体,在氢气氛中退火,最后硫化的过程得到CZTS薄膜。
Currently, as fossil energy exhausting and pollution problems, people force to seek alternative regeneration new energy. And the PV industry is becoming the strategic economic development of all countries in new industries. At the same time, Copper Indium Gallium Selenium thin film solar cells(CIGS) is also gradually in the industrialization. However, there are many obstacles that how to further improve the efficiency of the cells and ensure repeatability when large-scale industrialization. CIGS solar cells involves many film materials’preparation, which process is complex. Each layer materials for the preparation will have influence on the battery performance. In our this paper, we research the process and growth mechanism of CdS film deposited by Chemical Bath Deposition (CBD) as the buffer layer material.
     As deposition of CdS films by CBD, it mainly relates to the two film growth mechanisms, ion-by-ion and cluster-by-cluster. Different growth mechanism affects the properties of the fabricated film. The change of conditions (such as temperature, PH value, reactant concentration, composition of the solution and the deposition time) generates a lot of influence on the growth rate of films, crystal structure and surface morphology, optical properties. Because the influence of the concentration of reactants and pH value in the literature has so many reports, we emphatically chose deposition temperature and time to research the properties of film.
     CdS thin films were got by Chemical-bath-deposited at 60oC、70oC、80oC、90oC. Through analysis of planar and cross-section SEM, X-ray diffraction XRD, optical transmittance and bandgap value analysis, we explain film growth mechanism. Independent of the deposited-temperature, the growth was mainly controlled by the ion-by-ion growth mechanism in the beginning of the film deposition, and then the cluster-by-cluster mechanism came to be dominant.
     In addition, we also made some preliminary exploration in synthesising Copper zinc tin sulfur thin film (CZTS) by non-vacuum chemical method. Prepare the metal precursor using sol-gel method,and then sulfurizing.
引文
[1] 2020年中国光伏总装机量将达2万MW.有色冶金节能, 2010. 2010(6).
    [2]黎兵, CdS/CdTe多晶薄膜及其化合物半导体太阳电池的研究.四川大学博士学位论文, 2004.
    [3]周红卫,蒋荣华,具有全球竞争力的中国光伏产业.新材料产业, 2011. 2011(1): p. 19-30.
    [4] Queisser, J.L. and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications. J Electrochem Soc, 1976. 123(5): p. 170C-171C
    [5] Repins, I., et al., 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovoltaics, 2008. 16(3): p. 235-239.
    [6]王满,金属预制层对铜铟镓硒薄膜性能的影响及硒化工艺的研究.中国科学技术大学硕士学位论文, 2010.
    [7] Katagiri, H., et al., Development of CZTS-based thin film solar cells. Thin Solid Films, 2009. 517(7): p. 2455-2460.
    [8] Reynard, D.L. and A. Andrew, Improvement of silicon solar cell performance through the use of thin film coatings. Appl Opt, 1966. 5(1): p. 23-8.
    [9] Bermel, P., et al., Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt Express, 2007. 15(25): p. 16986-7000.
    [10] Wang, L., et al., A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors. Chem Commun (Camb), 2005(45): p. 5687-9.
    [11] Guldin, S., et al., Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett, 2010. 10(7): p. 2303-9.
    [12] Pa, P.S., A reclaiming process for solar cell silicon wafer surfaces. J Nanosci Nanotechnol, 2011. 11(1): p. 691-5.
    [13]祁玉兰,有机太阳能电池的发展.科苑论坛, 2009. 9: p. 134.
    [14] http://info.energy.hc360.com/2008/11/10112642849-2.shtml,太阳能电池原理. 2008.
    [15] Gartsman, K., L. Chernyak, and V. Lyahovitskaya, Direct evidence for diffusion and electromigration of Cu in CuInSe. Journal of Applied Physics, 1997. 82: p. 4282-4285.
