聚酰亚胺—无机物杂化节能玻璃贴膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用节能玻璃贴膜对既有建筑进行改造,是目前我国建筑领域节能降耗所采用的主要措施之一。发达国家玻璃贴膜的市场普及率通常在75%以上,而我国仅在北京、上海、广州等城市的部分建筑中推广使用,普及率极低,市场还被国外品牌如美国3M、CPF(龙膜)等垄断。本论文旨在开发一种具有自主知识产权的有机-无机杂化薄膜材料,将其应用玻璃贴膜领域,发挥节能作用。
     本文选用具有良好光学性能、热稳定性能的聚酰亚胺(PI)为薄膜的有机相主体,掺杂SiO2、ZnO、Al2O3等无机组分,经热亚胺化制备出PI/SiO2、PI/ZnO、PI/Al2O3杂化薄膜材料。以紫外-可见光透过率为标准,筛选出SiO2为性能最佳的无机相掺杂物。实验结果表明:影响聚酰胺酸(PAA)溶胶粘度的因素包括反应温度、单体摩尔比、陈化时间等,镀膜质量最佳的粘度范围为85~122mPa·s,溶胶体系陈化24h后粘度趋于稳定。影响PI/SiO2杂化薄膜透光率的主要因素为Si02添加量、单体摩尔比、偶联剂加入量。优化的PI/SiO2杂化薄膜制备工艺参数为Si02添加量5%,单体摩尔比(ODA:PMDA)0.95:1,偶联剂添加量为1:25。
     PI/SiO2杂化薄膜的透光性、隔热性、热稳定性、微观形貌及其结构分析结果表明:PI/SiO2杂化玻璃贴膜在可见光区、紫外光区的平均透光率分别为85.6%、12.9%;镀有PI/SiO2杂化薄膜的玻璃片所在的暗室,比未镀膜玻璃片所在暗室温度低3.5℃,采用GB/T2680-94中的方法,对窗墙比为0.22的建筑进行预测,使用镀膜玻璃后遮阳系数降低,总传热系数减小,传入室内的热量由34.67w/m2降至23.60 w/m2;掺杂Si02后杂化薄膜的热稳定性比纯PI提高,失重5%的温度由520℃提高到544℃;无机相在有机相中分散均匀,两相间结合紧密,过渡自然;热亚胺化处理后,形成了酰亚胺环状结构,初步分析认为偶联剂γ-氨丙基三乙氧基硅烷以氢键结构连接在无机相和有机相之间。
The energy saving reconstruction of existing buildings is an important measure in our country. In which energy-saving films were pated on the window glasses. In developed countries, the popularization rate of energy-saving films is more than 75%. However, the films are only used in Beijing, Shanghai, Guangzhou and other major cities in our nation, as well as the market is monopolized by the foreign brands, such as the United states 3M, CPF (Long membrane) and other monopolistic brands. In this dissertation, the author aims to develop an organic-inorganic hybrid materials with independent intellectual property. With a view to the application of this hybrid materials in the film posting field, playing an important role in energy conservation.
     In this dissertation, the polyimide materials was selected for the organic main phase of the films, owing to its excellent optical properties and thermal stability properties. The hybrid sol was prepared by doping inorganic components such as SiO2, ZnO, Al2O3 to the organic phases. After the thermal imidization, the polyimide/SiO2, polyimide/ZnO, polyimide/Al2O3 were obtained. As a standard of uv-visible light transmittance, SiO2 was chosen as the optimal inorganic phase dopants. The effect of PAA sol viscosity factors include reaction temperature, monomer molar ratio and aging time.The viscosity of best coating quality was at the range of 85~122mPa·s, and the sol systems was stabilized after aging 24h.The effect of the light transmission rate factors were:the addition amount of SiO2, monomer molar ratio and the addition amount of coupling agent. The optimization process of PI/SiO2 hybrid films preparation was:the addition amount of SiO2 5%, the monomer molar ratio (ODA:PMDA) 0.95:1, coupling agent addition amount 1:25.
