新型固态限流器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子器件电压等级和容量的不断增加,基于电力电子器件的固态限流器在电力系统中具有日益广泛的应用前景,而其中新型固态限流器以正常运行时对系统影响小、短路故障时无延时插入限流、无电压电流振荡冲击、以及桥路所承受电压等级较低等优点得到国内外研究的广泛关注。本文在对新型固态限流器已有的研究基础上,进一步对其关键技术做了深入研究,主要包括以下内容:
     提出了新型固态限流器中饱和型耦合变压器的设计方法。首先分析了饱和型耦合变压器的三种运行工况,并建立了在每一工况下的等效电路,在此基础上提出了饱和型耦合变压器的设计目标:在满足系统限流要求的前提下使正常运行时漏抗及故障限流时的副边电压尽量达到最小值。其次,论文针对此设计目标,得出了饱和型耦合变压器的详细设计步骤:1)确定变压器原副边变比及导线截面积;2)在空心电抗器设计的基础上,运用场路耦合的有限元法,得出满足限流要求的饱和型耦合变压器的一系列匝数与芯柱半径组合;3)进一步得出饱和型耦合变压器正常运行(副边等效短接)时的漏抗压降及故障限流(副边等效开路)时副边电压随心柱半径的变化规律,并通过曲线拟合寻优,得到最佳设计。最后通过一款应用于100V/1A系统的小样机试验与仿真结果进行对比,验证了以上设计方法的合理性。
     根据三相饱和变压器耦合固态限流器工作原理,建立了三相饱和变压器器等效磁路和限流器等效电路,并根据磁路和电路基本定律,结合铁芯分段线性磁化曲线,用解析法推导了三相饱和变压器耦合固态限流器工作过程。然后,在Ansoft/Maxwell软件及Anosft/Simplorer软件中分别建立了三相饱和变压器的三维有限元模型及限流器主电路模型,通过以上两款软件联合,采用场路耦合的三维有限元仿真,在对三相饱和变压器内部磁场分析的基础上,全面研究了限流器的工作过程,并重点对故障限流阶段三相饱和变原副边相电压间关系、原副边线电压间关系以及副边相电压及线电压间关系做了对比分析。最后为研究该限流器在多机系统中的限流效果,论文利用以上有限元仿真结果,获得了该限流器的非线性电感模型,并将该模型应用于3机12节点系统中进行了仿真研究。通过上述理论与仿真研究,得出该限流器的以下重要特性:正常运行时电压损耗很小,对系统影响可忽略,故障发生时可无延时自动插入限流,在故障限流阶段三相饱和变压器副边相电压及线电压远低于对应的原边相电压及线电压,且副边线电压峰值与相电压峰值之比远小于(?)3倍,这对于减小副边桥路的电压等级、直流电感及整套装置体积与成本具有重要意义。
     提出了适用于高压系统的自耦变压器耦合固态限流器的两类拓扑结构——双绕组自耦变压器耦合固态限流器以及三绕组自耦变压器耦合固态限流器,同时为了加速故障限流时桥路关断时间并减小直流电感,在以上拓扑结构中引入了带复合开关的全控桥路拓扑结构。之后论文采用解析法研究了以上两类限流器的工作原理,同时将全控桥路拓扑与常规桥路拓扑进行了对比研究,以证明全控桥路拓扑的优势所在。根据上述理论,设计了应用于220kV/1.5kA系统的双绕组及三绕组自耦变压器耦合固态限流器,采用了Matlab/Simulink软件分别仿真了双绕组和三绕组自耦变压器耦合固态限流器工作过程,并通过对比得出以上两款限流器的各自特点;为了进一步研究作为核心限流器件的自耦变压器,论文在Anosft/Maxwell中建立了其有限元模型,并与Ansoft/Simplorer中所建立的限流器主电路仿真模型联合,分析了应用于220kV/1.5kA系统的双绕组及三绕组自耦变压器在各个工作阶段的磁场分布特性,并在磁场分析的基础上,采用场路耦合的有限元法,得出了限流器的工作特性。最后通过小样机模型试验与仿真结果对比,验证了方案的合理性。
     为了解决FACTS装置在系统发生故障时的保护问题,研究了新型固态限流器在FACTS装置保护中的应用,提出了具有短路限流功能的FACTS装置的单相和三相拓扑结构,其中包括带饱和型串联变压器及故障旁路模块的拓扑结构。在建立装置在故障限流时副边等效电路的基础上,推导了故障时副边电感电流及电容电压的变化规律,并给出了其中关键参数的设计依据。然后以应用于1OkV/1kA系统的三相拓扑为例,通过仿真研究了其中限流器模块对FACTS装置的过压过流保护作用,其中包括对拓扑中串联变压器分别采用常规变压器和饱和变压器两种方案进行对比研究,以突出饱和变压器在故障保护中的优势;同时也对拓扑中引入故障旁路模块的方案进行了仿真,验证了该模块在抑制故障时FACTS装置中电容电压上升的重要作用。最后通过380V/3kVA限流式UPFC小样机试验,验证了方案的合理。
With the increase of the voltage level and capacity of the power electronic devices, the solid state fault current limiters based on the power electronic devices have more and more extensive application prospect, of which the novel solid state fault current limiters (SSFCL) with the following advantages:negligible impact on the power system during the normal operating state, automatic response to limiting the fault current without time delay and without voltage and current oscillation and strike upon the fault inception, has been paid extensive attention in the field of the investigation of the fault current limiting technology both at home and abroad. Based on the achievements in the past, the key technologies of the SSFCL have been focused and studied in this paper, including:
