MOA的冷却结构设计与散热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电网负荷密度和总体容量的增长,系统的短路电流越来越大。基于氧化锌避雷器(Metal Oxide Arrester, MOA)的串联谐振经济型故障限流器,由于其较好的短路电流限制能力,运行可靠性高、技术经济性能好、无需外加控制而实现自动投切等明显优点,可望在高压电网中首先获得实用。
     发生短路故障时,巨大的短路能量注入到MOA中,金属氧化物压敏电阻(Metal Oxide Varistor, MOV)上有大量短路电流流过,导致其温度快速升高。为保证MOA的可靠运行,延长其使用寿命,需要尽快散热降温。因此,MOA冷却结构的设计和了解MOV阀片柱的温度分布非常重要。
     本文首先分析了MOA热传递的过程,介绍了包括Tominage模型法、等值热路图法、有限差分法、有限单元法在内的几种热分析方法的主要原理;讨论了氧化锌电阻片在小电流段、转折区的工频电流段、标准操作冲击电流段和标准雷电冲击电流段的功率损耗特性;在总结了傅立叶定律和导热微分方程等传热学理论的基础上,阐述了用有限单元法计算温度场的基本原理和过程,并给出了应用有限元软件ANSYS求解场问题的一般步骤。
     然后在传统MOA散热结构的基础上提出了一种新型MOA散热结构,即通过在两个ZnO阀片间叠加铝垫块,并在铝垫块上加工冷却通道的方法来改善MOA的散热效果。分别对传统和新型的MOA温度场问题建立了三维有限元模型,并利用ANSYS进行瞬态温度场的仿真计算,得出了相应的温度场分布规律和散热规律。系统地计算分析了冷却通道的条数、直径等几何因素对于通风道内传热特性和MOA散热特性的影响,提出了使散热效果更好的优化的结构参数(冷却通道的条数和直径),结果表明:MOA散热能力随冷却通道直径不同而变化,通道直径存在约为10mm的最优值,此时冷却结构散热效果较好,四条冷却通道比两条冷却通道具有更好的散热效果。计算并给出了MOA在长期运行后达到稳定平衡态时MOV的温度场分布,结果表明温升在允许范围内,MOA在该短路故障下仍能安全可靠运行。分析了残压变化时,MOA的发热和散热规律,计算了MOA可以承受的连续故障发生的最小时间间隔以及连续两次短路故障时MOA的散热特征。
     本文所做的工作为MOA的冷却结构设计和散热分析提供了理论依据和数据支持。
As the increase of the load density and capacity of the power network, the short-circuit current becomes larger and larger. Owing to its strong ability of the limitation on short-circuit current, good reliable in operation, good technical and economic performance, and the auto-switching realization without additional control, economic type of the fault current limiter based on Metal Oxide Arrester (MOA) is expected to be applied in high-voltage system.
     When short circuit happens, tremendous short circuit energy enters into MOA and there is strong short-circuit current on Metal Oxide Varistor (MOV), leading to the rapid temperature increase of MOV. In order to insure the reliability of MOA operation and extend its service life, the temperature of MOV need to be reduced as soon as possible. Therefore, both the design of cooling structure with the excellent cooling efficiency and the knowledge for the temperature distributions are very important.
     In this thesis, the process of heating transformation of MOA is analyzed, the main principle of some thermal analysis methods, such as Tominage Model Method, Equivalent Thermal Circuit Diagram Method, Finite Difference Method, Finite Element Method (FEM), are introduced, and the power loss property of ZnO resistor in the different current regions which including low current section, turning area section, operation impulse current section and lightning surge current section are discussed. Also, the heat transfer theories such as Fourier's law and conduction differential equations are summarized, the calculation principles of temperature field based on finite element method are briefly described, and the general steps for solving temperature field problem by using ANSYS are given.
     In order to improve the cooling effect of the cooling structure in MOA, a novel cooling structure is suggested. In this structure, special aluminum pad is added between two ZnO valve plates, and cooler channels are made on aluminum pad. The 3-D FEM model is established to solve the temperature field of the traditional and novel MOV, and the transient temperature field is simulated by using ANSYS code. Accordingly, the distribution characteristics of the temperature field and heat dissipation law are obtained. The systematical calculations and analyses on the influences of the diameter, numbers and distributions of the cooling channels on the heat transfer are performed, and the optimized geometric parameters with better cooling effects is presented. It is shown that the efficiency of the cooling structure can be changed by changing its diameter, there is an optimum diameter of 10 mm, where the good cooling efficiency is obtained, and the efficiency of cooling structure with the four channels is better than those with the two channels. In addition, the temperature distributions of MOV are calculated when the environment temperature is higher under stable equilibrium state after a long period running of MOA. The calculated results shows that the risen temperature is within the allowable range and MOA can reliably run in the short circuit fault. Finally, the heating and cooling properties of MOA are analyzed under different residual voltages, and the minimum time interval of two continuous faults and heating of MOA for two continuous faults are calculated.