     The analysis for the transmittance of PI/SiO2 hybrid films, insulation, thermal stability, microstructure and structural showed that:the average light transmission rate of PI/SiO2 hybrid films in the visible district and ultraviolet district, was 85.6% and 12.9%.Compared with the darkroom without coating glass, the temperature of darkroom whose glass coated PI/SiO2 hybrid films was lower 3.5℃. According to technique of GB/T2680-94,as an example of a building whose window-wall ratio was 0.22, pasted films, its shading coefficient and total heat transfer coefficient decreased. The incoming heat was reduced from 34.67w/m2 to 23.60 w/m2.The thermal stability of PI was improved after doped SiO2, compared with PI, the PI/SiO2 temperature of loss 5% weight raised from 520℃to 544℃.The inorganic phase uniformly dispersed in the organic phase, two phases are linked closely. Preliminary analysis showed that:Imide ring structure was formed by thermal imidization treatment, the coupling agentγ-aminopropyl triethoxysilane connection between the inorganic phase and organic phase by hydrogen bond structure.
引文
[1]余丽蓉,陆春华,高树军等.隔热功能涂料的研究与发展趋势[J].材料导报,2006,20(10):52~56.
    [2]姚晨,赵石林,缪国元.纳米透明隔热涂料的特性与应用[J].涂料工业,2007,37(1):29~32.
    [3]Deubener J, Helsch G, Moiseev A,et al. Glasses for solar energy conversion systems[J]. Journal of the European Ceramic Society,2009,29(7):1203-1210.
    [4]W. Cheng, R. Sainidou, P. Burgardt N S,et al. Elastic Properties and Glass Transition of Supported Polymer Thin Films[J]. Macromolecules,2007,40(20):7283-7290.
    [5]张炜,陆晓唯,高爱华等.具有红外反射膜的节能卤素灯[J].光子学报,2007,36(9):1598~1601.
    [6]赵文娟,俞小英.玻璃贴膜在工程中的实际应用[J].硅谷,2008,(05):41.
    [7]龙文志.上海金茂大厦玻璃幕墙节能探讨[J].中国建筑金属结构,2007,(06):20~25.
    [8]Hinnells M. Technologies to achieve demand reduction and microgeneration in buildings[J]. Energy Policy,2008,36(12):4427-4433.
    [9]Hong T. A close look at the china design standard for energy[J]. Energy and Buildings,2008,41(4): 1-26.
    [10]宗晟,邹春香.我国建筑节能现状及其发展[J].东南大学学报(哲学社会科学版),2006,8(2):155~157.
    [11]王志伟.“辉腾”目标:降低建筑能耗——“2007年中国建筑节能发展高峰会议暨第二届辉腾玻璃贴膜高新节能技术应用推广研讨会”在京召开[J].中国建材,2007,(10):70.
    [12]陈燕冰.公共建筑玻璃窗的节能及应用实例[J].建筑施工,2007,29(5):356~357.
    [1 3]王健华.建筑节能新宠儿——节能玻璃隔热膜[J].宁波节能,2008,55(3):23.
    [14]陈国新.纳米UV屏蔽透明涂料的制备及性能研究[D].南京工业大学;,2003.
    [15]Chi-Feng Cheng, Hsu-Hsuan Cheng, Po-Wen Cheng,et al. Effect of Reactive Channel Functional Groups and Nanoporosity of Nanoscale Mesoporous Silica on Properties of Polyimide Composite[J]. Macromolecules,2006,39(22):7583-7590.
    [16]刘冰,强亮生.溶胶-凝胶法制备光学杂化功能材料[J].化学进展,2005,17(1):85~90.
    [17]Nathanael Guigo, Mija A, Zavaglia R,et al. New insights on the thermal degradation pathways of neat poly(furfuryl alcohol) and poly(furfuryl alcohol)/SiO2 hybrid materials[J]. Polymer Degradation
    and Stability,2009,94:908-913.
    [18]李传峰,邵怀启,钟顺和.有机无机杂化膜材料的制备技术[J].化学进展,2004,16(1):83~89.
    [19]张秋根,周国波,刘庆林.有机-无机杂化分离膜研究进展[J].高分子通报,2006,(11):52~57.
    [20]杨辉,缪亚美,丁新更.溶胶-凝胶法制备功能薄膜材料的研究及展望[J].稀有金属材料与工程,2004,33(3):208~213.