     The design methodology of the saturated coupling transformer (SCT) in the novel SSFCL is proposed. Firstly, the three operating stages are analyzed, and the equivalent circuit is setup during each stage, based on which, the main objective of the design of the SCT is obtained, which is to reduce the leakage inductance during the normal operation stage(the secondary winding is equivalent to be short-circuited) and the secondary voltage of the SCT during the fault current limiting stage (the secondary winding is equivalent to be open-circuited)as soon as possible on the premise of the satisfying the requirement of the fault current limiting. Secondly, to achieve the design objective, the detailed design steps of the SCT are given:1) choose the turns ratio between the primary and secondary windings and the cross section of the wire of the SCT;2) based on the parameters obtained from the design of the air-core transformer, a series of the combinations of the parameters of the turns of the winding and the radius of the steel core of the SCT are obtained, by applying the field-circuit coupling FEA method;3) in addition, the change law of the leakage reactance voltage drop in the normal state and the secondary voltage of the SCT in the fault current limiting state with the core radius is achieved, and the optimal result is obtained by curve fitting and optimization. Lastly, the validity of the design methodology proposed is verified by the comparison between the results of the simulation and the experiment of the small-scaled prototype employed in the100V/1A system.
     Based on the operating principles of the three-phase saturated transformer coupling SSFCL, the equivalent magnetic and electrical circuits are obtained, and the working process of the SSFCL is analyzed applying the fundamental magnetic and electrical circuits principles combined with the subsection linear magnetization curve. Then the3-D FEA model of the three-phase saturated transformer and the topology model of the SSFCL are built up in the Anosft/Maxwell and the Ansoft/Simplorer software respectively. Applying the field-circuit coupling FEA method, and combining the two software packages above, the magnetic field inside the three-phase saturated transformer and the whole working process of the SSFCL is studied, during which, the emphasis is paid on the research of the relationships between the primary and secondary phase voltages, the primary and secondary line voltages, and the secondary phase and line voltages of three-phase saturated transformer during the fault current stage. Lastly, in order to research the fault current limiting effect of the SSFCL in the ulti-machine power system, employing the results of the FEA simulation achieved above, the nonlinear inductance model of the SSFCL is obtained, which is simulated in the3-machine12-node system. The analysis and simulation results show that the novel SSFCL has the following advantages:negligible impact on the power system during the normal operating stage, automatic response to the short-circuit fault, and during the fault current limiting stage the secondary phase and line voltages are far less than the values of the primary winding, further more, the ratio of peak values of the secondary line and phase voltage is far less than√3, which are of great significance to the reduction of the bridge voltage level, the DC reac , as well as the volume and cost of the whole equipment.