     The goal of this thesis is to provide the theoretical evidence and data support for cooling structural design and heat dissipation analysis of MOA.
引文
[1]崔国文.缺陷、扩散与烧结[M].北京:清华大学出版社,1992.
    [2]王秉钧.金属氧化物避雷器[M].北京:水利电力出版社,1993.
    [3]刘兴发.MOA设计与热特性研究[D].华中科技大学电气工程学院,2007.
    [4]吴维韩,何金良,高玉明.金属氧化物非线性电阻特性和应用[M].北京:清华大学出版社,1998.
    [5]Sakshaug E C, Burke J J, Kresge J S. Metal oxide arresters on distribution systems fundamental considerations[J]. IEEE Transactions on PWRD,1989, (4):2076-2088.
    [6]吴维韩.全封闭组合电器变电所的过电压保护和绝缘配合问题[J].高压电器,1984,31(1):16-25.
    [7]张纬钹,高玉明.电力系统过电压与绝缘配合[M].北京:清华大学出版社,1988.
    [8]张节容等.高压电器原理和应用[M].北京:清华大学出版社,1989.
    [9]陈志清,谢恒塑.氧化锌压敏陶瓷及其在电力系统中的应用[M].北京:水利电力出版社,1992.
    [10]Koch R E, Sakshaug H. Development of a non-fragmenting distribution surge arrester[J]. IEEE Transactions on PAS,1984,103(11):3342-3351.
    [11]Fakheri A J, Bhatt N B, Ware B J, Sybille G, Belanger J. Analysis and control of transient overvoltage on UHV transmission system[J]. IEEE Transactions on PAS,1983,102(10):3315-3328.
    [12]Furukawa S, Usuda O, Isozaki T, Irie T. Development and application of lightning arresters for transmission lines[J]. IEEE Transactions on PWRD,1989, (4):2121-2129.
    [13]Ishida K, Dokai K, Tsozaki T, Irie T, Nakayama T, Fujita H, Arakawa K, Aihara Y. Development of 500kV transmission line arrester and its characteristics[J]. IEEE Transactions on PWRD,1992,7(3):1265-1274.
    [14]李自淳.发电机转子回路过电压保护国内外方案比较[J].中国电力,1994, 27(12):56-60.
    [15]沈力,吉嘉琴.500kV输电线路中直流断路器工作条件的计算[J].清华大学学报,1993,33(4):13-20.
    [16]李庆民,肖茂友,娄杰,李清泉,刘汝水.ZnO避雷器式故障限流器的实用拓扑设计[J].电力系统及其自动化学报,2007,19(3):46-50.
    [17]Kojma S, Oyama M, Yamashita M. Potential distribution of metal oxide surge arresters under various environmental conditions[J]. IEEE Transactions on Power Delivery,1988,3(3):584-590.
    [18]郭洁.非线性金属氧化物电阻片的热性能研究[D].西安交通大学电气工程学院,2001.
    [19]Tominaga S, Shibuya Y, Fujiwara Y, Imataki M, Nitta T. Stability and long term degradation of metal oxide surge arresters[J]. IEEE Transactions on PAS,1980, 99(4):1548-1556.
    [20]Lat M V. Analytical method for performance prediction of metal oxide surge arresters[J]. IEEE Transactions on PAS,1985,104(10):2665-2674.
    [21]鲁莽,何金良,刘励.110kV复合绝缘外套氧化锌避雷器的散热性能[J].高电压技术,1997,23(3):65-66.
    [22]文远芳.MOA中MOV柱的温度场分布研究[J].电磁避雷器,1994,2:41-43.
    [23]郭建,林鹤云,徐子宏,金承祥,李宁.混合绝缘液浸电力变压器的热流耦合场分析及绝缘和散热结构的改进[J].高压电器,2008,44(2):122-125.