    [16] Kylner, A., The Chemical Bath Deposited CdS/Cu(In,Ga)Se2 Interface as Revealed by X-Ray Photoelectron Spectroscopy. Journal of The Electrochemical Society, 1999. 146(5): p. 1816-1823.
    [17] Scheer, R., Surface and interface properties of Cu-chalcopyrite semiconductors and devices. Trends in Vacuum Science and Technology, 1997. 2: p. 77-112.
    [18]王岳,吴季怀,李清华,柔性染料敏化太阳能电池研究进展.材料导报:综述篇, 2010. 24(8): p. 131.
    [19]汪磊,卟啉-富勒烯化合物的合成及在有机太阳能电池的应用.天津:天津大学应用化学博士学位论文, 2009.
    [20]乔芬,基于聚合物的有机太阳能电池的研制与表征.大连:大连理工大学微电子学与固体电子学博士学位论文, 2009.
    [21] I, L., K. J, and S. K, Efficient CuInS2 solar cells from a rapid thermal process (RTP). Sol Energy Mater Sol Cells, 2001. 67: p. 151.
    [22] Bergmann, R., Crystalline Si thin-film solar cells: a review. Applied Physics A: Materials Science & Processing, 1999.
    [23]固态氧化物燃料电池和CIGS太阳能电池薄膜材料简介. www.elecfans.com 2010.
    [24] Niles, D.W., et al., Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy J Vac Sci Technol A, 1997. 15(6).
    [25] Nakada, T., H. Ohbo, and M. Fukuda, Improved compositional flexibility of Cu (In, Ga) Se2-based thin film solar cells by sodium control technique. Sol Energy Mater Sol Cells, 1997.
    [26] Wada, T., N. Kohara, and S. Nishiwaki, Characterization of the Cu (In, Ga) Se2/Mo interface in CIGS solar cells. Thin Solid Films, 2001.
    [27] A, R. and B.R. W, CuInSe2 for photovoltaic applications. Journal of Applied Physics, 1991. 70: p. R81-R97.
    [28]郭杏元;许生;曾鹏举, CIGS薄膜太阳能电池吸收层制备工艺综述.真空与低温, 2008. 14(3): p. 125-133.
    [29] Ramanathan, K., M.A. Contreras, and C.L. Perkins, Properties of 19.2% Efficiency ZnO/CdS/CuInGaSe2 Thin-film Solar Cells. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 2003. 11: p. 225-230.
    [30] S, W., s.J. L, and Migliora.P, CuInSe2-CdS heterojunction photovoltaics detectors. Applied Physics Letters, 1974. 25: p. 434-435.
    [31]张中伟,电沉积制备铜铟镓硒薄膜太阳能电池及纳米线的生长与性质研究.合肥:中国科学技术大学材料物理与化学博士学位论文, 2010.
    [32] Nagoya, A., et al., Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material. Phys Rev B, 2010. 81(11): p. -.
    [1] Feng, Z.C., et al., Effects of CdCl2 treatment and annealing on CdS/SnO2/glass heterostructures for solar cells. Thin Solid Films, 2010. 518: p. 7199-7203.
    [2] Wan, L., et al., Effect of CdCl2 annealing treatment on thin CdS films prepared by chemical bath deposition. Thin Solid Films, 2010. 518: p. 6858-6865.
    [3]李富强, et al., CdS电子结构和光学性质的研究.徐州工程学院学报(自然科学版), 2009. 24(3): p. 76-81.
    [4] Nagai, T., et al., Optical Properties of Cubic CdS. phys stat sol (b), 2002. 229(1): p. 611-614.
    [5] Ninomiya, S. and S. Adachi, Optical properties of wurtzite CdS. J Appl Phys, 1995. 78(2): p. 1183-1190.
    [6] Cortes, A., et al., Grain size dependence of the bandgap in chemical bath deposited CdS thin films. Sol Energ Mat Sol C, 2004. 82(1-2): p. 21-34.
