银杏内酯B对胎鼠海马神经元的神经保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病是一种极具挑战性的神经退行性疾病,其发病机制和海马神经元有着密切的关系,它具有广泛性和复杂性的特点,呈现出较高的发病率,目前全球多达数百万的人患有此病,阿尔茨海默病已经在全世界范围内呈流行性的趋势,它的基本病理组织学特征就是在大脑内形成以β-淀粉样蛋白(beta-amyloid peptide,Aβ)为核心的神经斑,因此用Aβ25-35诱发培养海马神经细胞损伤是一种较好的阿尔茨海默病模型。银杏内酯B(Ginkgobalide B,GKB)来源于天然植物,是中药银杏叶提取物(Extract of Ginkgo bilobaleaves,EGB)的主要活性成分之一,它是一种安全、有效、经济的天然药物。现代研究表明,GKB在很多疾病方面都显示了良好的临床疗效,然而其作用机制尚不明确,所以本研究旨在观察GKB对Aβ25-35诱导的胎鼠海马神经元损伤的神经保护作用,并进一步探讨GKB可能的神经保护作用机制。我们从海马神经细胞的各种形态学改变,细胞存活率,乳酸脱氢酶的释放量,半胱氨酸蛋白酶–3(Caspase-3)的活性及细胞外钾离子的含量等变化观察GKB对Aβ25-35诱导海马神经元损伤的影响,并采用反转录-聚合酶链反应和蛋白质免疫印迹法检测脑源性神经营养因子和神经生长因子在基因水平和蛋白水平的表达变化。研究发现,GKB可以对抗Aβ25-35诱导的海马神经元的凋亡,并上调脑源性神经营养因子和神经生长因子的基因和蛋白的表达水平,改善神经再生的微环境。因此,我们认为GKB可以抑制Aβ25-35诱导的海马神经细胞损伤,而且这种抑制损伤,保护神经的作用机制可能与上调了脑源性神经营养因子和神经生长因子的表达水平,改善了神经再生的微环境有一定的相关性。本研究从多角度,多层面揭示了GKB的神经保护作用及其作用机制,为GKB用于治疗阿尔茨海默病等神经退行性疾病,促进神经损伤修复的研究奠定基础,并为天然药物的研究、开发和利用提供新的思路。
     第一部分:银杏内酯B的神经保护作用研究
     研究目的:
     银杏内酯B对Aβ25-35诱导海马神经元损伤的神经保护作用
     研究方法:
     取16-18 d孕龄的SD胎鼠,分离并进行海马神经元的原代培养,分别采用MTT比色法和活细胞形态学采图筛选出银杏内酯B的最佳效应时间和最佳作用浓度。海马神经元原代培养3 d后,在培养液中加入25μg / mL的Aβ25-35,4 h后再按照分组分别给药。采用已配制好在37℃下聚合7 d的Aβ25-35建立海马神经细胞损伤的模型。各组药物分别作用48 h后,在显微镜下取随机视野观察海马神经细胞的生长和凋亡情况同时进行细胞采图,并采用MTT比色法,在酶标仪下测定每孔的光密度值来观察细胞活力的大小;为了进一步研究Aβ25- 35对海马神经元的细胞毒性,我们对细胞外乳酸脱氢酶释放的含量进行检测,乳酸脱氢酶活性测定方法按照乳酸脱氢酶试剂盒说明书进行;为了研究Aβ25-35对海马神经细胞凋亡程度的影响采用Hoechst33342和PI的荧光染色法对海马细胞核进行染色,通过观察海马神经元细胞核的形态变化和荧光亮度,以检测海马神经细胞的凋亡程度;同时我们还采用NSE和Tunel荧光染色法对细胞体和细胞核共同染色,以检测Aβ25-35对海马神经细胞凋亡的影响;接着检测了细胞凋亡中的关键蛋白酶Caspase-3的活性,并检测了细胞凋亡过程中的重要离子——细胞外钾离子的含量。所有的统计学分析均采用SPSS10.0软件包,实验结果以均数±标准差( x±s)表示,实验数据采用方差分析和Fisher's PLSD检验,以P≤0.05为差异有显著性统计学意义。
     研究结果:
     通过检测细胞活力和活细胞形态学采图,观察GKB对正常海马神经细胞的影响,我们发现与空白对照组相比较,GKB组细胞生长状态较好且光密度值明显增高(P < 0.05),表明GKB有明显的促进神经细胞生长的作用;在银杏内酯B的神经保护作用研究中,细胞形态学实验分别研究了胞体、胞核,以及胞体和胞核共同染色情况下的各种形态学指标。首先是活细胞形态学采图,当给予Aβ25-35后,Aβ25-35组细胞较空白对照组海马神经元胞体消失,产生了大量的细胞碎片,神经元突触消失,网状结构消失;而GKB+Aβ25-35组海马神经元胞体可见,细胞碎片较Aβ25-35组显著减少,海马神经元的特殊折光性可见,并且可以看到突触相互连接而成的网状结构;其次分别进行了Hoechst 33342、PI共同染色及NSE、Tunel共同免疫荧光染色,实验结果表明:当给予Aβ25-35后,凋亡细胞核数量明显增加,存活细胞核数量明显减少,胞体状态显著下降,而GKB+Aβ25-35组较Aβ25-35组凋亡细胞核数量显著减少,存活细胞核数量显著增加,细胞体的状态显著好转;细胞活力检测,乳酸脱氢酶测定,Caspase-3活性和细胞外钾离子含量的检测均表明GKB对损伤情况下的海马神经元有显著的抗Aβ25-35诱导的凋亡作用。Aβ25-35组较空白对照组乳酸脱氢酶含量、Caspase-3活性和细胞外钾离子含量均明显增加(P < 0.01),这说明海马神经细胞的神经损伤模型造模成功;而GKB+Aβ25-35组较Aβ25-35组乳酸脱氢酶含量、Caspase-3活性和细胞外钾离子含量均显著下降(P < 0.01);当加入拮抗剂后,乳酸脱氢酶含量、Caspase-3活性和细胞外钾离子含量均介于GKB+Aβ25-35组和Aβ25-35组之间(P < 0.05),说明GKB具有抗Aβ25-35诱导海马神经元凋亡的作用;GKB+Aβ25-35组和EGB+Aβ25-35组差异不明显(P﹥0.05),说明GKB和EGB有着相似的神经保护作用,并且二者都具有抗Aβ25-35诱导海马神经细胞凋亡的作用。
     研究结论:
     1.银杏内酯B对正常情况下的海马神经元有明显的促进神经元生长的作用。
     2.银杏内酯B对损伤情况下的海马神经元有显著的抗Aβ25-35诱导的凋亡作用。
     第二部分:银杏内酯B的神经保护作用机制研究
     研究目的:
     探讨银杏内酯B对Aβ25-35诱导的胎鼠海马神经元损伤的神经保护作用机制。
     研究方法:
     原代培养海马神经元,采用已配制好(在37℃下聚合7 d)的Aβ25-35(25μg / mL)建立海马神经细胞损伤的模型。实验分组如下:A:空白对照Control组,B:Aβ25-35组,C:GKB+Aβ25-35组,D:EGB+Aβ25-35组,E:GKB组,F:EGB组;分别采用Western-blot和RT-PCR的方法检测脑源性神经营养因子和神经生长因子基因和蛋白表达的变化。统计学分析采用SPSS10.0软件包,实验结果以均数±标准差( x±s)表示,实验数据采用方差分析和Fisher's PLSD检验,以P≤0.05为差异有显著性统计学意义。
     研究结果:
     从GKB对Aβ25-35诱导的海马神经元脑源性神经营养因子与神经生长因子表达的Western-blot和RT-PCR的检测分析图中均可以看出,Aβ25-35组较空白对照组脑源性神经营养因子和神经生长因子的表达明显降低(P < 0.01),这说明海马神经细胞有明显损伤;而GKB+Aβ25-35组较Aβ25-35组脑源性神经营养因子和神经生长因子的表达显著提高(P < 0.05),这说明GKB具有一定的神经保护作用;GKB组与EGB组比较,GKB+Aβ25-35组与EGB+Aβ25-35组比较差异均不明显(P﹥0.05),这说明GKB与EGB有着相似的神经保护作用机制,且二者都可以上调脑源性神经营养因子和神经生长因子的表达水平;同时与空白对照组相比较,GKB与EGB对海马神经元均没有细胞毒性作用,且二者都可以促进胎鼠海马神经元的生长;GKB可以抑制Aβ25-35诱导的海马神经细胞的凋亡,这种神经保护作用机制是通过上调脑源性神经营养因子和神经生长因子的表达水平,从而改善了神经再生的微环境来实现的。
     研究结论:
     1.银杏内酯B和银杏叶提取物有着相似的神经保护作用机制,二者都可以上调脑源性神经营养因子和神经生长因子的表达。
     2.银杏内酯B对损伤情况下的海马神经元有显著的抗Aβ25-35诱导的凋亡作用。银杏内酯B的这种神经保护作用机制是通过上调脑源性神经营养因子和神经生长因子基因和蛋白的表达水平,调节了神经再生的微环境来实现的。
     3.银杏内酯B是中国古树银杏叶提取物中的单体成分,这种天然药物来源广泛,性质稳定,值得进一步研究、开发和利用。
