蹄叶橐吾萜类化合物合成相关基因克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
野生蹄叶橐吾[Ligularia fischeri(Ledeb.)Turcz.],嫩叶可食用,根及根茎入药名“山紫菀”,药理成分主要是萜类化合物紫菀酮、表木栓醇。该植物以其特有的营养价值和药用价值备受人们的关注。本研究以野生蹄叶橐吾为材料,通过引种栽培,进行蹄叶橐吾的组织培养,建立其遗传转化受体系统,首次尝试从功能基因和特异调控基因的角度深入研究紫菀酮合成的分子机制,克隆萜类化合物形成途径(甲羟戊酸途径)的重要调控点:HMG-CoA还原酶家族(HMGR、HMGR2),研究其基因特性、功能、表达部位;分析不同组织转录水平与紫菀酮含量相关性。成功构建了HMGR基因植物双元高效表达载体pBSHMGR。并利用农杆菌介导法对蹄叶橐吾进行了遗传转化。获得了转化效率极高的转基因蹄叶橐吾植株。PCR、Southern以及Northern检测结果表明HMGR基因已经整合到蹄叶橐吾核基因组DNA中,并在转录水平表达。转基因植株及其野生型对照蹄叶橐吾紫菀酮含量HPLC测定结果表明,HMGR基因的超表达增加了紫菀酮在转基因植株根、茎中的积累。为阐明蹄叶橐吾萜类化合物的生物合成代谢通路提供理论基础;为利用基因工程手段生产紫菀酮提供新的思路和理论依据。
The genus Ligularia Cass is one of the large genera in Compositae- Senecioneae-Tussilagininae. In subtrib. Tussilaginac, Ligularia is closely related to, but more advanced than the genus Farfrrgizem Lindl. It includes six sections, 11 series and 129 species. All the taxa are distributed in Asia with only two species extending to Europe. There are 119 speciesin E. Asia, comprising 96 % of the world total. The triterpenoid glycosides are major chemical constituents of the genus Ligularia Cass., in addition that monoterpenes, sesquiterpenrs, diterpenes, steroids, coumarins, peptides are also isolated. Among of hem, some compounds possessed activities of antitumor, antibiotic, antiinflammation.
     3-hydroxy-3-methylglutaryl CoA reductase cDNA genes have been successfully isolated from Ligularia fischeri and named as HMGR with 2031 bp (GenBank accession number: DQ916106), which encodes a predicted polypeptide of 579 amino acids with 62.48kDa and pI 7.63 and HMGR2 with 1153 bp (GenBank accession number: EF133501), which encodes a predicted polypeptide of 343 amino acids with 36.33kDa and pI 8.44.
     The characteristics of HMGR and HMGR2 and their deducted amino acids were analyzed by the tools of bioinformatics in the following aspects: the composition of nuclei acid sequences and amino acid sequences, signal peptide, transmembrane topological structure, hydrophobicity or hydrophilicity, secondary structure of protein, molecular phylogenetic evolution and so on. The result s are as follows: the full-length gene of HMGR contains an opening readingframe, 5′and 3′-untranstrated regions; HMGR and HMGR2 are hydrophilic and transmembrane proteins which lack of signal peptide; the amino acid sequences of HMGRs include two functional HMG-CoA binding motifs and two functional NADPH binding motifs; the main motif of predicted secondary structure of HMGRs are alpha helix and random coil , beta turn and extended strand are spreaded in the whole secondary structure of protein.
     Southern blot analysis performed using a HMGR specific fragment as probe showed that two copies of HMGR gene in Ligularia fischeri. The RNA gel blot analysis showed a different HMGR expression patterns among the different organs at mRNA level with abundant amount in leaves. The determination of Shionone in roots and stems of Ligularia fischeri by HPLC showed rather high content of Shionone in leaves. To further investigate the function of HMGR, the overexpression of HMGR in Ligularia fischeri were alao studied by gene transformation via agrobacterium. PCR, Southern and Northern analyses of transgenic plants showed that the HMGR gene was integrated into the Ligularia fischeri genome and expressed at the transcriptional level. HPLC analysis showed that the Shionone content in transgenic roots and stems of Ligularia fischeri were increased 16.67% and 12.25% as compared with the control. It was suggested that overexpression of the HMGR gene could increase the content of Shionone and indicated that HMGR may play an important role in biosynthesis of Shionone.
