利用高分辨X射线衍射仪表征GaN/Al_2O_3薄膜结构特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,尽管GaN基光电子材料和器件得到迅猛发展,但对材料本身的研究还很不充分,GaN基材料生长和性能研究方面还需做大量工作,仍存在一些影响产业化的问题急需解决。目前氮化镓材料中位错的研究吸引了众多学者的极大关注。国内外许多研究小组利用透射电子显微术和X射线衍射对GaN薄膜位错的研究集中在用不同的测试方法对位错密度的分析,但通过这些方法表征的位错密度与器件发光性能存在矛盾。
     鉴于此,本论文在系统总结了常用于研究和表征薄膜的方法的优缺点的基础上,利用高分辨X射线衍射技术对常压MOCVD制备的GaN/Al_2O_3薄膜进行了常规晶体结构的表征,对外延层的相组成、真实衍射峰的位置、准确晶格参数、外延层和衬底晶轴取向关系、外延片在应力作用下的弯曲半径及应力大小进行了讨论;并利用倾斜对称法和掠入射、掠出射分析技术考察了样品的半高宽和位错密度,结合样品的发光性能,进一步了解位错密度与发光性能的关系。在这些系统、细致的实验基础上,总结出了与样品发光性能一致的表征位错密度的掠入射方法。这种表征方法的明确,不仅有利于进一步了解薄膜的位错密度的分布,对实际生产也有指导意义。论文的主要内容与结论如下:
     1、采用直射模式所得样品衍射图谱中只出现GaN(00.2)和(00.4)晶面的最强特征衍射峰,表明所研究的GaN薄膜都为纤锌矿六方结构,沿c轴择优取向,且薄膜与衬底之间在(00.1)方向上并未形成很好的取向关系,存在着取向偏差。消除仪器零点误差,对测量数据进行修正得到的六个样品的c轴晶格常数与标准值c=0.5185nm比较,相差甚小,且都稍大于标准值,表明样品皆受压应变。
     2、采用高分辨X射线高强衍射模式,以衬底衍射峰为参考,探讨了测量外延膜准确晶格常数的方法。认为必须考虑外延层和衬底间取向偏差在测量中引入的叠加效应,并予以消除。测试得到GaN外延层晶体的a方向晶格常数小于、而c方向晶格常数大于自由状态下体单晶的晶格常数,说明外延层处于压应力状态。压应力主要来源于晶格失配和热失配。
In recent years, GaN-based optoelectronic materials and devices have been rapidly developed, however, there has not full studied in GaN thin films. Many theoretical and experimental studies should be focused on the GaN-based materials and properties, especially these problems affected industrialization. So far, almost all of the published papers are regarded on the density of threading dislocations in GaN. Many studies have been done on different approaches studied the density of threading dislocations of GaN, such as Transmission electron microscopy (TEM), X-ray diffraction(XRD), but the results which measured by these approaches are not consistency with luminescence.
    In this thesis, on the basis of analysis the advantages and disadvantages of the usual approaches, high-resolution X-ray diffraction was used to analyze the GaN layers grown on sapphire by metal-organic chemical vapor deposition (MOCVD), such as the crystal structures, the misorientation angle between the GaN epilayer and Sapphire substrate、 the accurate lattice constants of GaN films、 the bending radius of the wafers and stress of GaN films and dislocation densities . The main content of this thesis and some main conclusions are as follows:
    1、 The diffractograms(20/ω-scans) of all samples only have (00.2)、 (00.4) diffraction peak in the direct mode indicated that the GaN films are wurtzite structure and strongly c-oriented. The GaN thin films are not parallel Sapphire substrate and misorientation has exactly came into being between them. The measured c lattice constant by eliminated the instrument's error is larger than that of body single crystal GaN which indicates that the films are under the compressive stress.
    2、 The measuring method of the accurate crystal constants was discussed basing on the substrate peak of the X-ray high intensity diffraction spectrum and the errors induced by misorientation must be deducted. The measured a lattice constant is less than that of body single crystal GaN and c is larger, which also indicates that the films are under the compressive stress. This compressive stress is derived from the lattice and thermal mismatch.