Alzheimer’s disease is the most challenging neurodegenerative disorder characterized by slowly progressive dementia and brain atrophy. It is a complex genetic disease in the global prevalence of up to 15 million people, and has close relationship with hippocampal neurons. Ginkgolide B is a well-defined plant extract which is safe in nature, effective and economic, and Ginkgolide B is a major component of Extract of Ginkgo bilobaleaves medicinal herb. However, the mechanisms underlying Ginkgolide B remain unclear especially in“Micro-environment for nerve regeneration”. So we investigated the potential effectiveness of Ginkgolide B against toxicity induced by Aβ25-35 on hippocampal primary cultured cells, and further exploring the possible mechanisms concerned. We first conducted the study of the Aβ25-35-induced apoptosis characterized by the changes in morphology, cell viability, lactate dehydrogenase level, the caspase-3 activity and extracellular K+ concentration in hippocampal neurons. Moreover, the expression of Brain-derived neurotrophic factor and Nerve growth factor mRNA and the protein synthesis in neurons were detected via RT-PCR and Western-blot assay. It was found out that Aβ25-35 induced apoptosis was attenuated by Ginkgolide B. Ginkgolide B caused Brain-derived neurotrophic factor and Nerve growth factor up-regulation when cells were subjected to Aβ25-35 insults. The micro-environment for nerve regeneration also improved. Ginkgolide B attenuate Aβ25-35 induced apoptosis in hippocampal neurons by Brain-derived neurotrophic factor and Nerve growth factor pattern which play a crucial role in“Micro-environment for nerve regeneration”. We consider it one of the possible mechanisms by which Ginkgolide B daunts the hippocampal neurons apoptosis.
     The study indicate that Ginkgolide B may significantly dampen Aβ25-35 induced apoptosis, and the neuroprotective effects may be intimately associated with Brain-derived neurotrophic factor and Nerve growth factor up-regulation caused by Ginkgolide B. These findings may demonstrate the neuroprotective effects of Ginkgolide B and offer new evidences to the possible mechanisms. The present study on the neuroprotective effects of Ginkgolide B against Aβ25-35 induced apoptosis might pave a way for further investigation of molecular mechanism underlying from protein and gene level, and also lay a foundation for clinical application in the viable molecule to treat neural degeneration diseases and nerve injury. The objective of our experiment is to study the neuroprotective effects of Ginkgolide B with a view to healing neurodegenerative disorders such as Alzheimer’s disease and advancing natural medicine research, development and utilization.
     Objective:
     Investigate neuroprotective effect of Ginkgolide B protects hippocampal neurons from apoptosis induced by beta-amyloid 25-35.
     Methods:
     Primary cultures from hippocampus of pregnant 16 to 18-day Sprague Dawley rat embryos. MTT assay and living cells morphology were used to selected the best effect time and the optimal concentration of Ginkgolide B. After 3 days in vitro, these cells were put away for further experiments. Three days after planting, Ginkgolide B was added to the culture and maintained for 4 hours before being treated with 25μM Aβ25-35. Meanwhile, positive control group, the standardized Extract of Ginkgo bilobaleaves EGb761 was added to the culture, and maintained for 4 hours before being treated with 25μM Aβ25-35. Aβ25-35 was cultured in PBS for 7 days at 37℃. After the culture was treated with different treatments, cell viability was assessed through a modified MTT assay. Since the loss of MTT is not necessarily a valid indicator of cell lysis, toxicity of Aβ25-35 was further examined through an LDH-release assay. LDH activity was determined according to the protocol of an LDH kit. To investigate if Ginkgolide B can protects hippocampal neurons against Aβ25-35-induced neurotoxicity via ameliorating cell apoptosis, we did Hoechst 33342 and PI double staining experiments. In order to identify apoptotic cells, nuclei were made fluorescent by incubation with the DNA intercalating dye. NSE and Tunel staining was carried out according to the introduction of tunel staining kit. Caspase-3 activity was measured via caspase assay kit according to the manufacturer's instructions. To assess the permeability of neurons membranes being treated with Aβ25-35 in the presence or absence of Ginkgolide B, we detection of level of K+ leakage. Statistical analysis was made by using the computer software SPSS 10.0. The data was analyzed by using a two or one-way analysis of variance (ANOVA), then by Fisher's PLSD post-hoc test multiple comparisons. The data was expressed as mean±S.E.M. Statistical significance was set at P≤0.05.