     Two topologies of the novel autotransformer coupling SSFCL employed in the high voltage level power system—two-winding and three-winding autotransformer coupling SSFCL(ATCSSFCL) are proposed, meanwhile, the fully controlled bridge topology with the combination switch is introduced to speed up the shutting off of the bridge and reduce the DC inductance. Then the operating principles of the two schemes of the ATCSSFCL are analyzed, in addition, both of the conventional and the novel bridge topologies are comparative studied, highlighting the advantages of the novel fully controlled bridge topology. According to the principles proposed above, the schemes of the two-winding and three-winding ATCSSFCL employed in the220kV/1.5kA system are designed, which are simulated in the environment of the Matlab/Simulink, and the respective characteristics of the two schemes are obtained by the comparative analysis of the simulation results. In order to research the autotransformer as the key fault current limiting device, its FEA model is set up in the environment of the Anosft/Maxwell, utilized to analyze the magnetic field distribution of the autotransformer employed in the220kV/1.5kA system during each operating stage combined with the circuit model built in the Ansoft/Simplorer software, based on which, the whole performance of the ATCSSFCL is obtained employing the field-circuit FEA method. Lastly, the feasibility of the proposed schemes are verified by the comparison between the results of simulation and experiment of the small-scaled prototype.
     To solve the problem of the protection for the FACTS equipments upon the short-circuit fault, the application of the SSFCL for the protection of the FACTS is studied, the single and three phase topology of the FACTS equipments with the fault current limiting function, including the topologies with the saturated transformer and the fault shunt module, are proposed. Based on the equivalent circuit of the secondary side during the fault current limiting, the change law of the DC inductance current and the voltage across the capacitor is obtained as well as the guidance for the key parameters of the scheme. Then the three-phase topology employed in the lOkV/1kA system is taken as the case study, the protection principle for the over voltage and over current is studied by simulation, including the comparative study between the schemes with the conventional and saturated transformer, which highlights the advantage of the saturated transformer in the fault protection, meanwhile, the scheme with the fault shunt module is also simulated to show its positive effect on suppressing the capacitor voltage rise. Lastly, the feasibility is verified by the380V/3kVA prototype experiment.
引文
[1]张卫东,苏宏田.加快推进坚强智能电网建设——“十二五”电网发展规划思路[J].中国电力企业管理,2011,(1)33-38.
    [2]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [3]刘振亚.中国电力与能源[M].北京:中国电力出版社,2012.
    [4]黄娟娟,郑英纷.特高压网架对华东电网短路电流水平的影响分析及其限流措施[J].中国电力,2007,4(3):49-52.
    [5]杨杰出,陈希英,邵建熊.三峡水电站短路电流水平及限制措施分析[J].电网技术,1997,79(12):17-20.
    [6]李力,李爱民,吴科成,等.广东电网短路电流超标问题分析和限流措施研究[J].南方电网技术,2009,3(增刊):20-24.
    [7]何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社,2002.
    [8]韩戈,韩柳,吴柳.各种限制电网短路电流措施的应用和发展[J].电力系统保护与控制,2010,38(1):141-144.
    [9]陈刚.新型固态限流器及其对电力系统的影响[D].杭州:浙江大学,2004.
    [10]陈丽莉.大电网限流措施的优化配置研究[D].杭州:浙江大学,2011.
    [11]Cuixia zhao,Shuhong Wang, Jie Qiu, et al.,Transient simulation and analysis for saturated core high temperature superconducting fault current limiter[J]. IEEE Trans, on Magnetics,2007, 43(4):1813-1816.
    [12]Ying Xin, Weizhi Gong, Xiaoye Niu, et al., Development of saturated Iron Core HTS fault current limiters[J]. IEEE Trans, on Applied Superconductivity,2007,17(2):1760-1763.
    [13]B.P.Raju,K.C.Parton,T.C. Bartram. A current limiting device using superconducting d.c. bias applications and prospects[J]. IEEE Trans. Power Appar.& Syst.,1983,101:1051-1053.
    [14]J.X.Jin, S.X.Dou,H.K.Liu, et al., Electrical application of high Tc superconducting saturable magnetic core fault current limiter[J]. IEEE Trans. on Applied Superconductivity, 1997,7(2):1009-1012.
    [15]朱青.桥路型高温超导限流器及其限流新方法研究[D].长沙:湖南大学,2008.