    3、 Misorientation was exactly assuredly came into being between the GaN epilayer and Sapphire substrate by X-ray high intensity mode diffraction measurement. The misorientation azimuth angle is nearly same with the miscut azimuth of sapphire
引文
1. Youn CJ, Jeong TS, Han MS, et al. Influence ofvarious activation temperatures on the optical degradation of Mg doped InGaN/GaN MQW blue LEDs [J]. J Cryst Growth, 2003, (250): 331-338
    2.郎佳红,顾彪,徐茵等.GaN基半导体材料研究进展[J].激光与光电子学进展 2003,40(3):45-49
    3. Shuji Nakamura, Takashi Mukai, Masayuki Senoh. Candelaelasshigh—brightness GaN /AlGaN double—heterostructure blue—light—emitting diodes[J]. Appl. Phys. Lett, 1994, 74: 1687-1689
    4.马洪磊,杨莺歌,刘晓梅等.GaN薄膜的研究进展[J].功能材料 2004,5(35):537—541
    5.谢崇木.光电子新材料GaN研究进展[J].半导体情报 1997,4(34):1—8
    6.徐立国,谢雪松,吕长志等.GaN基紫外光探测器研究进展[J].半导体光电 2004,6(25):411-415
    7.张书明,杨辉,段俐宏,等.氮化镓基蓝、绿光LED中游工艺技术产业化研究[J].液晶与显示,2003,18(1):44—47
    8.陈志忠,秦志新,胡晓东,等.大功率白光LED的制各和表征[J].液晶与显示,2004,19(2):83—86
    9. A B Djurisic, Y Chan EH Li. Novel model for the optical function ofGaN [J]. Appl Phys A 2002, 74: 669—674,
    10. Tran CA, OsinskiA, Karlicek RF, et al. Growth ofin-GaN/GaN multiple—quanium— well blue light—emitting diodes on silicon by metalorganic vapor phase epitaxy [J]. Appl PhysLettt, 1999, 75(11): 1494—1497
    11. Nakamura S, Fasol S, pearton S. The Blue Laser Diode: The Complete Story[M]. Second Revised. New York: Springer, 2000, 2: 335—336
    12. Feltin E, Dalmasso S, Mierry P, et al. Green InGaN light—emitting diodes grown on Silicon(111)by metalorganic vapor phase epitaxy [J]. Appl Phys, 2001, 40: 738—741
    13. Nakamura S. InGaN/GaN/AIGaN-based laser diodes grown on free-standing GaN substrates [J]. Materials Science and Engineering, 1999, B59: 370-375
    14.马洪磊,杨莺歌,刘晓梅等.GaN薄膜的研究进展[J].功能材料 2004,5(35):537—541
    15. X L Sun, Hui yang, L X Zheng, et al. Stability investigation of cubic GaN films grown by metalorganic chemical vapor deposition on GaAs (001) [J]. Appl, Phys, Lett, 1999, 74 (19): 2827—2831
    16.姚冬敏,胡恺生,江风益,等.GaN单晶薄膜的湿法化学刻蚀研究[J].南昌大学学报(理科版)1997,9,21(3):259-262
    17. Nakamura S, Senoh M, Nagahamas et al. InGaN-based multi-quantum well structure laser diodes. [J]. Jpn. JAppl Phys, 1996, 35: 74-77
    18. Nakamura S, Senoh M, Nagahama S et al. CW operation ofliGaN MQW structure LDs at 233K. [J]. Appl Phys. Lett, 1996, 69: 3034-3038
    19. Nakamura S, Senoh M, Nagahamaset S et al. Ridge-geometry InGaN MQWstructure LD??[J]. Appl Phys. Lett, 1996, 69: 1477
    20. AMANO H, KITO M. P-type conduction in Mg-doped GaN treated with low-energy eleotron beam irradiation(LEEBI) [J]. Jpn J Appl phys, 1989, 28 (12): 2112—2114
    21. Johnson W C, Parsons J B, Crew M C. Nitrogen compounds of Gallium [J].. J Phys Chem, 1932, 36: 2588-2591
    22. Maruska H P, Tietjen J. The preraration and prorerties of vapor—deposited single—crystlt-line GaN [J]. Appl Phys. Lett, 1969, 15: 327-331
    23.刘亦安,薛成山,庄惠照等.GaN基短波光电器件的研究进展[J].纳米器件与技术 2005,8:350-357
    24. Nakamura S, Senoh M, Nagahama Set al. Room-temperature C W operation of InGaNMQW structureLDs [J-]. Appl Phys. Lett, 1996, 69: 4056-4060
    25. Nakamura S, Senoh M, Nagahama S et al. RT CW operation of InGaN MQW structure LDs with a lifetime of 27 hours [J]. Appl Phys. Lett 1997, 70: 1417-1421
    26. Nakamuras, Senoh M, Nagahama S et al. InGaN/GaN/AIGaN-based LDs with modulation-doped strained-lager super lattices grown on an epitaxilly overgrown GaN substrate [J]. Appl Phys. Lett 1998, 72: 211-214
    27. Nakamura S, Senoh M, Nagahama S et al. InGaN/GaN/AIGaN-based LDs with modulation-doped strained-layer super lattices. Jpn. [J]. J. Appl. Phys. Lett, 1997, 36: L1568—1572
    28. Amano H, Kito M, Hiramatsu K, et al. P-tyPe conduction in Mg-doped CaN treated with low electron beam irradiation(LEEBI) [J].. Jpn JAppl Phys, 1989, 28(12): L2112
    29. Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on P-type Mg-doped GaN film [J]. Jpn J Appl Phys 1992, 31: L139.