     Results:
     Living cells morphology: When Ginkgolide B was added, the apoptosis of the neurons caused by Aβ25-35 were improved obviously. The amount of cell debris decreased, refractivity in their bodies was promoted, and networks were formed by those neurite linking with each other. Hoechst 33342 and PI double staining: When Ginkgolide B was added, the apoptosis of the neurons caused by Aβ25-35 were improved obviously. The number of apoptotic nuclei decreases significantly, the number of surviving nuclei increase significantly. NSE and Tunel double staining: When Ginkgolide B was added, the apoptosis of the neurons caused by Aβ25-35 were improved obviously. The number of apoptotic nuclei decreased significantly, the state of cell bodies improved significantly. Effects of Ginkgolide B on cell viability, LDH release, Caspase-3 activity and Kalium ion concentration of embryonic hippocampal neurons treated with Ginkgolide B (GKB, 40μg / mL) and / or Aβ25-35 (25μM) for 48 h. The concentration of Extract of Ginkgo bilobaleaves (EGB) is 150μg / mL. The comparison on cell viability, LDH release, Caspase-3 activity and Kalium ion concentration of embryonic hippocampal neurons indicates that Ginkgolide B can protect hippocampal nerves, and Ginkgolide B has neuroprotective effect of hippocampal neurons from apoptosis induced by beta-amyloid 25-35. These figure show control group vs. Aβ25-35 group, P < 0.01; Aβ25-35 group vs. Ginkgolide B+Aβ25-35 group, P < 0.01; Aβ25-35 group vs. Ginkgolide B+I+Aβ25-35 group, P < 0.05; Ginkgolide B+Aβ25-35 group vs. Ginkgolide B+I+Aβ25-35 group, P < 0.05; Ginkgolide B+Aβ25-35 group vs. EGB+Aβ25-35 group, P > 0.05; Ginkgolide B group vs. EGB group, P > 0.05, it shows that Ginkgolide B and EGB have a similar capability of neuroprotection. Ginkgolide B and EGB both have neuroprotective effect of hippocampal neurons from apoptosis induced by Aβ25-35.
     Conclusions:
     1. Ginkgolide B has a clear role in promoting neuronal growth on normal hippocampal neurons.
     2. Ginkgolide B has neuroprotective effect of hippocampal neurons from apoptosis induced by beta-amyloid 25-35.
     PartⅡ: The mechanism of neuroprotective effect on Ginkgolide B
     Objective:
     Investigate neuroprotective mechanism of Ginkgolide B protects fetal hippocampal neurons apoptosis induced by beta-amyloid 25-35.
     Methods:
     Primary cultures hippocampus neurons. Aβ25-35 was cultured in PBS for 7 days at 37℃. After the culture was treated with the below different treatments: (A): control group; (B): Aβ25-35 group; (C): Ginkgolide B+Aβ25-35 group; (D): EGB+Aβ25-35 group; (E): Ginkgolide B group; (F): EGB group. Respectively use Western-blot and RT-PCR methods to detect changes in the expression of BDNF and NGF. Statistical analysis was made by using the computer software SPSS 10.0. The data was analyzed by using a two or one-way analysis of variance (ANOVA), then by Fisher's PLSD post-hoc test multiple comparisons. The data was expressed as mean±S.E.M. Statistical significance was set at P≤0.05.
     Results:
     Western-blot and RT-PCR analysis of hippocampal neurons cells revealed that Ginkgolide B and Extract of Ginkgo bilobaleaves have a similar capability of neuroprotection mechanism, and both can be achieved by the up-regulation of BDNF and NGF expression. Meanwhile, it seemed that the cytotoxicity effect could not be found in Ginkgolide B group and Extract of Ginkgo bilobaleaves group, but Ginkgolide B and Extract of Ginkgo bilobaleaves could promote neuronal growth in cultured embryonic rat hippocampal neurons, compared to the control group. Furthermore, the same changes of BDNF protein and NGF protein could be detected in different groups of hippocampal neurons cells by Western-blot. Thus, BDNF and NGF were inhibited in damaged hippocampal neurons cells and the effects could be partly recovered by Ginkgolide B. The micro-environment for nerve regeneration also improved. The figure show control group vs. Aβ25-35 group, P < 0.01; Aβ25-35 group vs. Ginkgolide B+Aβ25-35 group, P < 0.01; Ginkgolide B+Aβ25-35 group vs. EGB+Aβ25-35 group, P > 0.05; Ginkgolide B group vs. EGB group, P > 0.05. The data indicates that Ginkgolide B and Extract of Ginkgo bilobaleaves have a similar capability of neuroprotection mechanism.
     Conclusions:
     1. Ginkgolide B and Extract of Ginkgo bilobaleaves have a similar capability of neuroprotection mechanism, and both can be partly achieved by up-regulation the expression of BDNF and NGF.
     2. Ginkgolide B has neuroprotective effect of hippocampal neurons from apoptosis induced by beta-amyloid 25-35. The neuroprotective mechanism of Ginkgolide B is via up-regulation the expression of BDNF and NGF, improve the micro-environment for nerve regeneration.
     3. Ginkgolide B is the extract of ginkgo bilobaleaves, the natural medicine has wide variety of sources, stable and easy to use, it is worth further research, development and utilization.
引文
[1] Ahlemeyer B, Mowes A, Krieglstein J. Inhibition of serum deprivation-and staurosporine-induced neuronal apoptosis by Ginkgo biloba extract and some of its constituents [J]. Eur J Pharmacol, 1999, 367(2-3): 423-430.
    [2] Wu WR, Zhu XZ. Involvement of monoamine oxidase inhibition in neuroprotective and neurorestorative effects of Ginkgo biloba extract against MPTP-induced nigrostriatal dopaminergic toxity in C57 mice [J]. Life Sci, 1999, 65(2): 157-164.
    [3]李定梅。我国银杏产业现状及对策。林产化学与工业,1995,15(4):77-80.
    [4]梁立兴,侯九寰。银杏科研的主要成就和展望[J]。武汉植物学研究,1987,4(4):14.
    [5]张燕妙。略谈中国古树名木的文化内涵[J]。林业科技管理,2004,4(4):47-48.
    [6]孟令云,李滨,丁军。银杏叶中无机微量元素含量测定及临床意义[J]。中医药信息,2001,18(5):36-37.
    [7] De Feudis FV, Papadopoulos V, Drieu K. Ginkgo biloba extracts and cancer: a research area in its infancy [J]. Fundam Clin Pharmacol, 2003, 17 (4): 405-417.
    [8] Watanabe CM, Wolffram S, Ader P, Rimbach G, Packer L, Maguire JJ, Schultz PG, Gohil K. The in vivo neuromodulatory effects of the herbal medicine ginkgo biloba [J]. Proc Natl Acad Sci USA, 2001, 98(12): 6577-6580.
    [9]唐灵。银杏叶提取物的药理及临床应用进展[J]。华夏医学,2001,14(3):401.
    [10] Muller WE, Chatterjee SS. Cognitive and other behavioral effects of EGb761in animal models [J]. Pharmacopsychiatry, 2003, 36 (Suppl 1): S24-31.
    [11] Akiba S, Kawauchi T, Oka T, Hashizume T, Sato T. Inhibitory effect of the leaf extract of Ginkgo biloba L. on oxidative stress-induced platelet aggregation [J]. Biochem Mol Biol Int, 1998, 46(6): 1243-1248.
    [12]李玲,郭泽云。银杏提取物对沙土鼠脑缺血再灌注损伤的影响[J]。中国新药与临床杂志,2001,20(3):171.
    [13] Bate C, Salmona M, Williams A. Ginkgolide B inhibits the neurotoxicity of prisons or amyloid-β1-42 [J]. J Neuroinflammation, 2004, 1, 4-4.
