电压补偿型有源超导限流器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统装机容量的逐渐增加,电网互联范围的逐步扩大,系统中短路电流呈不断增长趋势。一旦短路电流超过当前断路器的遮断容量,断路器将无法有效地切除故障,这会严重威胁到电力设备乃至整个电力系统的安全运行。为提高系统运行的安全性、稳定性及可靠性,降低短路电流对电力设备的冲击,控制短路电流、限制过大短路电流的技术已成为一种迫切需求。目前研究的各种故障电流限制技术中,利用超导材料的超导限流器(SFCL)依靠自身独特的优越性,成为了限流技术领域中发展主线之一。本文提出了一种电压补偿型有源超导限流器,从理论分析、策略构架、仿真建模、性能比较、协调运行到动模样机的研制等方面对其开展了较为系统的研究工作,为促进该型SFCL在中高压系统等级的推广应用,给出了10kV级电压补偿型有源SFCL的概念设计方案,并初步探讨了工程化问题。
     论文第2章首先介绍了电压补偿型有源SFCL的单相拓扑结构及运行原理,它由空心超导变压器和脉宽调制(PWM)变流器组成。超导变压器的一次侧线圈串联接入系统主回路,二次侧线圈与PWM变流器相联。当系统正常运行时,通过PWM变流器控制变压器二次侧的注入电流,使其与系统电流满足一定关系,超导变压器一次侧的两端电压被补偿为零,限流器对系统无影响。当短路故障发生时,通过改变二次侧注入电流的幅度和相位,实现调节限流器等效接入系统的限制阻抗,以达成限流目的。根据电流调节目标的不同,此有源SFCL有三种限流工作模式。利用MATLAB仿真和小型单相样机的短路试验研究,限流机理的正确性及空心超导变压器的实用性得到了有力证实。
     论文第3章在单相结构的基础上,给出了完整的三相组成结构,并解析了不同类型短路故障下其工作特性的差别。为实现三相电压补偿型有源SFCL在各种短路工况下的限流性能,对于其组成结构中带分裂电容的三相四线制PWM变流器,设计了一种结合电容电压平衡控制的双闭环PI控制策略。基于仿真分析结果,肯定了控制策略的有效性。关于空心超导变压器参数的变化对限流器性能的影响也做了相应分析,得出如下结论:增大变压器一次侧自感有利于加强限流能力;增加变比会导致初始补偿电流的上升;提高耦合系数有助于降低变流器的无功功率输出。
     论文第4章以暂态稳定性、距离保护及电压跌落为研究目标,分析了电压补偿型有源SFCL对电力系统原有设备及运行特性的影响。首先,从单机无穷大系统的功角特性出发,研析了此有源SFCL的引入对发电机输出电磁功率的作用,继而采用等面积法则,阐述了其对暂态稳定性的具体影响机理。依靠仿真分析平台,模拟了不同的限流模式、短路类型、故障切除时间下发电机的功角特性曲线。仿真结果表明,电压补偿型有源SFCL可一定程度上消耗发电机的输出电磁功率,使得发电机转子的加速面积减少而增强系统暂态稳定性。接着,从修正阻抗继电器测量阻抗的角度着手,实现消除电压补偿型有源SFCL对距离保护的影响。针对其各种模式下的限制阻抗,给出了测量阻抗的匹配修订公式,并以含有源SFCL的双端电源系统为分析对象,证明了修订公式的适用性。最后,就不同限流参数、故障点位置下的特性分析为例,研究了电压补偿型有源SFCL对短路瞬间同步电机机端电压跌落的改善效果,从中得知有源SFCL的装设能够显著地抑制电压跌落,提高系统的动态电能质量。
     在国家863计划的支持下,完成了220V/30A电压补偿型有源SFCL动模样机的研制。作者在该项研究工作中重点承担了系统分析、参数设计、动模试验以及数据分析处理等任务。论文第5章就该试验样机的总体结构、基本特性及试验运行情况进行了介绍。试验结果表明,有源SFCL动模样机在系统发生三相短路后能有效地投入,自动地对故障电流加以约束,限流过程中没有过电压现象产生,且能对故障电流的稳态水平实施调控。
     论文第6章选取国内实际的10kV配电网线路,将电压补偿型有源SFCL安装于其中一条常发生短路故障的馈线处,就其结构中的空心超导变压器及变流器设计了基本参数。出于促进10kV级有源SFCL工程化的考虑,简要讨论了超导装置交流损耗的影响、低温绝缘技术的选取及大容量变流器中开关器件的应用,所得结论为将来的工程样机制作奠定了技术基础。
With the continual development of power system installed capacity, and the expansion of interconnected network, the level of short-circuit current increases constantly. Once the short-circuit current is greater than the interrupting capacities of existing circuit breakers, the fault cannot be cleared effectively, and further the safeties of power equipments and whole power system may be threatened seriously. In order to enhance the security, stability and reliability of power network, and to reduce the burden induced by the fault current, it's urgent to suppress the fault current to a certain level. Among the proposed curren-limiting technologies, superconducting fault current limiter (SFCL), due to its some special advantages, has been one of the current-limiting technical field's main research directions. In this thesis, a voltage compensation type active SFCL is proposed. This dissertation systematically studies the proposed voltage compensation type active SFCL, including the issues of theoretical analysis, strategy frame, simulation verification, performance comparison, coordinated operation, prototype development and short-circuit test in a dynamic simulation power system. To drive the application of this type SFCL to the medium and high voltage power network, the basic parameter design about a 10kV voltage compensation type active SFCL is carried out and some corresponding engineering problems are discussed briefly.