    30. Nakamura S. High-power InGaN-based blue laser diodes with a long life time [J]. J Crystal Growth, 1998, 195: 242-247
    31.莫春兰,李鹏,王立等.气流混合对生长GaN:Si膜性能影响的研究[J].光学学报 2002,2,22(2):181-184
    32.牛萍娟,陈乃金,李养贤等.GaN基光电子材料及器件的研究[J].微纳电子技术 2004,12:13-16
    33. AMANO H, SAWAKI N, AKASAKI I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using anAIN, buffer layers [J]. Appl Phy, Lett, 1986, 48: 353-357
    34. Nakamura S, Senoh M, Iwasa Net al. High-brightness lnGaN blue, green, and yellow light-emitting diodes with quantum well structures [ J ]. JpnAppl Phys, 1995, 34 (2): 797-799
    35. Nakamura S, Mukai T, Senoh M. High power GaN p-n junction Blue-Emitting Diodes [J]. Jpn JApplPhys1991, 30(12A): L1998-L2001
    36. Nakamura S, Mukai T, Senoh M. Candela-class hight-brightness InGaN/AIGaN double-heterostructure blue-ligh-emitting diodes [J]. Appl Phys Lett, 1994, 64(13): 1687.
    37. Nakamura S, Mukai T. Hight-brightness InGaN/AIGaN double-heterostructure Blue-Green Light-Emitting Diodes [J]. JApplPhys, 1994, 76(12): 8189-8192
    38. Yang J W, Lunev A, Simin G, et al. Selective area deposited blue GaN-InGaN multiple-quantum" well light emitting diodes over silicon substrates. [J]. Appl Phys Lett, 2000, 76(3): 273-27539.梁春广.GaN第三代半导体的曙光[J].新材料产业2000,(5):31-35
    40.王占国.半导体材料研究的新进展[J].半导体技术2002,27(3):8-12
    41. B, SHen, Y G Zhou, Z Z Chen et al. Growth of wurtzite GaN films on Al_2O_3 substrates using light-radiation heating metal-organic chemical vapor deposition [J]. Appl Phys A1999, 68: 593-596
    42.龚海梅,李向阳,亢勇等.Ⅲ族氮化物紫外探测器及其研究进展[J].激光与红外2005,30(11):812—516
    43. Krost A, Dadgar A. GaN based optoelectronics on Silicon SubstrateS [J]. Mater Science B, 2002, 93: 77-84
    44.江风益,熊传兵,彭学新等.新型紫外光源研制成功[J].材料导报2001,2(15)2:30-31
    45. Heinke H, Kirchner V, Einfeldt S, et al. X-ray diffraction analysis of the defect structure in epitaxial GaN [J]. Appl Phys Lett, 2000, 77(14): 2145-2147
    46. Min Lu, Zilan Li, Zhijian Yang, et al. The Characteristic of Threading Dislocation in Different Structures GaN Films Grown by MOCVD [J]. Acta optica sinica 2003, 10 (23): 861-862
    47. X H Wu, L M Brown, D Kapolned et al. Defect structure of MOCVD Growth Epitaxial (0001) GaN/Al_2O_3 [J]. ChinElectrMicroscSoc 1997, 16 (4): 363-366
    48.李述体,江风益,范广涵等.MOCVD生长GaN的表面形貌及缺陷研究[J].华南师范大学学报(自然科学版)2004,2:63-66
    49. Achim Trampert, Oliver Brandt, Klaus H Ploog. Phase transformations and Phase stability in Epitaxial β-GaN Films [J]. Angew Chem Int Ed Engl, 1997, 36(19): 2111-2112
    50.吴刚.材料结构表征及应用.北京:化学工业出版社,2001
    51. Gichler M, Ramsteriner M, Brandt O, et al. Optical phoNons of hexagonal and cubic GaN studied by infrared transmission and Raman spectroscopy [J]. Appl Phys Leet, 1999, 67(6): 733-715
    52. Sun XL, Yang H, Zheng L X, et al . Stability investigation of cubic GaN films grown by MOCVD on GaAs(100) [J]. Appl phys Lett 1999, 74(19): 2827-2829
    53. UmeNol M, Egawa T, lshikawa H. GaN-based optoelectronic devices on sapphire and Si substrates [J]. Materials Science in Semiconductor Processing, 2001, 4(6): 459-466