    [16]Boening H.J., Paice D.A. Fault current limiter using a superconducting coil[J].IEEE Trans., on Magnetics,1983,19(3):1051-1053.
    [17]Yazawa T, Yoneda E, Matsuzaki J, et al. Design and Test Results of 6.6 kV High-Tc Superconducting Fault Current Limiter [J]. IEEE Transactions on Applied Superconductivity, 2001,11(1):2511-2514
    [18]叶林,林良真.超导故障限流器的电力应用研究[J].电力系统自动化,1999,23(7):53-57.
    [19]H.Yamaguchi,T.Kataoka.Effect of magnetic saturation on the current limiting characteristics of transformer type superconducting fault current limiter[J]. IEEE Trans, on Applied Superconductivity,2006,16(2):691-694.
    [20]Hyo-Sang Choi,Ju-Hyoung Lee, Yong-Sun Cho, et al., Recovery Behaviors of the transformer-type SFCL with or without neutral lines[J]. IEEE Trans. on Applied Superconductivity,2009,19(3):1793-1796.
    [21]B.W.Lee, K.B.Park, J.Sim, et al., Desigh and experiments of novel hybrid type superconducting fault current limiter[J]. IEEE Trans. on Applied Superconductivity,2008,18(2): 624-627.
    [22]T. Hori et al., Study of superconducting fault current limiters usingvacuum interrupter driven by magnetic repulsion force for commutatingswitch[J]. IEEE Trans. on Applied Superconductivity,2006,16(4):1999-2006.
    [23]周绪红,周有庆,朱青等.三相电抗器型高温超导限流器的阻抗与动态仿真[J].低温物理学报,2003,25(3):235-239.
    [24]Fleislmmn LS, BasIlkir YA, et al., Design Considerations for Inductive high Tc superconducting fault current limiter[J]. IEEE Trans. on Applied Superconductivity,1993,3(1): 570-573.
    [25]I Vajda, S Semperger, A Gyore. Design aspects of an inductive type superconducting fault current limiter[C]. IEE Conf. Publ.16th international conference and exhibition of CIRED, 2001,1(482).
    [26]Massimo Fabbri, Antonio Morandi, Francesco Negrini, et al., Magnetic-Shield-Type Fault Current LimiterEquivalent Circuit[J]. IEEE Trans. on Applied Superconductivity,2004,14(3): 1966-1973.
    [27]Viktor Tihanyi, Attila Gyore, and Istvan Vajda. Multiphysical Finite Element Modeling of InductiveType Fault Current Limiters and Self LimitingTransformers[J]. IEEE Trans. on Applied Superconductivity,2009,19(3):1922-1925.
    [28]J. R. Cave, D. W. A. WillCn, WillCn, R. Nadi, et al., Testing and Modelling of Inductive Superconducting Fault Current Limiters[J]. IEEE Trans. on Applied Superconductivity,1997, 7(2):832-835.
    [29]Chanjoo Lee, Hyoungku Kang, Kwanwoo Nam, et al., Quench Characteristics of High TemperatureSuperconducting Coil for FaultCurrent Limiting Application[J]. IEEE Trans. on Applied Superconductivity,2008,18(2):632-635.
    [30]Minseok Joo, and Tae Kuk Ko. Novel Design and Operational Characteristics of Inductive High-Tc Superconducting Fault Current Limiter[J]. IEEE Trans. on Applied Superconductivity, 1997,7(2):1005-1008.
    [31]Smith R K, Slade P G, Sarkozi M, et al. Solid State Distribution Current Limiter and Circuit Breaker:Application Requirements and Control Strategies[J]. IEEE Trans on Power Delivery,1993,8 (3):1155-1162.
    [32]C.L. Tsay, R. Fischl, J. Schwartzenberg, J. Barrow. A High Power Circuit Model for the Gate Turn-off Thyristor[J]. IEEE PESC Rec.,1990,390-397.
    [33]王华昕,习贺勋,汤广福等.谐振型故障限流器阻抗特性仿真和参数优化[J].电力系统自动化,2007,31(5):61-62.
    [34]娄杰,李庆民,肖茂友等.基于快速开关的串联谐振型故障限流器的仿真[J].高电压技术,2006,32(5):80-83.