     In chapter 2, the structure and principle of the single-phase voltage compensation type active SFCL are firstly introduced. The single-phase active SFCL is composed of an air-core superconducting transformer and a pulse-width modulation (PWM) converter. The superconducting transformer's primary winding is in series with AC main circuit, and its second winding is connected with the PWM converter. In normal state, the injected current in the secondary winding will be adjusted to ensure that the primary voltage of the transformer is compensated to zero. As a result, the SFCL has no influence on the main circuit. When the fault happens, the current-limiting impedance in series with main circuit can be changed by adjusting the injected current in the amplitude and phase angle, and further the current through the fault line can be limited. According to the difference in the regulating objectives of the converter's output current, there are three operation modes. Based on the simulation analysis and the short-circuit test for a small-scale protype, the correctness of the current-limiting principle and the practicability of the air-core superconducting transformer can be proved.
     In chapter 3, on the basis of the single-phase structure, the integrated three-phase topology structure is proposed, and its operational characteristics under the different types of faults are investigated. In order to realize the three-phase active SFCL's current-limiting characteristics, it is needed to control its component, namely the three-phase four-wire PWM converter with split-capacitors, flexibly and reasonably. The double closed loop control, consisting of capacitor-voltage balance control, is proposed. According to the simulation results, the validity of presented control strategy is fully affirmed. In additon, the influence of the air-core superconducting transformer's parameter variation on the integrated three-phase active SFCL's performance is also investaged, and conclusions are shown as follows:raising the self-inductance of primary winding is beneficial to the current-limiting capacity; enhancing the transformation ratio can lead to the increase of initial compensation current; increasing the coupling coefficient is helpful to reduce the reactive power output of converter.
     In chapter 4, taking the power system transient stability, distance protection and voltage sag for examples, the influences of the voltage compensation type active SFCL on the existing equipments and operating characteristics of power system are analyzed. Firstly, based on the power-angle characteristic of the single-machine to infinite bus power system, the effect of the active SFCL on the generator's electromagnetic power is researched, and then its influence on the transient stability is studied by adopting the equal area rule. According to the simulation platform, the power-angle swing curves are simulated under the different current-limiting modes, fault types and fault clearance times. It can be found that, the installation of the active SFCL can consume the electromagnetic power, reduce the energy acceleration area, and then enhance the transient stability. From the point of view of revising the distance relay's measured impedance, the effect of the active SFCL on the distance relay can be eliminated. Based on the three different operation modes of the active SFCL, this chapter presents the corresponding modified formulas. The model of the dual-source power system with the active SFCL is built to evaluate the validities of the modified formulas, and the results are positive. In the final part of this chapter, according to the simulation analyses under the different current-limiting parameters and fault locations, the impact of the active SFCL on the synchronous machine's terminal voltage sag due to short circuit is researched. It is observed that the active SFCL can help to reduce the voltage sag and improve the dynamic power quality.
     The author participated in the research on the 220V/30A three-phase voltage compensation type active SFCL supported by the 863 program, and took charge of the system analysis, parameter design, dynamic experiments and experimental data processing. In chapter 5, the configuration of the 220V/30A three-phase active SFCL and the part of important test results are presented. In the dynamic simulated experiment of power system, the SFCL prototype can not only effectively suppress the fault current under the three-phase short-circuit, but also adjust its steady level. In addition, there is no overvoltage during the current-limiting process.