    54. XH Wu, L M Brown, DKapolnedetal. Defect structure of MOCVD Growth Epitaxial (0001) GaN/Al_2O_3 [J]. ChinElectrMicroscSoc 1997, 16 (4): 363-366
    55.王立,李述体,江风益.GaN基发光材料[J].化学教育2001,10-3-6
    56.徐军,周圣明,杨卫桥等.InN和GaN系衬底材料的研究和发展[J].中国有色金属学报2004,14(1):386—390
    57.许顺生.X射线衍射学进展 北京:科学出版社,1986
    58.李述体,江风益,范广涵等.MOCVD生长GaN的表面形貌及缺陷研究[J].华南师范大学学报(自然科学版)2004,2:63-66
    59. Mai Z H. X-ray diffraction analysis of Sil-xGex/Si supper lattices [J]. Appl Phys, 1992, 72: 3474-3479
    60.吴自勤,王兵.薄膜生长北京:科学出版社,2001
    61.渠波,郑新和,王玉田,等.计入衍射儿何因子和多重性因子的立方GaN相含量的测定.[J].中国科学(A辑),2001,31(2):146-152
    62. Moret M, Ruttenach-clur S, More and N, et al. MOCVD growth of cubic gallium nitride:??effect of V/111 ratio [J]. Phys Stat Sol(a), 1999, 176: 493-496
    63. Domagala J Z, Zytkiewicz Z R, Beaumount B et al . X-ray diffraction studies of epitaxial laterally overgrown (EIOG) GaN layers on sapphire substrates [J]. Journal of Crystal Growth 2002, 245: 37-49
    64. Zhang B, Egawa T, Ishikawa H, et al. InGaN multiple-quantum well light emitting diodes on Si(111)substrates [J]. Phys Stat Sol (a), 2001, 1 (88): 151-157
    65.段猛,郝跃.GaN基蓝色LED的研究进展[J].西安电子科技大学学报(自然科学版)2003,1(30):60-65
    66. Ide T, Shimizu M, Shen X Q, et al. Improvement of film quality using si-doping in AIGaN/GaN heterostructure grown by plasma-assisted [J]. J. Crystal Growth 2002, 245: 15-20
    67. Gay R, HirschPB, KellyA. [J]. ActaMetall. 1953, Ⅰ: 315-319.
    68. Srikant V, Speck J S, Clarke D R. Mosaic structure in epitaxial thin films having large lattice mismatch [J]. J. Appl. Phys. 1997, 82 (9): 4286-4295
    69. Chaudhuri J, Cheng X, Yuan C et al. Highly perfect thin films of SiC: x-ray double crystal diffractometry and x-ray double crystal topographic study [J]. Thin Solid films 1998, 67: 245-250
    70. Sun Yue jun, Oliver Brandt, Liu Tian yu, et al. Determination of the azimuthal orientational spread of GaN films by x-ray diffraction [J]. Appl. Phys Lett. 2002, 81(26): 4928-4930
    71. Metzger T, Hopler R, Born E. Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis x-ray diffractometry [J]. Philosophical MagazineA, 1998,77(4): 1013-1025
    72. Zheng X H, Chen H, Yan Z B, et al. Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution x-ray diffraction [J]. Journal of Crystal Growth 2003, 255: 63-67
    73.莫春兰 彭学新 熊传兵 等 使用 TEGa和TMGa为镓源MOCVD生长GaN的研究[J].发光学报2001,3,22(1):75-79
    74.李述体 江风益 彭学新等,MOCVD生长的InGaN薄膜的离子束背散射沟道及其光致发光,[J].半导体学报2001,5,22(5):604-608
    75.李述体,莫春兰,李鹏 等掺Si对MOCVD生长的GaN单晶膜的黄带发射及生长速率的影响[J].功能材料与器件学报2000,12,6(4):385-387
    76. Qin Z X, NagaNo H, Sugure H, et al . High-resolution X-ray diffraction analysis of cubic GaN grown on (001)GaN by RF-radical source molecular beam epitaxy [J]. J Crys Growth, 1998, 189: 425-429
    77. HeyingB, Wu X H, Keller S, et al. Role of threading dislocation structure on the X-ray dittraction peak widths in epitaxial GaN films [J]. Appl. Phys. Lett., 1996, 68(5): 643-645