    [35]王华听,习贺勋,汤广福,郑健超.面向超高压电网的故障限流器的应用研究[J].高电压技术,2007,33(5):99-113.
    [36]Karady George G. Concept of a combined short circuit limiter and series compensator [J]. IEEE Trans on Power Delivery,1991,6(3):1031—1037.
    [37]Salama M. M. A., Temraz H., Chikhani A. Y., et al. Fault-current limiter with thyristor-controlled Impedance[J]. IEEE Trans on Power Delivery,1993,8(3):1518-1528
    [38]陈磊,唐跃进,陈楠等.基于空心超导变压器的可控阻抗型限流器试验[J].电力系统自动化,2008,32(18):20-23,95.
    [39]Wu Zhaolin, Chen Pingping, Tan Lingyun, etal. Short Circuit Current Limiter in AC Network[J]. Journal of Zhejiang University (Science),2001,2 (1):41-45.
    [40]谭凌云,吴兆麟.一种配电网用固态三相短路限流器的研究[J].浙江大学学报,2002,36(1):101-104.
    [41]Wanmin Fei, Bin Wu. A novel topology of bridge-type superconducting fault current limiter[C]. Proceeding of Electrical and Computing Engineering Conf., Canadian 2009: 257-260.
    [42]吕征宇,江道灼,吴兆麟.具有旁路电感的短路故障限流器[P].中国专利,ZL02265208.6
    [43]蔡永华,江道灼,吴兆麟.新型固态限流器控制系统的研制[J].电力系统自动化,2004,28(7):62-66.
    [44]费万民,吕征宇,吴兆麟,等.三相接地系统短路限流器的研究[J].电力系统自动化,2002,26(8):33-37.
    [45]费万民,吕征宇,谭凌云,等.三相接地系统短路限流器的研究[J].电力系统自动化,2002,26(8):33-37.
    [46]Zhengyu Lv, Daozhuo, Jiang, Zhaolin Wu. A new topology of fault current limiter and its parameters optimization[C]. Proceedings of IEEE power electronics specialists conference, PESC03 Acapulco, Mexico,2003, vol.1:462-465.
    [47]谌平平.新型固态限流器技术及其在电力系统中的应用[D].杭州:浙江大学,2000.
    [48]江道灼,王威,李电.双向潮流固态限流器的控制策略与试验[J].电力系统自动化,2006,30(9):69-75.
    [49]张鹏飞,江道灼,刘华蕾.带旁路限流电感的新型固态限流器试验研究[J].电力系统自动化,2005,29(4):67-71.
    [50]赵中原,吕征宇,江道灼.新型固态限流器三相主电路拓扑及控制策略研究.中国电机工程学报,2005,25(12):42-46.
    [51]吴兆麟、吕征宇、江道灼.电力电子型短路故障限流器[P].中国专利,ZL200420022582.5.
    [51]王栋,姚缨英等·新型桥式固态限流器中耦合变压器特性的研究·机电工程,2007,24(8):80-83.
    [52]王栋.新型固态限流器系统中耦合变压器的研究:[M].杭州:浙江大学,2007.
    [54]Yingying Yao, Dong Wang, Daozhuo Jiang et al. Research of the Coupling Transformer in the New Bridge-Type Solid State Fault Current Limiter System[C]. Proceedings of Electromagnetic field problems and applications, ICEF2008, vol. 2, April,2008:113-116.
    [55]Yingying Yao, Suming Xiong, Daozhuo Jiang, et al. The FE-Based state space analysis for saturated transformer[C]. Proceeding of electrical machines and systems, ICEMS2008,2008: 4419-4422.
    [56]莫育杰,江道灼,田中山,等.新型固态限流器中饱和型耦合变压器的设计[J].电力系统自动化,2012,36(17):103-108.
    [57]敖志香.新型固态限流器及其优化设计[M].杭州:浙江大学,2007.
    [58]M. M. A. Salama, I.F.M. Hashad, K.D. Srivastava,et al. Design of Grading ratings for air-core power reactors[J]. IEEE trans. On power apparatus and systems,1984,103(12): 3551-3559.
    [59]Yu Qin, Sebo Stephen A. Simplified magnetic field modeling and calculation of large air-core reactor coils[J]. IEEE transactions on Magnetics,1996,32(2):4281-4283.