     In chapter 6, a practical lOkV distribution network is chosen, and the voltage compensation type active SFCL is applied to a feeder where the fault often occurs. For the air-core superconducting transformer and the PWM converter of the 10kV active SFCL, the basic parameters are designed. In view of the 10kV active SFCL's engineering application, the AC loss of superconducting coil, the low temperature insulating technique, and the converter's switching element are selected to be investigated briefly, and the conclusions can provide the technical foundation for the future engineering protype fabrication.
引文
[1]周坚,胡宏,庄侃沁,等.华东500kV电网短路电流分析及其限制措施探讨.华东电力,2006,34(7):55-59
    [2]余希,赵小利.福建电网远景短路电流及其控制措施.福建电力与电工,2007,27(2):8-11
    [3]叶幼君,鲍爱霞,程云志.浙江500 kV电网短路电流的控制.华东电力,2006,34(3):11-15
    [4]叶林,林良真.超导故障限流器在电力系统中的应用研究.中国电机工程学报,2000,20(7):15-18
    [5]沈根才.关于全国电力系统互联问题的一些思考.中国电力,1995,(3):2-7
    [6]J. Brochu, F. Beauregard, G. Morin, et al. The IPC Technology-a New Approach for Substation Uprating with Passive Short-Circuit Limitation. IEEE Trans. Power Delivery,1998,13(1):233-240
    [7]S.C. Mukhopadhyay, F.P. Dawson, M. Iwahara, et al. Analysis, Design and Experimental Results for a Passive Current Limiting Device. IEE Proceedings: Electric Power Applications,1999,146(3):309-316
    [8]傅霞飞,张正陵,陈坚,等.华中电网未来短路电流水平及控制.电网技术,1994,18(5):23-27
    [9]傅霞飞.现代电力系统中短路电流水平的协调与控制.中国电力,1993,(1):54-57
    [10]徐博文.大区电网互联的几个重要问题.电网技术,1999,23(9):32-34
    [11]高凯平.限制短路电流的方法.电力安全技术,2000,2(3):54
    [12]黄绍平.配电变压器的熔断器保护.变压器,2004,41(2):28-31
    [13]徐波.基于磁通补偿的大容量故障限流器:[硕士学位论文].武汉:华中科技大学图书馆,2004
    [14]N. Engelman, E. Schreurs, B. Drugge. Field Test Results for a Multi-Shot 12.47kV Fault Current Limiter. IEEE Trans. Power Delivery,1991,6(3):1081-1087
    [15]章剑锋.短路限流技术在电力系统中的应用研究:[硕士学位论文].杭州:浙江大学,2004
    [16]董力.故障电流限制器的研究:[硕士学位论文].北京:清华大学图书馆,2004
    [17]M. Takeda, H. Yamamoto, Y. Hosokawa, et al. A Low Loss Solid-State Transfer Switch Using Hybrid Switch Devices. Proceedings of the 3rd International Power Electronics and Motion Control Conference,2000,235-240
    [18]S. Sugimoto, J. Kida, H. Arita, et al. Principle and Characteristics of a Fault Current Limiter with Series Compensation. IEEE Trans. Power Delivery,1996,11(2): 842-847
    [19]陈金祥,董恩源,邹积岩.具有串联补偿作用的新型故障限流器(FCL)的研究.电工技术学报,2001,16(1):48-51
    [20]曾琦,李兴源,蔡鑫贵,等.带串联补偿故障限流器的仿真和试验.电力系统自动化,2003,27(14):54-56
    [21]王振宇.电力系统中的新型故障限流器的研究:[硕士学位论文].哈尔滨:哈尔滨理工大学图书馆,2009
    [22]J.Y. Zou, J.X. Chen, E.Y. Dong. Study of Fast-Closing Switch Based Fault Current Limiter with Series Compensation. Int. J. Electr. Power Energy Syst.,2002,24: 719-722
    [23]娄杰,李庆民,肖茂友,等.基于快速开关的串联谐振型故障限流器的仿真.高电压技术,2006,32(5):80-83
    [24]王华听,习贺勋,汤广福,等.谐振型故障限流器阻抗特性仿真和参数优化.电力系统自动化,2007,31(5):61-64
    [25]洪健山,关永刚,徐国政.串联谐振式限流器对操作过电压的影响及分析.高电压技术,2009,45(2):44-47
    [26]范瑾,蔡雪祥.电力系统短路电流限制器的研究.动力工程,1997,17(6):30-35
    [27]G.G. Karady. Principles of Fault Current Limitation by a Resonant LC Circuit. IEE Proceedings C:Generation Transmission and Distribution,1992,139(1):1-6
    [28]王威.双向潮流固态限流器的研制:[硕士学位论文].杭州:浙江大学图书馆,2006
    [29]G. Chen, D.Z. Jiang, Z.L. Wu, et al. Simulation Study of Bridge Type Solid State Fault Current Limiter. IEEE Power Engineering Society General Meeting,2003,4: 2521-2526