    [14] Xin W, Wei T, Chen C, Ni Y, Zhao B, Hou J. Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents [J]. Toxiocology, 2000, 148(2-3): 103-110.
    [15] Chen C, Magee JC, Marcheselli V, Hardy M, Bazan NG.. Attenuated LTP in hippocampal dentate gyrus neurons of mice deficient in the PAF receptor [J]. J Neurophysiol, 2001, 85(1): 384-390.
    [16] Guidetti C, Paracchini S, Lucchini S, Cambieri M, Marzatico F. Prevention of neuronal cell damage induced by oxidative stress in vitro: effect of different Ginkgo biloba extracts [J]. J Pharm Pharmacol, 2001, 53(3): 387-392.
    [17]韩春艳,杨舒祁。中华瑰宝——银杏[J]。黑龙江对外经贸,2001, 2(2):55-56.
    [18] Yao Z, Drieu K, PapadopoulosV. The Ginkgo biloba extract EGb761 rescues the PC12 neuronal cells from beta-amyloid-induced cell death by inhibiting the formation of beta-amyloid derved diffusible neurotoxic ligands [J]. Brain Res, 2001, 889 (1-2): 181-190.
    [19] Mix JA, Crews Jr WD. A double-blind, placebo-controlled, randomized trial of Ginkgo biloba extract EGb761 in a sample of cognitively intact older adults: neuropsychological findings [J]. Hum Psychopharmacol. 2002, 17, 267-277.
    [20] Le Bars PL, Velasco FM, Ferguson JM, Dessain EC, Kieser M, Hoerr R.Influence of the severity of cognitive impairment on the effect of the Ginkgo biloba extract EGb761 in Alzheimer’s disease [J]. Neuropsychobiology. 2002, 45(1), 19-26.
    [21] Maitra I, Marcocci L, Droy-Lefaix MT, Packer L. Peroxyl radical scavenging activity of Ginkgo biloba extract EGb761 [J]. Biochem Pharmacol. 1995, 49(11): 1649-1655.
    [22] Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ, Buford JP, Khan I, Netzer WJ, Xu H, Butko P. Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761 [J]. Proc Natl Acad Sci USA, 2002, 99(19): 12197-12202.
    [23] Clostre F. Ginkgo bilba extract (EGb761) state of knowledge in the dawn of the year 2000 [J]. Ann Pharm Fr, 1999, 57 (suppl): 158.
    [24]王筠默。银杏叶的药理研究[J]。中草药,1998,29 (增刊):9.
    [25]杨义芳,吴国友。银杏叶药理研究概况[J]。现代应用药学,1995,12 (6):5.
    [26] Cohen-Salmon C, Venault P, Martin B, Raffalli-Sébille MJ, Barkats M, Clostre F, Pardon MC, Christen Y, Chapouthier G. Effects of Ginkgo biloba extract (EGb761) on learning and possible actions on aging [J]. J Physiol, 1997, 91(6): 291.
    [27] Stoll S, Scheuer K, Pohl O, Müller WE. Ginkgo biloba extract (EGb761) independently improves changes in passive avoidance learning and brain membrane fluidity in the aging mouse [J]. Pharmacopsychiatry, 1996, 29(4): 144-149.
    [28]朱俐,高静,张祖暄。EGb761对抗海人藻酸神经毒性的作用[J]。南通医学院学报,2000,20(1):13-15。
    [29]管孝鞠,袁伯俊。银杏内酯药理作用研究进展[J]。国外医学·药学分册,1995,22(3):129.
    [30] Baudouin C, Ettaiche M, Imbert F, Droy-Lefaix MT, Gastaud P, Lapalus P. Inhibition of preretinal proliferation by free radical scavengers in an experimental model of tracional retinal detachment [J]. Exp Eye Res, 1994, 59(6): 697-706.
    [31] Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B [J]. Prog Neurobiol, 2002, 67(3): 235-257.
    [32]卢定强,陈钧。银杏内制的药理作用[J]。江苏理工大学学报(自然科学版),2001, 23(2):5.
    [33] González-Vidal MD, Cervera-Gaviria M, Ruelas R, Escobar A, MoralíG, Cervantes M. Progesterone: protective effects on the rat hippocampal neuronal damage due to acute global cerebral ischemia [J]. Arch Med Res, 1998, 29(2): 117-124.
    [34]许在华,魏学忠,章翔。经海绵窦外侧壁手术入路的显微解剖[J]。中国临床解剖学杂志,1999,17(3):202-203.
    [35] Zhu L, Wu XM, Yang L, Du F, Qian ZM. Up-regulation of HIF-l alpha expression induced by ginkgolides in hypoxic neurons [J]. Brain Res, 2007, 1166(8): 1-8.
    [36] Pietri S, Maurelli E, Drieu K, Culcasi M. Cardioprotective and anti-oxidant effects of the terpenoid constituents of Ginkgo biloba extract (EGb761) [J]. J Mol Cell Cardiol. 1997, 29(2), 733-742.
    [37] Akiba S, Kawauchi T, Oka T, Hashizume T, Sato T. Inhibitory effect of the leaf extract of Ginkgo biloba L. on oxidative stress-induced platelet aggregation [J]. Biochem Mol Biol Int, 1998, 46(6): 1243-1248.
    [38] De Feudis FV, Drieu, K. Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications [J]. Curr Drug Targets, 2000, 1(1):25-58.
    [39] Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, Link CD, Luo Y. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb761 and ginkgolides in transgenic Caenorhabditis elegans [J]. J Neurosci, 2006, 26(50): 13102-13113.
    [40] Werneke U, Turner T, Priebe S. Complementary medicines in psychiatry: review of effectiveness and safety [J]. Br J Psychiatry, 2006, 188 (2): 109-121.
    [41] Neils-Strunjas J, Groves-Wright K, Mashima P, Harnish S. Dysgraphia in Alzheimer’s disease: a review for clinical and research purpose [J]. J Speech Lang Hear Res, 2006, 49(6): 1313-1330.
    [42] Chen C, Magee JC, Marcheselli V, Hardy M, Bazan NG.. Attenuated LTP in hippocampal dentate gyrus neurons of mice deficient in the PAF receptor [J]. J Neurophysiol, 2001, 85(1): 384-390.
    [43] Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria [J]. Cell, 1997, 91(5): 627-637.
    [44] Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochmme c release from mitochondria proceeds by a two-step process [J]. Proc Natl Acad Sci USA, 2002, 99(3): 1259-1263.
    [45] De Jong D, Prins FA, Mason DY, Reed JC, van Ommen GB, Kluin PM. Subcellular localization of the bc1-2 protein in malignant and normal lymphoid cells [J]. Cancer Res, 1994, 54(1): 256-260.
    [46] Niu YH, Yang XY, Bao WS. Protective effects of Ginkgo biloba extract on cultured rat cardiomyocytes damaged by H2O2 [J]. Zhongguo Yao Li Xue Bao, 1999, 20(7): 635-638.
    [47]朱俐,吴娟。银杏叶提取物对谷氨酸神经毒性的拮抗作用[J]。中国药理学报,1997,18(4):345-347.