     The cloning and characterizations of the above two genes would offer the theoretical basis to further investigate metabolic pathway of isoprenoid biosynthesis in plants.
引文
[1] 张达治,余国奠,张 勉,等.橐吾属植物药用研究概况.中国野生植物资源 2003,22(2):4~6.
    [2] 刘慎谔主编,东北植物检索表,北京:科学出版社.1959,402.
    [3] 吉林卫生局,吉林省药品标准.1977,238.
    [4] 谢宗万主编,中药材品种论述(上册).上海:上海科学技术出版社.1964,53.
    [5] 江苏新医学院编,中药大辞典(下册).上海:上海科学技术出版 B社.1986,2305.
    [6] 李宗友.国外医学.中医中药分册.1994,16(4):41.
    [7] 徐诺.国外医学.中医中药分册.1998,20(3):52.
    [8] 刘尚武,何廷农.菊科新资料.植物分类学报,2001,39(6):553~561.
    [9] 刘尚武,何廷农.橐吾属新分类群.植物分类学报,2000,38(3):286~288.
    [10] 彭卫东,彭泽祥.甘肃橐吾属植物一新种.植物分类学报,1995,33(6):612~613.
    [11] 陈光后,张文锦.橐吾属一新种.植物分类学报,1997,35(2):181~182.
    [12] 张 勉 , 赵 显 国 , 王 峥 涛 等 . 中 国 菊 科 橐 吾 属 一 新 种 . 云 南 植 物 研究,1997,19(3):241~242.
    [13]刘尚武,邓德山,刘建全.橐吾属的起源、演化和地理分布.植物分类学报,1994,32(6):514~524.
    [14]赵显国,李志猛,张 勉等.中药山紫菀类研究.山紫菀类药材药源调查及原植物鉴定.中草药,1998,29(2):115~118.
    [15]赵显国,李志猛,张 勉等.中药山紫菀类研究.山紫菀类药材药源调查及原植物鉴定.中草药,1998,29(2):115~118.
    [16] 张 勉 , 赵 显 国 , 王 峥 涛 等 .中 国 菊 科 橐 吾 属 一 新 种 . 云 南 植 物 研究.1997,19(3):241~242.
    [17]李云森,王峥涛,罗士德.干崖子橐吾的化学成分研究.中国药科大学学报.2001,32(5):342~345.
    [18]李云森,王峥涛,张 勉.干崖子橐吾的萜类成分研究.中国药学杂志,2002,37(1):12~14.
    [19] 李 云 森 , 罗 士 德 , 张 勉 . 棉 毛 橐 吾 的 化 学 成 分 . 中 国 中 药 杂志,2001,26(12):835~836.
    [20]檀爱民,黄剑峰,张 勉等.大头橐吾中生物碱的研究.中国药科大学学报,2001,32(4):250~252.
    [21]王轶,姚艳红,张敬东.长白山区蹄叶橐吾及其嫩茎中蛋白质、粗纤维、还原糖、总糖的分析.延边大学学报(自然科学版),2006,32(1):43~45.
    [22]杨柏明,程肖蕊,李彦舫,郭文场.蹄叶橐吾的栽培技术.特种经济动植物2002,11:26.
    [23]杜娟,杨柏明,李彦舫.蹄叶橐吾的组织培养及植株再生.植物生理学通讯.2006,42(4):687.
    [24]李云森,王峥涛,张勉,檀爱民,陈麟.黄亮橐吾的苯并呋喃类化合物.中草药 2005,36(3):335~337.
    [25]檀爱民,黄剑峰,张 勉等.大头橐吾中生物碱的研究.中国药科大学学报,2001,32(4):250~252.
    [26]檀爱民,王峥涛,洪 鑫等.网脉橐吾的化学成分研究.中国药科大学学报,2002,33(2):104~106.