    [30]M.M.R. Ahmed, G.A. Putrus, R. Li. Harmonic Analysis and Improvement of a New Solid-State Fault Current Limiter. IEEE Trans. Ind. Appl.,2004,40(4):1012-1019
    [31]J. Bourne, M. Schupbach, J. Carr, et al. Initial Development of a Solid-State Fault Current Limiter for Naval Power Systems Protection. IEEE Electric Ship Technologies Symposium,2009,491-498
    [32]O.-B. Hyun, H.-R. Kim, J. Sim, et al.6.6 kV Resistive Superconducting Fault Current Limiter Based on YBCO Films. IEEE Trans. Appl. Supercond.,2005,15(2): 2027-2030
    [33]Lin Ye, K.-P. Juengst. Modeling and Simulation of High Temperature Resistive Superconducting Fault Current Limiters, IEEE Trans. Appl. Supercond.,2004,14(2): 839-842
    [34]H.-S. Choi, S.-H. Lim, D.-C. Chung, et al. Responses of Resistive Superconducting Fault Current Limiters to Unbalanced Faults. IEEE Trans. Appl. Supercond.,2005, 15(2):2035-2038
    [35]J. Bock, F. Breuer, H. Walter, et al. Development and Successful Testing of MCP BSCCO-2212 Components for a 10 MVA Resistive Superconducting Fault Current Limiter. Supercond. Sci. Technol.,2004,17:122-126
    [36]T. Yazawa, K. Koyanagi, M. Takahashi, et al. Superconducting Fault Current Limiter Using High-Resistive YBCO Tapes. Physica C,2008,468:2046-2049
    [37]T. Yazawa, K. Koyanagi, M. Takahashi, et al. Design and Experimental Results of Three-Phase Superconducting Fault Current Limiter Using Highly-Resistive YBCO Tapes. IEEE Trans. Appl. Supercond.,2009,19(3):1956-1959
    [38]H. Ohsaki, M. Sekino, S. Nonaka. Characteristics of Resistive Fault Current Limiting Elements Using YBCO Superconducting Thin Film with Meander-Shaped Metal Layer. IEEE Trans. Appl. Supercond.,2009,19(3):1818-1822
    [39]庄劲武,张晓锋,王晨,等.基于YBa2Cu307块材的高温超导限流器的限流特性研究.中国电机工程学报,2006,26(8):45-48
    [40]王晨,张晓锋,庄劲武,等.基于YBa2Cu307薄膜的超导故障限流器设计与试验分析.电力自动化设备,2008,28(4):103-104
    [41]杨晓乐,李晓航,张正臣,等.Bi2223/Ag和YBCO高温超导带材在交流过电流冲击下的失超及恢复特性研究.低温与超导,2009,37(2):25-31
    [42]C.A. Baldan, J.S. Lamas, C.Y. Shigue, et al. Fault Current Limiter Using YBCO Coated Conductor-The Limiting Factor and Its Recovery Time. IEEE Trans. Appl. Supercond.,2009,19(3):1810-1813
    [43]T. Onishi, M. Kawasumi, K. Sasaki, et al. An Experimental Study on a Fast Self-Acting Magnetic Shield Type Superconducting Fault Current Limiter. IEEE Trans. Appl. Supercond.,2002,12(1):868-871
    [44]G.Q. Zhang, Z.J. Wang, M. Qiu. The Improved Magnetic Shield Type high Tc Superconducting Fault Current Limiter and the Transient Characteristic Simulation. IEEE Trans. Appl. Supercond.,2003,13(2):2112-2115
    [45]M. Fabbri, A. Morandi, F. Negrini, et al. Temperature Dependent Equivalent Circuit of a Magnetic-Shield Type SFCL. IEEE Trans. Appl. Supercond.,2005,15(2): 2078-2081
    [46]V. Keilin, I. Kovalev, S. Kruglov, et al. Model of HTS Three-Phase Saturated Core Fault Current Limiter. IEEE Trans. Appl. Supercond.,2000,10(1):836-839
    [47]T. Hoshino, K.M. Salim, A. Kawasaki, et al. Design of 6.6 kV,100A Saturated DC Reactor Type Superconducting Fault Current Limiter. IEEE Trans. Appl. Supercond., 2003,13(2):2012-2015
    [48]王付胜,刘小宁.饱和铁心型高温超导故障限流器数学模型的分析与参数设计.中国电机工程学报,2003,23(8):135-139