    [60]Xiuke Yan, Zhongbin Dai, Cunzhan, et al. Research on magnetic field and temperature field of air core power reactor[C]. Proceedings of electrical machines and systems(ICEMS), 2011:1-4.
    [61]Chunyan Song,Chunjie Zhu,Shuwen DU,etc. A practical magnetic field evaluation method for lOkV air-core reactors[C]. Proceedings of 18th International Conference on Electricity Distribution, Turin,6-9 June 2005.
    [62]Sharp M. R., Andrei R. G., Werner, J. C. A novel air-core reactor design to limit the loading of a high voltage interconnection transformer bank[C]. Proceedings of power engineering society summer meeting,2002:494-499.
    [63]郑莉平,孙强,刘小河等.干式空心电抗器设计和计算方法[J].电工技术学报,2003,18(4):81-84.
    [64]Song Chunyan, Zhu Chunjie, Du Shuwen, et al. A practical magnetic field evaluation method for lOkV air-core reactors[C]. Proceedings of 18th international conference and exhibition on Electricity Distribution CIRED,2005:1-4.
    [65]蔡永华.固态限流器的研制[D].杭州:浙江大学,2004.
    [66]张鹏飞.新型固态限流器实用化研究[D].杭州:浙江大学,2005.
    [67]章剑锋,江道灼.新型固态限流器原理及试验研究[J].继电器,2003,31(11):1-4.
    [68]辜承林,陈乔夫,熊永前.电机学[M].武汉:华中科技大学出版社,2001.
    [69]Lu Zhao, Yaohua Li. Characteristic analysis of traction power transformer with coupling finite element method of magnetic field and circuit[C]. Proceedings of 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet),2011: 2036-2039.
    [70]Suonan Jiale, Xu Liqiang, Jiao ZaiBin. New equivalent circuit of three-phase three-limb transformer based on magnetic circuit characteristics[C]. Proceedings of 2011 international conference on Advanced power system automation and protection,2011:1678-1683.
    [71]倪光正,杨仕友,钱秀英.工程电磁场数值计算[M].北京:机械工业出版社,2004.
    [72]潘艳霞.新型磁控开关型故障限流器研究[D].上海:上海交通大学,2008.
    [73]Prabha Kundar, Neal J. Balu. Power System Control and Stability[M]. McGraw-Hill,1994: 41-46.
    [74]江道灼,杨贵玉,吕征宇,吴兆麟,莫育杰.一种变阻抗自耦变压器型短路限流器[P].中国专利,ZL201120504060.9.
    [75]Wanmin Fei, Yanli Zhang, Zhengyu Lv. Novel bridge-type FCL based on self-turn off devices for three-phase power systems[J]. IEEE trans. On Power Delivery,2008,23(4): 2068-2078.
    [76]Fei Wanmin, Zhang Yanli, Wangqi L. A novel bridge-type FCL based on single controllable switch[C]. Proceedings of 7th international conference on power electronics and systems (PEDS'07),2007:113-116.
    [77]Fei Wanmin, Zhang Yanli, Meng Zhaoxuan. A novel bridge-type FCL based on self-turn off devices for three-phase three-wire power systems [C]. Proceedings of twenty second annual IEEE applied power electronic conference(APEC2007),2007:1369-1372.
    [78]Chengsheng Wang, CHongjian Li, Yaohua Li. Investigation on the switching property of IGCT used in large power voltage source inverter[C]. Proceedings of IEEE 6th IEEE power electronics and motion control conference(IPEMC'09),2009:291-294.
    [79]Suh Yongsug, Steimer Peter K. Application of IGCT in High-Power Rectifiers[J]. IEEE Trans, on Industrial Applications,2009,45(5):1628-1636.
    [80]Steimer Peter K., Gruning H.E., Werninger Johannes, et al. IGCT-a new emerging technology for high power, low cost inverters[J]. IEEE Trans. on Industrial Applications,1999, 5(4):12-18.
    [81]张明,陈林芳,李继鲁,等.国内IGCT器件的新进展[J].大功率变流技术,2008,6:1-5,16.