    [48] Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus [J]. J Neurophysiologic, 2001, 85(6): 2423-2431.
    [49] Halliwell B. Reactive Oxygen Species and the Central Nervous System [J]. Journal of Neurochemistry, 1992, 59(5): 1609-1623.
    [50] Vodovotz Y, Lucia MS, Flanders KC, Chesler L, Xie QW, Smith TW, Weidner J, Mumford R, Webber R, Nathan C, Roberts AB, Lippa CF, Sporn MB. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer′s disease [J]. J Exp Med, 1996, 184(4): 1425-1433.
    [51] Pike CJ, Ramezan-Arab N, Cotma CW. Beta-amyloid neurotoxicity in vitro: evidence of oxidative stress but not protection by antioxidants [J]. J Neurochem, 1997, 69(4): 1601-1611.
    [52] Mattson MP, Goodman Y. Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium [J]. Brain Res, 1995, 676(1): 219-224.
    [53] Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Brück W, Jellinger K, Lassmann H. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer′s disease. Evidence for apoptotic cell death [J]. Am J Pathol, 1999, 155(5): 1459-1466.
    [54] Hashimoto Y, Ito Y, Arakawa E, Kita Y, Terashita K, Niikura T, Nishimoto I. Neurotoxic mechanisms triggered by Alzheimer′s disease-linked mutant M146L presenilin 1: involvement of NO synthase via a novel pertussis toxin target [J]. J Neurochem, 2002, 80(3): 426-437.
    [55]杨春艳,邹坤。天然药物神经保护作用的研究进展[J]。中草药,2005,36(3):461-464.
    [56]胡镜清,赖世隆,王奇,梁伟雄,谢红。补肾益智方对阿尔茨海默病大鼠模型脑内胆碱能神经系统的保护作用[J]。广州中医药大学学报,1999,16(3):201-204.
    [57] Weng CM. Study of the protective effects of TCM aromatic resuscitation therapy on the nervous in patients with acute cerebral infarction [J]. J Beijing Univ Tradit Chin Med, 2001, 24(6): 58-60.
    [58] Tan Q, Wang PB. Protection of Sanzijiaming Decoction to rabbit retina damaged by acute glaucoma [J]. J Hunan Coll Tradit Chin Med, 1999, 19(2): 15-16.
    [59] Chen GC, Hu JC, Zhu CQ, Song SQ. Effects of Yiqi Huoxue Tablet on nerve cell apoptosis and expression of related gene in rats with cerebral ischemia [J]. J Guangzhou Univ Tradit Chin Med, 2003, 20(2): 147-149.
    [60] Fu XC, Wang MW, Peng L. Studies on the effects of the Huanglian Jiedu Capsule on preventing and treating the cerebral ischema [J]. J Shenyang Pharm Univ, 2003, 20(1): 41-44.
    [61] Li M, Du XP, Ye H, Yang QD, Xia J. The protection of polygonum multiforum thunb to the rat’s cerebral cholinergic neurofibers [J]. J Brain Nerv Dis, 2002, 10(3): 137-139.
    [62] Zhang JT, Li YZ, Zhao SP. Study of RSM’s neuroprotective effect and the expression of ICE and Bcl-2 after ischemia and reperfusion [J]. Stroke Nerv Dis, 2001, 8(1): 26-28.
    [63] Lu ZH, Xiong LZ, Wang Q, Zheng Y, Zhang X. Protective effects of acanthopanax senticosus injection on focal cerebral ischemic injury in rats [J]. J Fourth Mil Med Univ, 2002, 23(8): 698-700.
    [64] Li YW, Cui XJ, Chen DF, Du SH, Li H, Zhou JH. Effect of tortoises shell onneural stem cell following injuried spinal cord [J]. Chinese Journal of Neuroanatomy, 2003, 19(3): 321-324.
    [65] Chen DF, Du SH, Li YW, Cui XJ, Zhou JH. Effect of tortoise shell on expression of nestin following focal cerebraIischemia reperfusion of nestin following focal cerebraI ischemia reperfusion [J]. Chin J Anat, 2000, 25(4): 315-319.
    [66] Pan SY, Yu L, Liu DY. The experimental study on the effects of panax saponin Rb1、Rg1 on the motorneuron in vitro [J]. Chin J Clin Anat, 1999, 17(4): 359-360.
    [67] Yang K, Wu XM. Protective effects of ginsenosides Rg1, Re, Rhl on hypoxic indury of cultured mouse cortical neurons [J]. Acta Acad Med Nantong, 2002, 22(2): 134-135.
    [68] Pu XP, Li XR, Li HN. Campneoside I of Cistanchetubulosa (Schenk)R. Wight protects neurons from apoptosis induced by neurotoxin 1-methyl-4-phenyl pyridinium (MPP+) [J]. J Peking Univ-Med Sci, 2001, 33(3): 217-220.
    [69] Li LX, Lin CY, Ru LQ. Influence of Tanshinone on levels of AChE and NOS in the hippocampus after Aβ1-40 hippocampal injection of rats with Alzheimer’s-like disease [J]. J Huazhong Univ Sci Tech-Health Sci, 2003, 32(1): 19-32.
    [70] Cohen-Salmon C, Venault P, Martin B, Raffalli-Sébille MJ, Barkats M, Clostre F, Pardon MC, Christen Y, Chapouthier G. Effects of Ginkgo biloba extract (EGb761) on learning and possible actions on aging [J]. J Physiol Paris, 1997, 91(6): 291-300.
    [71] Rimbach G, Gohil K, Matsugo S, Moini H, Saliou C, Virgili F, Weber SU, Packer L. Induction of glutathione synthesis in human keratinocytes by Ginkgo biloba extract (EGb761) [J]. Biofactors, 2001, 15(1): 39-52.
    [72] Brandolic, Sanic A, De Bemardi MA. BDNF and bFGF down regulate NMDA receptor function in cerebellar anule cells [J]. J Neurosci, 1998, 18(23): 7153-7161.
    [73] Chandrasekaran K, Mehrabian Z, Spinnewyn B, Chinopoulos C, Drieu K, Fiskum G. Neuroprotective effects of bilobalide, a componenet of Ginkgo biloba extract ( EGb761 ) in global brain ischemia and in excitotoxicity-induced neuronal death [J]. Phamacopsychiatry, 2003, 36(Suppl 1): S89-94.
    [74] Zhu L, Wu J, Liao H, Gao J, Zhao XN, Zhang ZX. Autagonistic effects of extract from leaves of ginkgo biloba on glutamate neurotoxicity [J]. Zhongguo Yao Li Xue Bao, 1997, 18(4): 344-347.
    [75] Pardon MC, Hanoun N, Perez-Diaz F, Joubert C, Launay JM, Christen Y, Hamon M, Cohen-Salmon C. Long-term treatment with the antioxidant drug EGb761 at senescence restored some neurobehavioral effects of chronic ultramild stress exposure seen in young mice [J]. Neurobiol Aging, 2004, 25 (8): 1067-1083.
    [76] Hoyer S, Lannert H, N?ldner M, Chatterjee SS. Damaged neuronal energy metabolism and behavior are improved by Ginkgo biloba extract (EGb761) [J]. J Neural Transm, 1999, 106 (11-12): 1171-1188.