    [49]C.X. Zhao, S.H. Wang, J. Qiu, et al. Transient Simulation and Analysis for Saturated Core High Temperature Superconducting Fault Current Limiter. IEEE Trans. Magn., 2007,43(4):1813-1816
    [50]信赢,龚伟志,高永全,等.35 kV/90 MVA挂网运行超导限流器结构与性能介绍.稀有金属材料与工程,2008,37,s4:275-280
    [51]H. Hong, Z.J. Cao, J.Y. Zhang, et al. DC Magnetization System for a 35 kV/90 MVA Superconducting Saturated Iron-Core Fault Current Limiter. IEEE Trans. Appl. Supercond.,2009,19(3):1851-1854
    [52]Y. Xin, W.Z. Gong, X.Y. Niu, et al. Manufacturing and Test of a 35 kV/90 MVA Saturated Iron-Core Type Superconductive Fault Current Limiter for Live-Grid Operation. IEEE Trans. Appl. Supercond.,2009,19(3):1934-1937
    [53]W.Z. Gong, J.Y. Zhang, Z.J. Cao, et al. HTS DC Bias Coil for 35 kV/90 MVA Saturated Iron-Core Fault Current Limiter. Physica C,2008,468(15-20):2050- 2053
    [54]H. Yamaguchi, T. Kataoka, K. Yaguchi, et al. Characteristics Analysis of Transformer Type Superconducting Fault Current Limiter. IEEE Trans. Appl. Supercond.,2004, 14(2):815-818
    [55]T. Janowski, S. Kozak, B. Kondratowicz-Kucewicz, et al. Analysis of Transformer Type Superconducting Fault Current Limiters. IEEE Trans. Appl. Supercond.,2007, 17(2):1788-1790
    [56]H. Yamaguchi, T. Kataoka. Effect of Magnetic Saturation on the Current Limiting Characteristics of Transformer Type Superconducting Fault Current Limiter. IEEE Trans. Appl. Supercond.,2006,16(2):691-694
    [57]T. Kataoka, H. Yamaguchi. Comparative Study of Transformer-Type Superconducting Fault Current Limiters Considering Magnetic Saturation of Iron Core. IEEE Trans. Magn.,2006,42(10):3386-3388
    [58]H. Yamaguchi, T. Kataoka. Current Limiting Characteristics of Transformer Type Superconducting Fault Current Limiter with Shunt Impedance and Inductive Load. IEEE Trans. Appl. Supercond.,2008,18(2):668-671
    [59]S.-H. Lim, H.-S. Choi, D.-C. Chung, et al. Impedance Variation of a Flux-Lock Type SFCL Dependent on Winding Direction Between Coil 1 and Coil 2. IEEE Trans. Appl. Supercond.,2005,15(2):2039-2042
    [60]H.-S. Choi, H.-M. Park, Y.-S. Cho, et al. Quench Characteristics of Current Limiting Elements in a Flux-Lock Type Superconducting Fault Current Limiter. IEEE Trans. Appl. Supercond.,2006,16(2):670-673
    [61]H.-S. Choi, S.-H. Lim. Operating Performance of the Flux-Lock and the Transformer Type Superconducting Fault Current Limiter Using the YBCO Thin Films. IEEE Trans. Appl. Supercond.,2007,17(2):1823-1826
    [62]S.-H. Lim, S.-W. Lee, Y.-H. Moon. Power Quality Improving Operations of a Flux-Lock Type SFCL Integrated With Voltage or Current Controlled-Voltage Source Inverter. IEEE Trans. Appl. Supercond.,2008,18(2):644-647
    [63]S.-H. Lim, J.-F. Moon, J.-C. Kim. Improvement on Current Limiting Characteristics of a Flux-Lock Type SFCL Using E-I Core. IEEE Trans. Appl. Supercond.,2009, 19(3):1904-1907
    [64]J.D. Rogers, H.J. Boenig, P. Chowdhurt, et al. Superconducting Fault Current Limiter and Inductor Design. IEEE Trans. Magn.,1983,19(3):1954-1958
    [65]K.M. Salim, I. Muta, T. Hoshino, et al. Proposal of Rectifier Type Superconducting Fault Current Limiter with Non-Inductive Reactor (SFCL). Cryogenics,2004,44(3): 171-176
    [66]S. Lee, C. Lee, M.C. Ahn, et al. Design and Test of Modified Bridge Type Superconducting Fault Current Limiter with Reverse Magnetized Core. IEEE Trans. Appl. Supercond.,2003,13(2):2016-2019