    [21]LIN J, YU M, PANG M,et al. State of the Art:Luminescent Films Prepared by Sol-gel ProcessfJ]. CHINESE JOURNAI, OF LUMINESCENCE,2001,22(4):373-383.
    [22]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002:16~18.
    [23]李晨松,徐廷献.无机薄膜的制备技术[J].硅酸盐通报,2003,22(2):21~25.
    [24]张浴晖,齐宏进.射频磁控溅射法制备FC/ZnO杂化材料及其基本性质[J].化工学报,2008,59(6):1584~1589.
    [25]Liu H, Qiu H, Chen X,et al. Structural and physical properties of ZnO:Al films grown on glass by direct current magnetron sputtering with the oblique target[J]. Current Applied Physics,2009,9(6): 1217-1222.
    [26]张永进,赵石林.聚氨酯纳米ATO透明隔热涂料的研制[J].化学建材,2004,20(6):18~19.
    [27]马承银,李延升.反射近红外辐射涂料的研究[J].材料导报,2004,18(4):27~29.
    [28]苏广均.李建华.纳米TiO2-V2O5复合聚苯胺导电高分子材料的制备[J].南通大学学报:自然科学版,2005,4(2):21-22.
    [29]Lai Kwan Chau, Porter A M D. Optical sensor for calcium_performance, structure, and reactivity of calcichrome immobilized at an anionic polymer film[J]. Anal. Chem.,1990,62(18):1964-1971.
    [30]李建梅,蔡超,薛敏钊等.全氟磺酸树脂/二氧化钛杂化薄膜的制备与表征[J].中国科学B辑化学,2006,36(3):244~248.
    [31]肖维兵,林金辉,万涛等.有机硅改性丙烯酸环氧树脂的透光性及其耐候性研究[J].广东微量元素科学,2006,13(12):57~60.
    [32]张雯,张露,等.国外聚酰亚胺薄膜概况及其应用进展[J].绝缘材料,2001,34(2):21~23.
    [33]宋晓峰.聚酰亚胺的研究与进展[J].纤维复合材料,2007,(03):33~37.
    [34]衷敬和,张明艳,姜其斌等.杂化聚酰亚胺薄膜耐电晕性能的研究[J].工程塑料应用,2005,33(9):13~15.
    [35]刘金刚,张秀敏,李卓等.砜基取代高折射率高透明性聚酰亚胺的合成与性能[J].功能材料,
    2008,39(3):460~464.
    [36]王茂功,刘勤华,钟顺和等.聚酰亚胺/Si02杂化膜的制备、表征和气体渗透性能[J].化学通报,2007,70(3):201~206.
    [37]张俊彦,刘维民.分子结构对聚酰亚胺膜分离CO2/CH4性能的影响[J].高分子学报,1999,(02):227~231.
    [38]李福成.聚酰亚胺/无机纳米复合材料的制备、结构与性能[J].工程塑料应用,2006,34(4):68~71.
    [39]钱伯章.聚酰亚胺国内外发展分析[J].国外塑料,2008,26(11):40~43.
    [40]汪称意,李光,江建明等.聚酰亚胺研究新进展[J].化学进展,2009,21(01):174~181.
    [41]Zhang Q, Naito K, Tanaka Y,et al. Grafting Polyimides from Nanodiamonds[J]. Macromolecules, 2008,41(3):536-538.
    [42]Yuen S, Ma C, Chiang C,et al. Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite [J]. Journal of Polymer Science. Part A, Polymer Chemistry,2007,45(15):3349-3358.
    [43]TYAN H, WEI K, HSIEH T. Mechanical Properties of Clay-Polyimide (BTDA-ODA)Mechanical Properties of Clay-Polyimide (BTDA-ODA)Nanocomposites via ODA-Modified Organoclay[J]. Journal of Polymer Science:Part B:Polymer Physics,2000,38:2873-2878.
    [44]孙自淑,马家举,江棂.光敏聚酰亚胺的发展现状[J].化工新型材料,2005,33(10):17~20.
    [45]丁丽琴,王维,张爱清.含戊二烯酮结构新型光敏聚酰亚胺的合成与表征[J].高分子材料科学与工程,2008,24(3):48~51.
    [46]李元勋,唐先忠,胡文成.结构型光敏聚酰亚胺的制备及研究[J].功能材料,2005,36(1):107~108.