    [77]李积荣,苗建亭,宿长军,李柱一,林宏,车宇。Aβ对原代培养海马神经元NO,NOS和LDH影晌及bFGF保护作用[J]。中国神经免疫学和神经病学杂志,2003,10(2):79-82.
    [78] Bastianetto S, Ramassamy C, DoréS, Christen Y, Poirier J, Quirion R. The Ginkgo biloba extract (EGb761) protects hippocampal neurons against cell death induced by beta-amyloid [J]. Eur J Neurosci, 2000, 12(6): 1882-1890.
    [79] Kwon YS, Ann HS, Nabeshima T, Shin EJ, Kim WK, Jhoo JH, Jhoo WK, WieMB, Kim YS, Jang KJ, Kim HC. Selegiline potentiates the effects of EGb761 in response to ischemic brain injury [J]. Neurochem Int, 2004, 45(1): 157-170.
    [80] Eckert A, Keil U, Kressmann S, Schindowski K, Leutner S, Leutz S, Müller WE. Effects of EGb761 Ginkgo biloba extract on mitochondrial function and oxidative stress [J]. Pharmacopsychiatry, 2003, 36 (Suppl 1): S15-23.
    [81] Yao Z, Drieu K, Papadopoulos V. The Ginkgo biloba extract EGb761 rescues the PC12 neuronal cells from beta-amyloid-induced cell death by inhibiting the formation of beta-amyloid derved diffusible neurotoxic ligands [J]. Brain Res, 2001, 889(1-2): 181-190.
    [82] Lee TF, Chen CF, Wang LC. Effect of ginkgolides on beta-amyloid suppressed acetylocholine release from rat hippocampal slices [J]. Phytother Res, 2004, 18(7): 556-560.
    [83] Tamatani M, Ogawa S, Niitsu Y, Tohyama M. Involvement of Bcl-2 family and caspase-3-like protease in No-mediated neuronal apoptosis [J]. J Neurochem, 1998, 71(4): 1588-1596.
    [84]刘黎青,王世军,周盛平。银杏叶提取物对大鼠缺血脑组织的保护作用研究[J]。山东医药,2004,44(22):18-19.
    [85] Bastianetto S, Zheng WH, Quirion R. The Ginkgo biloba extract (EGb761) protects and rescues hippocampal cells against nitric oxide induced toxicity: involvement of its flavonoid constituents and protein kinase C [J]. J Neurochem, 2000, 74(6): 2268-2277.
    [86] Genaro AM, Hortelano S, Alvarez A, Martínez C, BoscáL. Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels [J]. J Clin Invest, 1995, 95(4): 1884-1890.
    [87] Bredt DS, Snyder SH. Nitric Oxide: a physiologic messenger molecule [J].Annu Rev Biochem, 1994, 63(8): 175-195.
    [88] Smith JV, Burdick AJ, Golik P, Khan I, Wallace D, Luo Y. Anti-apoptotic properties of Ginkgo biloba extract EGb761 in differentiated PC12 cells [J]. Cell Mol Biol (Noisy-le-grand), 2002, 48(6): 699-707.
    [89] Mak YT, Chan WY, Lam WP, Yew DT. Immunohistological evidences of Ginkgo biloba extract altering Bax to Bcl-2 expression ratio in the hippocampus and motor cortex of senescence accelerated mice [J]. Microsc Res Tech, 2006, 69 (8) : 601-605.
    [90] Ahlemeyer1 B, Krieglstein J. Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer's disease [J]. Pharmacopsychiatry, 2003, 36(Suppl 1): S8-14.
    [91] Xin W, Wei T, Chen C, Ni Y, Zhao B, Hou J. Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents [J]. Toxicology, 2000, 148 (2-3): 103-110.
    [92]李永枝。中医肾虚证研究进展[J]。中国中医基础医学杂志,1996,2(4):56-60.
    [93] Torreilles F, Touchon J. Pathogenic theories and intrathecal analysis of the sporadic form of Alzheimer’s disease [J]. Prog Neurobio1, 2002, 66(3): 191-203.
    [94] PraticòD, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VM. Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice [J]. FASEB J, 2002, 16(9): 1138-1140.
    [95] Berchtold NC, Cotman CW. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s [J]. Neurology of Aging, 1998, 19(3): 173.
    [96] Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, BeyreutherK. Amyloid plaque core protein in Alzheimer disease and Down Syndrome [J]. Proc Natl Acad Sci USA, 1985, 82(12): 4245-4249.
    [97] Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state [J]. J Neurosci, 1993, 13(4): 1676-1687.
    [98] Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons [J]. Proc Natl Acad Sci USA, 1993, 90(17): 7951-7955.
    [99] Yaffe K, Weston A, Graff-Radford NR, Satterfield S, Simonsick EM, Younkin SG, Younkin LH, Kuller L, Ayonayon HN, Ding J, Harris TB. Association of plasma beta-amyloid level and cognitive reserve with subsequent cognitive decline [J]. JAMA. 2011, 305(3): 261-266.
    [1] Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons [J]. Proc Natl Acad Sci USA, 1993, 90(17): 7951-7955.
    [2]牛青霞,赵承彦,靖志安。酶反应比色法检测细胞介导的细胞毒作用的原理与问题[J]。癌变·畸变·突变,2000,12(4):5.
    [3] Cai K, Yang J, Guan M, Ji W, Li Y, Rens W. Single UV excitation of Hoechst 33342 and propidium iodide for viability assessment of rhesus monkey spermatozoa using flow cytometry [J]. Arch Androl, 2005, 51(5): 371-383.
    [4]季秋虹,吴小梅,李建成,朱俐。银杏内酯B抗缺血神经元凋亡的预适应作用[J]。中风与神经疾病杂志,2008,25(5):520-524.
    [5]温进坤,韩梅主编。医学分子生物学——理论与研究技术[M]。第2版。北京:科学出版社,2002,273.
    [6] Earnsshaw WC, Martins LM, Kaufmann SH. Mammalian caspase:structure, activation, subtrates, and functions during apoptosis [J]. Annu Rev Biochem, 1999, 68:383-424.
    [7] Bortner CD, Hughes FM, Cidlowski JA. A primary role for K+ and Na+ efflux in the activation of apoptosis [J]. J Biol Chem, 1997, 272(51): 32436-32442.
    [8]马金忠。神经生长因子防止神经损伤后近端逆行变性及促进再生的实验研究[J]。中华显微外科杂志,1996,19(4):289.
    [9] Preston E, Suthertand G, Finsten A. Thereopenings of blood brain barrier produced by forebrain ischemia in the rat [J]. Neuorsci Lett, 1993, 149(l): 75-78.
    [10] Thompson CB. Apoptosis in the pathogenesis and treatment of disease [J].Science, 1995, 267: 1456.
    [11] Kitazawa M, Anantharam V, Kanthasamy AG. Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase C delta in dopaminergic cells: relevance to oxidative stress and dopaminergic degeneration [J]. Neuroscience, 2003, 119(4): 945-964.
    [12] Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta [J]. Nature, 2000, 403(6765): 98-103.