    78. Keunjoo kim, Choon bae park. The effect of geometreical misfit dislocation on formation of microstructure and photoluminescence of Wurtzite GaN/Al_2O_3(0001)films grown by low pressure meta-organic chemical vapor deposition [J]. Thin solid films 1998, 330: 139-145
    79.陈诺夫,修慧欣,杨君玲,等.用X射线双晶衍射方法测定GaMnAs组分[J].科学通报,2001,46(24):2035-2037
    80. Motet M, Ruttenach clur S, Moreaud N, et al. MOCVD growth of cubic GaN gallium nitride: effect of Ⅴ/Ⅲ ratio [J]. Phys Star Sol (a), 1999, 176: 493-49681. Balakrishnan K, Feuillet G, Ohta K, et al. Structural ananlysis of cubic GaN through X-ray pole figure generation [J]. Jpn J Appl phys, 1997, 36(10): 6221-6225
    82. Thornton J, Hoffrnan D W. Stress-related effects in thin films [J]. Thin Solid Films, 1989, 171: 5-10
    83. Gladyszewski G, Labat S, Gergaud P, et al. Strcture characterization of metallic multilayers by symmetric and asymmetric X-ray diffraction [J]. Thin solid Films 1998, 319: 78-80
    84. BondW. Acta. Crystallogr. 1960, 13, 841
    85. MFatemi, JChaudhuri, JMittereder. [J]. J. Appl. Phys, 1993, 73: 1154-1160
    86. Wu X H, Fini P, Tarsa E J, et al. Dislocation generation in GaN heterocpitaxy [J]. J Cryst. Growth, 1998, 189/190: 231-243
    87. Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes [J]. Science, 1998, 281, 956-960
    88. VookRW, in: Matthews J W(Ed). Epitaxial Growth [M].NewYork: Academic, 1975, 339
    89. Hofmann D M, Kovalev D, Stende G, et al. Properies of the yellow luminescence in undoped GaN epitaxial layers [J]. Phys Rev, 1995, B52: 16702-16706
    90. Chaudhuri J, Thokala R, Edgar J H, et al. X-ray double crystal and X-ray topographic characterization of silicon carbide thin films on silicon, titanium carbide, 6H-silicon carbide, and aluminum nitride/sapphire substrates [J]. Thin Solid Films 1996, 274: 23-30
    91. Zheng X H, ChenH, Yan Z B, et al. Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution x-ray diffraction [J]. Journal of Crystal Growth 2003, 255: 63-67
    92. Gay R, HirschPB, Kelly A. [J]. ActaMetall. 1953, Ⅰ: 315-319.
    93. Srikant V, Speck J S, Clarke D R. Mosaic structure in epitaxial thin films having large lattice mismatch [J]. J. Appl. Phys. 1997, 82 (9): 4286-4295
    94.姜晓明,贾全杰,郑文莉,等.同步辐射X射线掠入射衍射实验技术及应用[J].高能物理与核物理,2000,24(12):1185-1190
    95. Chaudhuri J, Cheng X, Yuan C et al. Highly perfect thin films of SiC: X-ray double crystal topographic study [J]. Thin solid Films 1997, 292: 1-6
    96. Vickers M E, kappers M J. Smeeton T M Determination of the indium content and layer thicknesses in InGaN/GaN quantum wells by x-ray scattering [J]. Journal of applied physics 2003, 8, 94(3): 1565-1674
    97. OgiNo T, Aoki M. Mechanism of yellow luminescence in GaN [J]. Jpn Appl Phys, 1980, 19: 2395-2405
    98. Chert Y, Bagnall D M, Koh H J, et al. Plasma assisted molecular beam epitaxy of GaN on c-plane sapphire: Growth and characterization [J]. J Appl Phys, 1998, 84(7): 3912

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700