    [27]檀爱民,何红平,杨虹,张勉,王峥涛,郝小江.网脉橐吾的倍半萜类成分.药学学报, 2003,38(12):924~926.
    [28]檀爱民,杨虹,李云森,毕志明,张勉,王峥涛.网脉橐吾的化学成分研究.中国药学杂志, 2004,39(7)499~500
    [28]高坤,贾忠建.齿叶橐吾中甾醇类化合物结构研究.兰州大学学报(自然科学版),1997,33(4):77~80.
    [29]高坤,杨立,贾忠建.齿叶橐吾中新吉马烷型倍半萜结构研究.高等学校化学学报,1997,18(5):748~749.
    [30]高坤,贾忠建.大黄橐吾中一个新化合物的结构研究.兰州大学学报(自然科学版),2000,36(1):127~128.
    [31]高坤,王文蜀,贾忠建.假橐吾中四对新的倍半萜结构研究.化学学报,2003,61(7):1065~1070.
    [32] 张 勉 , 王 峥 涛 , 赵 显 国 , 等 . 狭 苞 橐 吾 化 学 成 分 的 研 究 . 中 草药,1999,30(2):93~94.
    [33]张勉,陈纪军,罗士德,王峥涛,李云森.干崖子橐吾的化学成分研究.中国药科大学学报,2001,32(5):342~345.
    [34] 张 勉 , 张 朝 凤 , 王 峥 涛 . 侧 茎 橐 吾 化 学 成 分 的 研 究 . 药 学 学报,2005,40(6):529~532.
    [35]张朝凤,张勉,屈蓉,王峥涛.侧茎橐吾的倍半萜类成分研究.中国天然药物,2004,2(6):341~343.
    [36]张朝凤,张勉,王峥涛.天山橐吾的化学成分研究.中药材,2005,28(2):102~104.
    [37]刘建群,张朝凤,张勉,王峥涛,戚欢阳.宽舌橐吾的化学成分研究.中国药科大学学报,2005,36(2):114~117.
    [38]刘建群,张朝凤,王峥涛,张勉.宽舌橐吾的化学成分研究(Ⅱ).中国天然药物,2005,3(6)341~344.
    [39]林锦锋,张朝凤,张勉,王峥涛.大黄橐吾的化学成分研究.中国中药杂志,2005,30(24): 1927~1929.
    [40]杨振华,刘振岭,闫琰,郝永兵.窄头橐吾化学成分的研究.新乡医学院学报,2005,22(5):438~440.
    [41]闫福林,闫琰,吴宏伟,杨丽娟,詹合琴,杨洁.窄头橐吾抗癌活性成分的研究.新乡医学院学报,2006,23(3):220~222.
    [42]潘云雪,窦辉,郑筱祥,高晓忠,周长新,赵昱.大叶橐吾中的黄酮醇苷和单萜苷.中国现代应用药学,2005,22(3):175~178.
    [43]陈宏明,贾忠建,巨 勇.一个新骨架的 C29 二萜内酯的晶体结构.化学学报,1992,50(12):1187~1191.
    [44]赵昱,田军,贾忠建.离舌橐吾中一新三萜皂甙—离舌橐吾甙 A.云南植物研究,1995,17(3):356~358.
    [45]李志猛,赵显国,王峥涛.中药山紫菀类研究.七种山紫菀挥发油含量测定及其成分分析.中国野生植物资源,1997,16(1):12~14.
    [46]汪汉卿,刘霞,蒋生祥,魏小宁.千花橐吾挥发油化学成分研究.中兽医医药杂志,2002,4:8~10.
    [47]唐艳丽,邓雁如,汪汉卿.黄帚橐吾挥发油化学成分的研究.中国中药杂志,2003,28(7):627~628.
    [48]马瑞君,王明理,朱学泰,鲁先文,孙坤.黄帚橐吾挥发物的化感作用及其主要成分分析.应用生态学报,2005,16(10):1826~1829.
    [49]李莉,汪汉卿.箭叶橐吾挥发油化学成分的研究.天然产物研究与开发,2003,15(3):224~225.