    [7] S.N.SAHU, Chemical deposition of CdS films: structure, RBS,PIXE,optical and photoelectrochemical solar cell studies. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, 1995. 6: p. 43-51.
    [8]池玉娟, et al., ITO /TiO2表面电沉积CdS纳米粒子及其薄膜的光电性能.高等学校化学学报, 2007. 128(12): p. 2364-2368.
    [9] Uda, H., H. Yonezawa, and Y. Ohtsubo, Thin CdS films prepared by metalorganic chemical vapor deposition. Sol Energ Mat Sol C, 2003. 75(1-2): p. 219-226.
    [10]王现利, CdS薄膜的水浴法制备及表征.哈尔滨工业大学硕士学位论文, 2009.
    [11]刘晶冰;汪浩,化学浴沉积法制备高取向钒酸铋薄膜.无机化学学报, 2007. 123(7): p. 1299-1302.
    [12] Mane, R.S. and C.D. Lokhande, Chemical deposition method for metal chalcogenide thin flms. Materials Chemistry and Physics, 2000. 65: p. 1-31.
    [13]许姣姣,司云森;余强,电化学沉积技术的新发展.南方金属, 2007. 155: p. 21-24.
    [14]王博,电化学沉积法制备薄膜涂层材料研究进展陶瓷, 2010. 1.
    [15] D. Lincot,J.F. Guillemoles,et al., Chalcopyrite thin film solar cells by electrodeposition,Solar Energy ,2004,77:p.725–737
    [16] Daniel Lincot, Electrodeposition of semiconductors, Thin Solid Films, 2005 487, p:40– 48
    [17]陶增华,光电传感器件.集成电路及其应用.
    [18]侯泽荣,碲化镉薄膜太阳能电池相关材料的制备与表征.合肥:中国科学技术大学硕士学位论文, 2010.
    [19]何菊生,张萌;肖祁陵,半导体外延层晶格失配度的计算.南昌大学学报(理科版), 2006. 30(1): p. 63-67.
    [20] D. Abou-Ras, G. Kostorz, A. Romeo, et al., Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells, Thin Solid Films 2005. 480-481: p. 118– 123
    [21]刘恩科,朱秉升;罗晋升,半导体物理学第六版[M].北京:电子工业出版社.
    [22] Hariskos, D., S. Spiering, and M. Powalla, Buffer layers in Cu(In,Ga)Se2 solar cells and modules. Thin Solid Films 2005. 480-481: p. 99-109.
    [1] O'Brien, P. and J. McAleese, 1998. Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. J Mater Chem 8, 2309-2314.
    [2] Moualkia, H., et al., 2009. Growth and physical properties of CdS thin films prepared by chemical bath deposition. J Phys D Appl Phys 42, -.
    [3] Kuranouchi, S., et al., Cadmium-Sulfide Thin-Films Prepared by Chemical Bath Deposition Method. Sol Energ Mat Sol C, 1994. 35(1-4): p. 185-191.
    [4] Guillen, C., M.A. Martinez, and J. Herrero, Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters. Thin Solid Films, 1998. 335(1-2): p. 37-42.
    [5] Oliva-Aviles, A.I., R. Patino, and A.I. Oliva, CdS films deposited by chemical bath under rotation. Appl Surf Sci, 2010. 256(20): p. 6090-6095.
    [6] Contreras, M.A., et al., Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se-2-based solar cells. Thin Solid Films, 2002. 403: p. 204-211.
    [7] Yakuphanoglu, F. and M. Sekerci, Optical characterization of an amorphous organic thin film. Opt Appl, 2005. 35(2): p. 209-214.
    [8] Wilchelmi, K., D. F?rster, and A. Neisser, In?uence of Thiourea Dimers in the Chemical Bath Deposition Process of Metal Sulfides. Journal of The Electrochemical Society, 2010. 157(9): p. D493-D495.