    [67]T. Hoshino, K.M. Salim, I. Muta, et al. Experiment Using Variable Reactor of Rectifier Type Superconducting Fault Current Limiter with a Short-Circuited Trigger Coil. IEEE Trans. Appl. Supercond.,2004,14(2):626-629
    [68]S. Lee, H. Kang, D.K. Bae, et al. Development of 6.6 kV-200 A DC Reactor Type Superconducting Fault Current Limiter. IEEE Trans. Appl. Supercond.,2004,14(2): 867-870
    [69]S.-H. Lim, H.-S. Choi, B.-S. Han. Fault Current Limiting Characteristics of DC Dual Reactor Type SFCL Using Switching Operation of HTSC Elements. IEEE Trans. Appl. Supercond.,2006,16(2):723-726
    [70]朱青,朱英浩,周有庆,等.改进的双桥混合式桥路型高温超导故障限流器.电工技术学报,2007,22(2):39-44+50
    [71]张晚英,周有庆,赵伟明,等.偏流切换桥路型高温超导故障限流器的试验研究.中国电机工程学报,2008,28(6):116-122
    [72]刘昕.改进桥式超导限流器的试验研究[硕士学位论文].北京:中国科学院电工研究所,2006
    [73]肖立业,林良真,赵彩宏.有源超导限流器.低温物理学报,2003,25(S):302-308
    [74]陈丹菲,赵彩宏.电流补偿型超导限流器的研究.电气传动,2005,35(4):41-44
    [75]D.F. Chen, C.H. Zhao, L.Y. Xiao. A Current CompensationType Superconducting Fault Current Limiter. Proceedings of the Twentieth International Cryogenic Engineering Conference,2005,669-672
    [76]赵彩宏,郭风,郭文勇,等.基于电压补偿原理的超导储能-限流集成系统.电力系统自动化,2006,30(2):68-71+108
    [77]高强.超导限流器与电力系统继电保护配合问题的研究:[硕士学位论文].北京:中国科学院电工研究所,2006
    [78]DOE, US. Grid 2030-A National Vison for Electricity's Second 100 years. Jul. 2003
    [79]王晨,陈磊,唐跃进,等.直流超导故障限流器方案设计及限流效果仿真分析.继电器,2005,33(6):6-8
    [80]J. Shi, Y.J. Tang, C. Wang, et al. Active Superconducting DC Fault Current Limiter Based on Flux Compensation. Physica C,2006,442(2):108-112
    [81]L. Chen, Y.J. Tang, J. Shi, et al. Simulations and Experimental Analyses of the Active Superconducting Fault Current Limiter. Physica C,2007,459(1):27-32
    [82]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003
    [83]H. Yamaguchi, H. Morimoto, Y. Sato, et al. Magnetic Field Analysis of Air-Core Superconductin nansformer. IEEE Trans. Magn.,1995,31(6):4124-4126
    [84]H. Yamaguchi, T. Kataoka. Stability Analysis of Air-Core Superconducting Power Transformer. IEEE Trans. Appl. Supercond.,1997,7(2):1013-1016
    [85]H. Yamaguchi, T. Kataoka. Analysis of a 3-Phase Air-Core Superconducting Power Transformer. IEEE Trans. Appl. Supercond.,1999,9(2):1300-1303
    [86]T. Ishigohka, M. Kobayashi, A. Ninomiya, et al. Fabrication and Test of Force-Balanced-Coil type Air-Core Superconducting Transformer Using Parallel Conductor. IEEE Trans. Appl. Supercond.,2002,12(1):816-819
    [87]宋萌,周羽生,唐跃进,等.电磁发射用高温超导空心脉冲变压器.电工技术学报,2007,22(12):72-76
    [88]郭秀洪.基于电流跟踪控制的有源电力滤波器的研究:[硕士学位论文].北京:华北电力大学图书馆,2006
    [89]眭鑫.动态电压恢复器的研究:[硕士学位论文].武汉:华中科技大学图书馆,2008
    [90]周林,蒋建文,周雒维,等.基于单周控制的三相四线制有源电力滤波器.中国电机工程学报,2003,23(3),85-88
    [91]黄明聪.三相四线制并联型电能质量控制器的研究[博士学位论文].北京:清华大学图书馆,2003
    [92]戴宁恰,黄民聪,唐净,等.新型三维空间矢量脉宽调制在三相四线系统中的应
    用.电力系统自动化,2003,27(17):45-49
    [93]U.K. Madawala, D.J. Thrimawithana. Mathematical Model for Split-Capacitor Push-Pull Parallel Resonant Converter in Buck Mode. IET Power Electron.,2008, 1(3):356-367
    [94]B. Xie, K. Dai, Y. Kang. DC Voltage Control for the Three-Phase Four-Wire Shunt Split-Capacitor Active Power Filter. IEEE International Electric Machines and Drives Conference,2009,1669-1673.