    [50]申爱英,朴奎善,刘玉华等.草药肾叶橐吾中的微量元素分析.中国野生植物资源,1998,17(4):53,56.6
    [51]全国中草药汇编编写组.全国中草药汇编(第二版)下.北京:人民卫生出版社,1996,831.
    [52]中国科学院西北高原生物研究所.藏药志.西宁:青海人民出版社,1991.
    [53] 王 天 高 , 邓 铭 官 . 祖 传 验 方 橐 吾 汤 治 疗 乳 痛 症 疗 效 探 讨 . 海 峡 药学,1995,7(2):52~53.
    [54]李丽波,王玉祥,孙连平.蹄叶橐吾乙醇提取物抗炎作用的实验研究.中国中医药科技,2004,11(5):285~287.
    [55]李茁,樊变兰,袁文学.山紫菀与紫菀镇咳祛痰作用的实验研究.沈阳药学院学报,1987,4(2):136.
    [56]王银叶,陈宏明,陈洁.橐吾中倍半萜对二氢吡啶类受体的作用研究.中国药学杂志,1998,33(1):19~21.
    [57]王春明,陈 兴,王 瑛,贾忠建,郑荣梁. 离舌橐吾中3种倍半萜的体外抗癌活性. 兰州大学学报(自然科学版).2002,38(6):123~124.
    [58]闫福林,闫琰,吴宏伟,杨丽娟,詹合琴,杨洁.窄头橐吾抗癌活性成分的研究.新乡医学院学报,2006,23(3):220~222.
    [59] 徐 国 兵 , 万 德 光 , 曾 万 幸 . 紫 菀 , 女 菀 , 白 菀 , 山 紫 菀 的 考 证 . 中 药材,1995,18(12):635~636.
    [60]赵显国,王峥涛,林鸽.山紫菀类药材的原植物及其毒性考证.中国中药杂志,1998,23(3):131~133.
    [61]柳晓泉,林鸽,王广基.人肝 CYP3A 参与了山冈橐吾碱的代谢及其肝毒性代谢物的形成.中国药理学与毒理学杂志,2002,16(1):15~20.
    [62]柳晓泉,林鸽,王广基.山冈橐吾碱在雌性大鼠肝微粒体内的代谢.中国药理学与毒理学杂志,2001,15(6):413~417.
    [63] Chiaki Kuroda,Ryo Hanai,Xun Gong,Yue mao Shen,Motoo ToriChemical and Genetic Diversity of Some Ligularia Species(Compositae)in Northwestern Yunnan and Southwestern Sichuan of China.Journal of Fudan University (NaturalScience). 2005,44(5):742~743.
    [64]单保庆,杜国祯,刘振恒.不同养分条件下和不同生境类型中根茎草本黄帚橐吾的克隆生长.植物生态学报,2000,24(1):46~51.
    [65] 刘 建 全 , 杨 惠 玲 , 何 亚 平 . 掌 裂 橐 吾 的 胚 胎 学 . 西 北 植 物 学 报 , 2001,21(5):900~904.
    [66]杜娟,李彦舫.蹄叶橐吾化学成分及药理活性之研究进展.中国农学通报,2005,21(11):92~95.