    [13] Yuan J, Yankner BA. Apoptosis in the nervous system [J]. Nature, 2000, 407(6805): 802-809.
    [14] Wyllie AH. Apoptossi: an overview [J]. British Medical Bulleti, 1997, 53(2): 451-465.
    [15] Janicke RU, Ng P, Sprengart ML, Porter AG. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis [J]. J Biol Chem, 1998, 273(25): 15540-15545.
    [16] Earnsshaw WC, Martins LM, Kaufmann SH. Mammalian caspase: structure, activation, subtrates, and functions during apoptosis [J]. Annu Rev Biochem, 1999, 68(1): 383-424.
    [17] Huang Q, Wu LJ, Tashiro S, Onodera S, Ikejima T. Elevated levels of DNA repair enzymes and antioxidative enzymes by (+)-catechin in murine microglia cells after oxidative stress [J]. J Asian Nat Prod Res, 2006, 8(1-2): 61-71.
    [18] Mazza M, Capuano A, Bria P, Mazza S. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study [J]. European Journal of Neurology, 2006, 13(9): 981-985.
    [19] Lechardeur D, Xu M, Lukacs GL. Contrasting nuclear dynamics of the caspaseactivated DNase (CAD) in dividing and apoptotic cells [J]. J Cell Biol, 2004, 167(5): 851-862.
    [20] Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW. Enhancement of outward potassium current may participate in beta-amyloid pepitide-induced cortical neuronal death [J]. Neurobiol Dis, 1998, 5(2): 81-88.
    [21] Colom LV, Diaz ME, Beers DR, Neely A, Xie WJ, Appel SH. Role of potassium channels in amyloid- induced cell death [J]. J Neurochem, 1998, 70(5): 1925-1934.
    [1] Cardone F, Liu QG, Petraroli R, Ladogana A, D'Alessandro M, Arpino C, Di Bari M, Macchi G, Pocchiari M. Prion protein glycotype analysis in familial and sporadic Creutzfeldt-Jakob disease patients [J]. Brain Res Bull, 1999, 49(6): 429-433.
    [2] Schmitt AB, Breuer S, Liman J, Buss A, Schlangen C, Pech K, Hol EM, Brook GA, Noth J, Schwaiger FW. Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat [J]. BMC Neurosci, 2003, 4(5): 8.
    [3] Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration [J]. Mol Neurobiol, 1997, 14(1-2): 67-116.
    [4]张开刚,冷启新。周围神经损伤再生微环境的研究进展[J]。解剖科学进展,2002,1(8):92-93.
    [5] Xu QG, Midha R, Martinez JA, Guo GF, Zochodne DW. Facilitated sprouting in a peripheral nerve injury [J]. Neuroscience, 2008, 152(4): 877-887.
    [6]张在强,曹世俭,王拥军。实验性糖尿病大鼠坐骨神经损伤后神经再生微环境变化[J]。首都医科大学学报,2009,30(5):664-670.
    [7] Zochodne DW, Guo GF, Magnowski B, Bangash M. Regenerative failure of diabetic nerves bridging transection injuries [J]. Diabetes Metab Res Rev, 2007, 23(6): 490-496.
    [8] Schmeichel AM, Schmeizer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy [J]. Diabetes, 2003, 52(1): 165-171.
    [9] Ban DX, Kong XH, Feng SQ, Ning GZ, Chen JT, Guo SF. Intraspinal cordgraft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat’s spinal cord injury [J]. Brain Res, 2009, 1256(2): 149-161.
    [10] Chang WC, Kliot M, Sretavan, DW. Microtechnology and nanotechnology in never repair [J]. Neurol Res, 2008, 30(10): 1053-1062.
    [11] Zochodne, DW. The microenvironment of injured and regenerating peripheral nerves [J]. Muscle Nerve Suppl, 2000, 9: S33-38.
    [12]王相利,夏萍,程爱国。影响神经再生因素的研究进展[J]。中国煤炭工业医学杂志,1998,1(1):7-9.
    [13] Cordeiro PG, Seckel BR, Lipton SA, D'Amore PA, Wagner J, Madison R. Acidic fibroblast growth factor enhances peripheral nerve regeneration in vivo [J]. Plast Reconstr Surg, 1989, 83(6): 1013-1019.
    [14] Sun CR, Wang CC, Tsang KS, Li J, Zhang H, An YH. Modulation and impact of class I major histocompatibility complex by neural stem cell-derived neurotrophins on neuroregeneration [J]. Med Hypotheses, 2007, 68(1): 176- 179.
    [15]蒋立新,钟世镇。周围神经损伤修复机理的研究进展[J]。中华手外科杂志,1997,13(l):55-57.
    [16]闫乔生。周围神经损伤修复的研究现状[J]。医学信息,1998,11(5):43.
    [17] Fenrich K, Gordon T. Canadian Association of Neuroscience reciew: axonal regeneration in the peripheral and central nervous systems--current issues and advances [J]. Can J Neurol Sci, 2004, 31(2): 142-156.
    [18] Hsu CY, An G, Liu JS, Xue JJ, He YY, Lin TN. Expression of immediate early gene and growth factor mRNAs in a focal cerebral ischemia model in the rat [J]. Stroke, 1993, 24(12 Suppl): 178-181.
    [19] Sch?bitz WR, Berger C, Kollmar R, Seitz M, Tanay E, Kiessling M, Schwab S,Sommer C. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia [J]. Stroke, 2004, 35(4): 992-997.
    [20] Schütte A, Yan Q, Mestres P, Giehl KM. The endogenous survival promotion of axotomized rat corticospinal neurons by brain-derived neurotrophic factor is mediated via paracrine, rather than autocrine mechanisms [J]. Neurosci Lett, 2000, 290(3): 185-188.
    [21] Ostergaard K, Jones SA, Hyman C, Zimmer J. Effects of donor age and brain-derived neurotrophic factor on the survival of dopaminergic neurons and axonal growth in postnatal rat nigrostriatal cocultures [J]. Exp Neurol, 1996, 142(2): 340-350.
    [22] Yan Q, Elliott J, Snider WD. Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy induced cell death [J]. Nature, 1992, 360(6406): 753-755.
    [23] Rabizadeh S, Oh J, Zhong LT, Yang J, Bitler CM, Butcher LL, Bredesen DE. Induction of apoptosis by the low- affinity NGF receptor [J]. Science, 1993, 261(5119): 345-348.
    [24] Phillips HS, Hans JM, Lararnce GR. Widespread expression of BDNF but not NT-3 by target areas of basal forebrain cholinergic neurons [J]. Science, 1990, 250(4978): 290-294.
    [25] Lenoir M, Pedruzzi E, Rais S, Drieu K, Perianin A. Sensitization of human neutrophil defense activities through activation of platelet-activating factor receptors by ginkgolide B, a bioactive component of the Ginkgo biloba extract EGB761 [J]. Biochem Pharmacol, 2002, 63(7): 1241-1249.
    [26] Ying SX, Cheng JS. Effect of electro-acupunture on C-FOS expression in gerbil hippcampus during transient global ischemia [J]. Acupunct ElectrotherRes, 1994, 19(4): 207-213.