    [24]李伟力,丁树业,靳慧勇.基于耦合场的大型同步发电机定子温度场的数值计算[J].中国电机工程学报,2005,25(13):129-134.
    [25]温志伟,顾国彪,王海峰.浸润式与强迫内冷结合的蒸发冷却汽轮发电机定子三维温度场计算[J].中国电机工程学报,2006,12(23):133-138.
    [26]路义萍,李伟力,马贤好,靳慧勇.大型空冷汽轮发电机转子温度场数值模拟[J].中国电机工程学报,2007,27(12):7-13.
    [27]路义萍,马贤好,李伟力.空冷汽轮发电机转子风道结构对传热的影响[J].中国电机工程学报,2007,27(17):61-66.
    [28]宋帆,申春红,林莘,徐建源,马曾锐,南方.800KVGIS隔离开关磁场温度场计算分析[J].高电压技术,2008,34(7):1383-1388.
    [29]张搏宇,李光范,陈立栋,宋继军,张翠霞,李启盛.避雷器及其比例单元的散热特性研究[J].电磁避雷器,2010,4:46-50.
    [30]吴维韩,何金良,高玉明,张骥.合成套氧化锌限压器的热特性研究—第一部分:限压器热特性研究的有限元法及其散热性[J].中国电机工程学报,1996,16(2):110-113.
    [31]吴维韩,何金良,高玉明,张骥.合成套氧化锌限压器的热特性研究一第二部分:阀片功率损耗的模型及限压器热稳定性能[J].中国电机工程学报,1996,16(2):114-118.
    [32]He J L, Zeng R, Chen S M, Tu Y P. Thermal characteristics of high voltage whole-solid-insulated polymeric ZnO surge arrester[J]. IEEE Transactions on Power Delivery,2003,18(4):1221-1227.
    [33]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [34]Stockum F R. Simulation of the nonlinear thermal behavior of metal oxide surge arresters using a hybrid finite difference and empirical model[J]. IEEE Transactions on PWRD,1994,9(1):306-313.
    [35]钱鑫,施围,张光辉.基于径向基网络的金属氧化物避雷器阀片伏安特性拟合[J].西安交通大学学报,2002,36(4):348-352.
    [36]魏斌,文远芳,龚李伟,文斌.基于洛推法的MOV小电流去的描述[J].高电压技术,2004,30(10):27-36.
    [37]李学思.高压MOA的荷电率和均一性[J].电磁避雷器,1986,5:43-46.
    [38]龚李伟,文远芳,孟毅.不同介质中MOV小电流区特性研究[J].高电压技术,2007,33(5):83-86.
    [39]文远芳,梁毓锦,招誉颐.大阶跃电压下MOV的电流响应[J].电瓷避雷器,1993,20(2):33-35.
    [40]贾力.高等传热学[M].北京:高等教育出版社,2003.
    [41]署恒木.工程有限单元法[M].石油大学出版社,2003.
    [42]翁荣周.传热学的有限元方法[M].广州:暨南大学出版社,2000.
    [43]杨世铭,陶文铨.传热学[M].哈尔滨:哈尔滨工程大学出版社,1995.
    [44]何金良,吴维韩.氧化锌阀片的功率损耗特性研究[J].电磁避雷器,1992,(5):55-57.
    [45]何金良,吴维韩.氧化锌阀片功率损耗的特性及其人工神经网络模拟模型[J].电工技术学报,1993,(3):52-55.
    [46]李桃迎,陈燕.基于改进BP神经网络理论的算法研究[J].科学技术与工程,2006,6(14):2061-2064.
    [47]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993.
    [48]张洪流.流体流动与传热[M].化学工业出版社,2002.
    [49]陶文铨.计算流体力学与传热学[M].北京:中国建筑工业出版社,1991.
    [50]张延蕾,佟维.对流换热系数的反求方法[J].大连铁道学院学报,2005,26(4):25-28.
    [51]王福君.计算流体力学分析[M].北京:清华大学出版社,2004.
    [52]Lefevre A, Miegeville L, Fouladgar J, Olivier G.3-D computation of transformers overheating under nonlinear loads[J]. IEEE Transactions on magnetics,2005,41(5):1564-1567.
    [53]王振峰,颜培刚,唐洪飞,黄洪雁,韩万金.高压气冷涡轮内冷通道换热系数准则式的研究[J].工程热物理学报,2010,31(2):247-250.
    [54]丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992.
    [55]邵蕴秋.ANSYS 8.0有限元分析实例导航[M].中国铁道出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700