    [82]张婵,童亦斌,金新民.IGCT及其门极驱动电路研究[J].变流技术与电力牵引,2007,2:27-29,38.
    [83]吴兆麟,江道灼.适用于高压大容量交直流输配电系统的复合型全控固态开关[P].中国专利,ZL201210195864.4
    [84]贺益康,潘再平.电力电子技术基础[M].杭州:浙江大学出版社,1995.
    [85]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
    [86]李庆民,娄杰,张黎,等.电力系统经济型故障限流技术[M].北京:机械工业出版社,2011.
    [87]孙树亮,徐亮,刘洪顺.Zn0避雷器式故障限流器在配电网中的应用研究[J].中国电力,2008,41(5):70-74.
    [88]T. Asokan,王平.ZnO避雷器阀片的动态电热稳定性[J].电瓷避雷器译书,1997,(44):97-103.
    [89]Kamali S.A., Vahedi A., Halvai A. Performance analysis of HTS fault current limiter combined with a ZnO varistor[C]. Proceedings of 8th international conference on electrical machines and systems(ICEMS 2005),2005, vol 2:907-910.
    [90]陈坚.柔性电力系统中的电力电子技术——电力电子技术在电力系统中的应用[M].北京:机械工业出版社,2012.
    [91]赵贺.电力电子学在电力系统中的应用——灵活交流输电系统[M].北京:中国电力出版社,2001.
    [92]W. R. Lache, D. Sutanto, D N Logothetis. Power System Control in the Next Century[C] IEEE Trans. on Power System,1996:11-18.
    [93]R.Mohan Mathur, Rajiv K.Varma.基于晶闸管的柔性交流输电装置[M].徐政,译.北京:机械工业出版社,2005.
    [94]朱鹏程.用于UPFC的串并联双变流器控制策略研究[D].武汉:华中科技大学,2006.
    [95]Narain G.Hingorani, Laszlo Gyugyi. Understanding FACTS:Concept and Technology of Flexible AC Transmissions System[M]. IEEE Press,2000.
    [96]Qingguang Yu, Pei Li, Wenhua Liu, et al. Overview of STATCOM technologies[C]. Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT 2004),2004, vol.2:647-652.
    [97]Liu Qing, Wang Zengping, Zheng Zhenhua. Study and Simulation of SSSC and TCSC Transient Control Performance[C]. Proceedings of International Conference on Power System Technology and IEEE Power India Conference (POWERCON 2008),2008:1-6.
    [98]Kady F.M.E.L. Optimal location and control of TCSC to maximize load expansion[C]. Proceedings of Transmission and Distribution Conference and Exposition (IEEE PES),2003, vol.1:428-433.
    [99]Dogan M., Tosun S., Ozturk A., et al. Investigation of TCSC and SSSC controller effects on the power system[C]. Proceedings of 7th International Conference on Electrical and Electronic Engineering(ELECO),2011:127-131.
    [100]Jang-Cheol Seo, Seung-Il Moon, Jong-Keun Park, et al. Design of a robust SSSC supplementary controller to suppress the SSR in the series-compensated system[C]. Proceedings of Power Engineering Society Winter Meeting,2011, vol.3:1283-1288.
    [101]L. Gyugyi, CD. Schauder, S.L.Williams. The united power flow controller:A new approach to power transmission control[J]. IEEE Trans. on Power Delivery,1995,10(2): 1085-1097.
    [102]B. A. Renz, A. Keri, A. S. Mehraban, et, al. AEP unified power follow controller performancefJ].IEEE Trans. on Power Delivery,1999,14(4):1374-1381.
    [103]Dehghanpour A., Hosseini S.M.H., Talebi, N. Power flow management by IPFC in transmission system[C]. Proceedings of IEEE Control and System Graduate Research Colloquium (ICSGRC),2011:32-36.
    [104]Sreejith S., Simon S.P., Selvan, M.P. Investigations on power flow solutions using Interline Power Flow Controller (IPFC) [C]. Proceedings of International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2011),2011:63-68.
    [105]吴兆麟,江道灼,吕征宇,杨贵玉.具有短路限流功能的综合潮流控制器[P].中国专利,ZL 200720108326.1.
    [106]臧玉清.具有短路限流功能的综合潮流控制器的研制[D].杭州:浙江大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700