    [95]N. Mendalek. Modeling and Control of Three-Phase Four-Leg Split-Capacitor Shunt Active Power Filter. International Conference on Advances in Computational Tools for Engineering Applications,2009,22(7):121-126
    [96]Y. Wang, S.H. Shen, Y. Cao. Study on the Three-Phase Four-Legs Active Filter Based on One-Cycle Control. Proceedings of the Eighth International Conference on Electrical Machines and Systems,2005,2:1301-1304
    [97]阮新波,严仰光.四桥臂三相逆变器的控制策略.电工技术学报,2005,15(1):61-64
    [98]R.E. Torres-Olguin, G Escobar, A.A. Valdez, et al. A Model-Based Controller for a Three-Phase Four-Leg Shunt Active Filter with Homopolar Current Compensation. Proceedings of the 11th IEEE International Conference on Power Electronics Congress,2008,63-68.
    [99]F.H. Zhang, Y.G. Yan. Selective Harmonic Elimination PWM Control Scheme on a Three-Phase Four-Leg Voltage Source Inverter. IEEE Trans. Power Electron.,2009, 24(7):1682-1689.
    [100]陈瑶,金新民,童亦斌.三相四线系统中SPWM与SVPWM的归一化研究.电工技术学报,2007,22(12):122-127
    [101]张兴.PWM整流器及其控制策略的研究:[博士学位论文].合肥:合肥工业大学图书馆,2004
    [102]熊健.三相电压型高频PWM整流器研究:[博士学位论文].武汉:华中科技大学图书馆,1999
    [103]李玉玲.电流型PWM整流器及其控制策略的研究:[博士学位论文].杭州:浙江大学图书馆,2006
    [104]刘平.用于超导磁储能系统的高性能电压源变换器控制技术研究:[博士学位论 文].武汉:华中科技大学图书馆,2000
    [105]陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社,2002
    [106]Marian P. Kazmierkowski, Luigi Malesani. Current Control Techniques for Three-Phase Voltage-Source PWM Vonverters:A Surrey. IEEE Trans. on Ind. Electronics.1998,45(5):691-703
    [107]S.L. Jung, H.S. Huang, M.Y. Chang. Digital Multiple-Loop Control Technique for the PWM Inverters Used in Uninterruptible Power Supplies. Proceedings of the National Science Council, Taiwan, Part A:Physical Science and Engineering,1997, 21(5):485-492
    [108]N.M. Abdel Rahim, J.E. Quaicoe. Analysis and Design of a Multiple Feedback Loop Control Strategy for Single-Phase Voltage-Source UPS Inverters. IEEE Trans. Power Electron.,1996,11(4):532-541
    [109]龙轶,唐军.三相四线制PWM整流器在三相ABC坐标系下独立控制研究.船电技术,2007,27(4):240-243
    [110]何仰赞,温增银.电力系统分析.武汉:华中科技大学出版社,2002
    [111]袁清芳.改善系统稳定性的故障限流器的控制策略研究:[硕士学位论文].成都:四川大学图书馆,2004
    [112]郝志杰.固态故障限流器对电力系统运行影响的研究:[硕士学位论文].杭州:浙江大学图书馆,2004
    [113]Kundur P. Power System and Control. McGraw-Hill, New York,1994
    [114]L. Chen, Y.J. Tang, J. Shi, et al. Influence of a Voltage Compensation Type Active Superconducting Fault Current Limiter on the Transient Stability of Power System. Physica C,2009,469(15-20):1760-1764
    [115]H. Kameda, H. Taniguchi. The Setting Method of the Specific Parameters of a Superconducting Fault Current Limiter Installed at the Bus-Tie and Response of Protective Relays at Operation of the SFCL. Physica C,2002,372-376(Part 3): 1673-1679