    [27] Henderson CE. Role of neurotrophic factors in neuronal development [J]. Curr Opin Neuro, 1996, 6(1): 64-70.
    [28] Huang EJ, Reichardt CF. Neurotrophins: roles in neuronal development and function [J]. Annu Rev Neurosci, 2001, 24(1): 677-736.
    [29] Foster E, Robertson B, Fried K. TrkB-like immunoreactivity in rat dorsal root ganglia following sciatic nerve injury [J]. Brain Res, 1994, 659(1-2): 267-271.
    [30] Ebendal T. Function and evolution in the NGF family and its receptor [J]. J Neurosci Res, 1992, 32(4): 461-470.
    [31] Howe CL, Mobley WC. Nerve growth factor effects on cholinergic modulation of hippocampal and cortical plasticity [J]. Neurobiology of the Neurotrophins, 2001, 1(1): 355-370.
    [32]李昌琪,刘丹,卢大华,罗学港,鞠躬。小鼠坐骨神经损伤后内源性BDNF对脊髓前角运动神经元内突触素I mRNA表达的调节[J]。神经解剖学杂志,2005,21(4):345-349.
    [33] Sobeih MM, Corfas G. Extracellular factors that regulate neuronal migration in the central nervous system [J]. Int J Dev Neurosci, 2002, 20(3-5): 349-357.
    [34]王廷华,陈彦红,冯忠堂。BDNF,NT-3在在猫背根神经元的自分泌和旁分泌作用初探原位杂交和免疫组织化学研究[J]。中国组织化学与细胞学杂志,2000,9(4):408-410.
    [35] Aloe L. Rita Levi-Montalcini: the discovery of nerve growth factor and modem neurobiology [J]. Trends cell Biol, 2004, 14(7): 395-399.
    [36] Benoit BO, Savarese T, Joly M, Engstrom CM, Pang L, Reilly J, Recht LD, Ross AH, Quesenberry PJ. Neurotrophin channeling of neural progenitor cell differentiation. J Neurobiol, 2001, 46(4): 265-280.
    [37]黄镇,金国华,张新化。银杏内酯B对成年大鼠神经干细胞向神经元分化的促进作用[J]。解剖学报,2003,34(8):367-369.
    [38] Aloe L. Rita Levi-Montalcini and the discovery of nerve growth factor: past and present studies [J]. Arch Ital Biol, 2003, 141(2-3): 65-83.
    [39] Shimode H, Ueki A, Morita Y. Nerve growth factor attenuates hippocampal cholinergic deficits and operant learning impairment in rats with entorhinal cogex lesions [J]. Behav Pharmacol, 2005, 14(2): 179-190.
    [40]周廷冲。多肽生长因子基础与临床[M]。北京:中国科学技术出版社,1992:105-122.
    [41] Chao MV. Neurotrophin receptors: a window into neuronal diferentiation [J]. Neuron, 1992, 9(4): 583-593.
    [42] Ji LL, Wang ZY, Tong L. Combination of epidermal growth factor and nerve growth factor on the differentiation of neural stem cells from hippocampus of adult rats [J]. Prog Anatl Sci, 2007, 13(1): 317-320.
    [43] Arimatsu Y, Miyamoto M. Survival-promoting effect of NGF on in vitro septo hippocampal neurons with cholinergic and GABA ergic phenotypes [J]. Brain Res, 1991, 58(2): 189-201.
    [44] Tsukahara T, Yonekawa Y, Tanaka K, Ohara O, Wantanabe S, Kimura T, Nishijima T, Taniguchi T. The role of brain-derived neurotrophic factor in transient forebrain ischemia in the rat brain [J]. Neurosurgery, 1994, 34(2): 323-331.
    [45] Hudson TW, Evans G, Schmidt CE. Engineering strategies for peripheral nerve repair [J]. Orthop Clin North AM, 2000, 11(3): 485-497.
    [46] Altar CA, Armanini M, Dugich-Djordjevic M, Bennett GL, Williams R, Feinglass S, Anicetti V, Sinicropi D, Bakhit C. Recovery of cholinergic phenotype in the injured rat neostriatum: roles for endogenous and exogenous nerve growth factor [J]. J Neurochem, 1992, 59(6): 2167-2177.
    [47] Hughes PE, Alexi T, Walton M, Williams CE, Dragunow M, Clark RG, Gluckman PD. Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system [J]. Prog Neurobiol, 1999, 57(4): 421-450.
    [48]吴彬,胡胜娣,潘慧,祝世功。可卡因-苯丙胺调节转录肽激活ERK促进海马神经元合成BDNF [J]。中国病理生理杂志,2007,23(7):1289-1292.
    [49] Brandolic, Sanic A, De Bemardi MA. BDNF and bFGF down regulate NMDA receptor function in cerebellar anule cells [J]. J Neurosci, 1998, 18(23): 7153-7161.
    [50] Lindvall O, Kokaia Z, Bengzon J, Elmér E, Kokaia M. Neurotrophins and brain insults [J]. Trends Neurosci, 1994, 17(11): 490-496.
    [51] Takeda A, Onodera H, Sugimoto A, Kogure K, Obinata M, Shibahara S. Coordinated expression of messenger RNAs for nerve growth factor ,brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischemia [J]. Neuroscience, 1993, 55(1): 23-31.
    [52]李强,李民,伍亚民。雪旺氏细胞促进周围神经再生的分子机制[J]。中华物理医学与康复杂志,2004,26(9):561-563.
    [53] Zochodne DW, Cheng C. Neurotrophins and other growth factors in the regenerative milieu of proximal nerve stump tips [J]. J Anat, 2000, 196(pt2): 279-283.
    [54] Philips MF, Mattiasson G, Wieloch T, Bj?rklund A, Johansson BB, Tomasevic G, Martínez-Serrano A, Lenzlinger PM, Sinson G, Grady MS, McIntosh TK. Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury [J]. J Neurosurg, 2001, 94(5): 765-774.
    [55] Enokido Y, Hatanaka H. Apoptotic cell death occurs in hippocampal neuronscultured in a high oxygen atmosphere [J]. Neuroscience, 1993, 57(4): 965-972.
    [56] Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord [J]. Nature, 2000, 403(6767): 312-316.
    [57] Bastianetto S, Zheng WH, Quirion R. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells nitric oxide induced toxicity: involvement of its flavonoid constituents and protein kinase C [J]. J Neurochem, 2000, 74(6): 2268-2277.
    [58]马金忠。神经生长因子防止神经损伤后近端逆行变性及促进再生的实验研究[J]。中华显微外科杂志,1996,19(4):289.
    [59] Xu Y, Tao YX. Involvement of the NMDA receptor/nitric oxide signal pathway in platelet-activating factor-induced neurotoxicity [J]. Neuroreport, 2004, 15(2): 263-266.
    [60] Niu YH, Yang XY, Bao WS. Protective effects of Ginkgo biloba extract on cultured rat cardiomyocytes damaged by H2O2 [J]. Zhongguo Yao Li Xue Bao, 1999, 20(7): 635-638.
    [61] Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B [J]. Prog Neurobiol, 2002, 67(3): 235-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700