    [9] Ko, Y.H. and J.S. Yu, Structural and Antireflective Properties of ZnO Nanorods Synthesized Using the Sputtered ZnO Seed Layer for Solar Cell Applications. J Nanosci Nanotechno, 2010. 10(12): p. 8095-8101.
    [10]闫怀义;王迎进, A r r h e n i u s经验公式的推导及Ea的本质.绍兴文理学院学报, 2010. 30(8): p. 13.
    [11]徐瑛等, ed.工科化学概论. ed.高等学校教材. 2007,化学工业出版社:北京.
    [12]黄小葳,阿伦尼乌斯活化能的统计分析.首都师范大学学报(自然科学版), 1995. 16(1): p. 62-66.
    [13] Kostoglou, M., N. Andritsos, and A.J. Karabelas, Progress towards modelling the CdS chemical bath deposition process. Thin Solid Films, 2001. 387(1-2): p. 115-117.
    [14] Li, W.Y., et al., Influence of growth process on the structural, optical and electrical properties of CBD-CdS films. Mater Lett, 2005. 59(1): p. 1-5.
    [15] Khallaf, H., et al., Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources. Thin Solid Films, 2008. 516(21): p. 7306-7312.
    [16] Liu, F.Y., et al., Characterization of chemical bath deposited CdS thin films atdifferent deposition temperature. J Alloy Compd, 2010. 493(1-2): p. 305-308.
    [17] Hankare, P.P., P.A. Chate, and D.J. Sathe, CdS thin film: Synthesis and characterization. Solid State Sci, 2009. 11(7): p. 1226-1228.
    [18] Metin, H., et al., Annealing effect on CdS/SnO2 films grown by chemical bath deposition. Appl Surf Sci, 2010. 256(16): p. 5076-5081.
    [19] Cortes, A., et al., Grain size dependence of the bandgap in chemical bath deposited CdS thin films. Sol Energ Mat Sol C, 2004. 82(1-2): p. 21-34.
    [20] Roduner, E., Size matters: why nanomaterials are different. Chem Soc Rev, 2006. 35(7): p. 583-592.
    [21] Ichimura, M., F. Goto, and E. Arai, Structural and optical characterization of CdS films grown by photochemical deposition. J Appl Phys, 1999. 85(10): p. 7411-7417.
    [1] Katagiri, H., Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 2005. 480: p. 426-432.
    [2] Scragg, J.J., et al., New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material. Phys Status Solidi B, 2008. 245(9): p. 1772-1778.
    [3] Nagoya, A., et al., Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material. Phys Rev B, 2010. 81(11): p. -.
    [4] Guo, Q.J., H.W. Hillhouse, and R. Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. J Am Chem Soc, 2009. 131(33): p. 11672-.
    [5] Katagiri, H., et al., Development of CZTS-based thin film solar cells. Thin Solid Films, 2009. 517(7): p. 2455-2460.
    [6] Katagiri, H., et al., Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl Phys Express, 2008. 1(4).
    [7] Todorov, T.K., K.B. Reuter, and D.B. Mitzi, High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber. Adv Mater, 2010. 22(20): p. E156-+.
    [8] Tanaka, K., et al., Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol Energ Mat Sol C, 2009. 93(5): p. 583-587.
    [9] Araki, H., et al., Preparationof Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors, in Physica Status Solidi C - Current Topics in Solid State Physics, Vol 6, No 5, S. Sadewasser, et al., Editors. 2009, Wiley-V C H Verlag Gmbh: Weinheim. p. 1266-1268.
    [10] Schurr, R., et al., The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors. Thin Solid Films, 2009. 517(7): p. 2465-2468.
    [11] Tanaka, K., et al., Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurizationand Cu2ZnSnS4 thin film solar cell efficiency. Sol Energ Mat Sol C, 2011. 95(3): p. 838-842.
    [12] Chen, S.Y., et al., Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl Phys Lett, 2010. 96(2): p.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700