    [116]S. Henry, T. Baldwin, M. Steurer. The Effects of a Fast Switching Fault Current Limiter on Distance Protection. Proceedings of the 35th Southeastern Symposium on System Theory,2003:264-268
    [117]刘华蕾,江道灼,陈刚,等.安装固态短路限流器后距离保护整定的改进方法.电力系统自动化,2006,30(2):90-95
    [118]何妍,陈轩恕,唐跃进,等.超导故障限流器对自动重合闸和继保的影响.电力系统自动化,2008,34(10):2190-2194
    [119]张保会,尹项根.电力系统继电保护.北京:中国电力出版社,2005
    [120]尹项根,曾克娥.电力系统继电保护原理与应用.武汉:华中科技大学出版社,2007
    [121]刘莹.一种可改善电能质量的故障限流器的研究:[硕士学位论文].青岛:山东大学图书馆,2007
    [122]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002
    [123]吴刚,滕云,潘永刚.电力系统电压跌落相关问题初探.华北电力技术,2004,(4):1-4+32
    [124]陈勇.电力系统中抑制电压跌落技术的研究:[硕士学位论文].南京:南京理工大学图书馆,2006
    [125]肖湘宁等.电能质量分析与控制.北京:中国电力出版社,2004
    [126]Y. Hou, X.H. Jiang, J.G. Jiang. Parallel Processing UPS and Unbalanced Voltage Sag Compensation.4th International Power Electronics and Motion Control Conference,2004:972-976
    [127]P.S. Sensarma, K.R. Padiyar, V. Ramanarayanan. Analysis and Performance Evaluation of a Distribution STATCOM for Compensating Voltage Fluctuations. IEEE Trans. Power Delivery,2001,16(2):259-264
    [128]D. M. Vilathgamuwa, A.A.D.R. Perera, S.S. Choi. Voltage Sag Compensation with Energy Optimized Dynamic Voltage Restorer. IEEE Trans. Power Delivery,2003, 18(3):928-936
    [129]H.M. Zhang, Y.K. Sun, S.P. Ding, et al. Application of Super Capacitor with Full-Digital Converter in Hybrid Electric Vehicle Energy Transmission System. Proceedings of the 27th Chinese Control Conference,2008,212-215
    [130]J.H. Wang, J.C. Zhang, Yun Zhong. Study on a Super Capacitor Energy Storage System for Improving the Operating Stability of Distributed Generation System.3rd International Conference on Deregulation and Restructuring and Power Technologies, 2008,2702-2706
    [131]O. Tsukamoto. Roads for HTS Power Applications to Go into the Real World Cost Issues and Technical Issues. Cryogenics,2005,45:3-10
    [132]H.-I. Du, S.-W. Yim, M.-J. Kim, et al. Current Transport and Limitation Characteristics of YBCO Coated Conductor Having Different Stabilizer Connected in Series. IEEE Trans. Appl. Supercond.,2009,19(3):1727-1730
    [133]刘富永.超导故障限流器(SFCL)在电力系统中的应用与仿真研究:[硕士学位论文].天津:天津理工大学图书馆,2007
    [134]林良真等.超导电性及其应用.北京:北京工业大学出版社,1998
    [135]李晓松.单相300KVA/25000V/860V高温超导变压器电磁设计及特性研究:[博士学位论文].武汉:华中科技大学图书馆,2005
    [136]H. Yamaguchi, Y. Sato, T. Kataoka. Loss Characteristics of Air-Core Superconducting Transformer. IEEE Trans. Magn.,1992,28(5):2232-2234
    [137]刘婷,仰叶,阎浩.超导用低温技术的研究方向和发展趋势.第九届全国低温工程大会论文集,2009,233-237
    [138]陈伟强.三相四线制有源电力滤波器主电路设计.电气技术,2009,(6):34-39
    [139] Bin Wu.大功率变频器及交流传动.北京:机械工业出版社,2008
    [140]W.M. Fei, Y.L. Zhang. A Novel IGCT-Based Half-Controlled Bridge Type Fault Current Limiter. CES/IEEE 5th International Power Electronics and Motion Control Conference,2006,2:1138-1142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700