    [47]程茹,朱梦冰,黄培.热和化学亚胺化对ODPA/ODA聚酰亚胺薄膜性能的影响[J].材料工程,2007,(07):51~54.
    [48]李丽慧,黄承亚.均苯型聚酰亚胺的合成与性能研究[J].合成材料老化与应用,2006,35(4):21~24.
    [49]张春红,张志谦,曹海琳等.聚酰亚胺/纳米Si02杂化膜的制备和表征[J].材料科学与工艺,2006,14(6):642~645.
    [50]梁冰,刘立柱,王伟等.溶胶-凝胶法制备无机纳米杂化聚酰亚胺薄膜[J].哈尔滨理工大学学报,
    2005,10(2):133~135.
    [51]陈国新,赵石林.溶剂型纳米紫外屏蔽透明涂料[J].化学建材,2003,19(6):7~10.
    [52]张智强,胡凌,谌红.外墙隔热涂料的制备及隔热性能测试[J].重庆建筑大学学报,2008,30(02):132~134.
    [53]刘忠伟.建筑门窗热工性能计算方法[J].中国建材科技,2004,13(1):24~31.
    [54]JGJ75-2003.夏热冬暖地区居住建筑节能设计标准[S].北京:中华人民共和国建设部.2003.
    [55]JGJ 113—2003.建筑玻璃应用技术规程[S].北京:中华人民共和国建设部.2003.
    [56]禹坤,于先进.纳米SiO2-Al2O3聚酰亚胺杂化薄膜的制备及表征[J].山东理工大学学报(自然科学版),2006,20(4):74~77.
    [57]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社,2001:79~92.
    [58]柯以侃,董慧茹.分析化学手册第三分册[M].北京:化学工业出版社,1998:928-1075.
    [59]胡志刚.Fe、Ni共掺杂ZnO薄膜的制备和性质研究[D].成都:四川师范大学,2009.6-7.
    [60]Lee J, Park B. Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method[J]. Thin Solid Films,2003,426(2):94-99.
    [61]Somwangthanaroj A, Suwanchatchai K, Ando S,et al. Effect of zinc precursor on thermal and light emission properties of ZnO nanoparticles embedded in polyimide films[J]. Materials Chemistry and Physics,2009,114(2-3):751-755.
    [62]李娟.纳米铝盐水解物杂化聚酰亚胺薄膜的结构与性能研究[D].哈尔滨:哈尔滨理工大学,2008.9-12.
    [63]周宏,范勇,王晓琳等.γ-Al2O3/聚酰亚胺纳米复合薄膜的制备与表征[J].硅酸盐学报,2009,37(06):932~936.
    [64]陈昊,刘俊,何明鹏等.纳米氧化铝改性聚酰亚胺薄膜的制备与表征[J].哈尔滨理工大学学报,2009,14(2):90~94.
    [65]杨艺.两种不同边界处理方式的墙体传热模型比较[J].南昌工程学院学报,2008,27(1):10~15.
    [66]王斌,张樱子.西安地区办公建筑南窗水平遮阳研究[J].建筑节能,2009,38(04):27~29.
    [67]Antonopoulos K A, Koronaki E P. On the dynamic thermal behaviour of indoor spaces[J]. Applied Thermal Engineering,2001,21(9):929-940.
    [68]陈卓伦,孟庆林,赵立华.几种建筑玻璃热工性能的实验与分析[J].广东建材,2005,:8~11.
    [69]Al-Hazmy M M. Analysis of coupled natural convection-conduction effects on the heat transport through hollow building blocks[J]. Energy and Buildings,2006,38(5):515-521.
    [70]陆晓唯,陆镝莱,陈江丽等.具有红外反射膜的节能白炽灯[J].中国照明电器,2006,(5):19~21.
    [71]李海瑞.聚酰亚胺膜的硅杂化改性及其渗透汽化性能[D].西北大学,2008.58~64.
    [72]Mori H, Miyamura Y, Endo T. Synthesis and characterization of water-soluble SiO1.5/TiO2 hybrid nanoparticles by hydrolytic co-condensation of triethoxysilane containing hydroxyl groups[J]. Materials Chemistry and Physics,2009,115(1):287-2009.6-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700