    [67] 周桂飞 , 徐茂军 . 植物次生代谢物质生物合成的研究 , 生 物 学 通 报,2005,40(12):12~14
    [68]Arimura GI. Herbivory-induced volatiles elicit defense gene in lima bean leaves. Nature, 2000, 406: 512~515
    [69]Day TA, Howells BW, Rice WJ. UV absorption and epidermal transmittance spectra in folliage. Physiol Plant, 1994, 92: 207~218
    [70]Gitz DC, Liu L, McClare JW. Phenolic metabolism, growth, and UV-B tolerance in PAL inhibited red cabbage seedlings. Phytochem, 1998, 49: 377~386
    [71]Isabecle SBJ, Shyam KD, Marcel AKL. UV radiation impacts light-mediated turnover of the PSⅡ reaction center heterodimer in Arabidopsis mutant altered in phenlic metabolism. Plant Physiol, 2000, 124: 1275~1283
    [72]Ikeda I, Masto Y, Sasaki E, et, al. Tea catechins decrease micellar solubility and intestinal sbsorption of cholestezol in rats. Biochem Biophys Acta, 1992, 1127: 141~147
    [73]Hu XF, Shen SG, Piao ZR, et, al. Review on antioxidative mechanism of tea ployphenols. J Tea Sci, 1999, 19: 41~48
    [74]Dixon RA, Paiva N L. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7: 1085~1097
    [75]Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 521~547
    [76]Hartmut K. Lichtenthaler. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 47~65
    [77]Facchini PJ. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. A nnu Rev Plant Physiol PlantMol Biol, 2001, 52: 29~66
    [78]Kosuge T, Gilchrist DG. Aromatic amino acid biosynthesis and its regulation. Biochem Plants, 1980, 5: 507~531
    [79]Winkel-Shirtey B. Evdence for enzyme complexes in the phenylpropanoid and flavonoid pathway. Physiol Plant, 1999, 107: 142~149
    [80]McMullen MD, Byrne PF, Snook ME, et, al. Quantitative trait loci and metabolic pathways. Proc Natl Acad Sci USA, 1998, 95: 1996~2000
    [81]Rasmussen S, Dixon RA. Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell, 1999, 11: 1537~1551
    [82]Burbulis IE ,Winkel-Shireley B. Interactions among enzymes of the Arabidopsis flavonoid biosynthestic pathway. Proc Natl Acad Sci USA, 1999, 96: 12929~12934
    [83]He XZ , Dixon RA. Genetic manipulation of isoflvone 7-O-methyl-transferase enhances biosynthesis of 4’-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell, 2001, 12: 1689~1702
    [84]Hrazdina G. Compartmentation in aromatic metabolism. In: Ibrahim RK. Recent Advances in Phytochemistry. New York: Plenum Press, 1992: 1~33
    [85]Winkel-Shirley B. Flavonoids biosynthesis: a colorful model for genetics, biochemistry. cell biology and biotechnology. Plant Physiol, 2001 ,126: 485~493
    [86]Dixon RA, Chen F, Guo D, Parvathl K. The biosynthesis of mono-lignois: a“metabolic grid”, or independent pathways to guaiacyl and syringyl units. Phytochemistry , 2001, 57: 1069~1084
    [87]Madyastha KM, Ridgway J E, Dwyer J G. Subcellular localization of acytochrome P-450-dependent monooxygenase in vesicles of the higher plant Catharanthus roseus. J Cell Biol, 1999, 72: 303~313
    [88]Narita JO, Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during repening. Plant Cell, 1989, 1: 181~190
    [89]Choi D, Ward BL, Bostock RM. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme a reductase genes in reponse to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell, 1992, 4: 1333~1344
    [90]Dixon R. Natural products and plant disease resistance. Nature, 2001, 411(14): 843~847
    [91]Back KW. Structure-function comparsions of sesquiterpene cyclases isolated from Nicotiana tabacum and Hyoscyamus muticus. PhD dissertation of University of Kentucky, 1995. 1~10
    [92]Hashimoto T, Nakajima K, Ongena G, et, al. Two tropinone reductases with distinct stereospecificities from cultured roots of Hyoscyamus niger. Plant Physiol, 1992, 100: 836~845
    [93]Portsteffen A, Drager B, Nahrstedt A. Two tropinone reducing enzymes from Datura stramonium transformed root cultures. Phytochemistry, 1992, 31: 1135~1138
    [94]Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature, 1990, 343: 425~430
    [95]Gondet L, Weber T, Maillot-Vernier P, et, al. Regulatory role of microsomal 3-hydroxy -3-methylglutaryl-coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem Biophys Res Commun, 1992, 186: 888~893
    [96]He SL, Lin WX, Chen RK, et, al. The induction of UV on sesquiterpene cyclase and squalene synthase in Capsicum annuum. J A gri Biotechnol, 1999, 7: 377~381
    [97]He SL, Zheng J G, Chen R K. Sesquite rpene cyclase gene expression in leaves of Capsicum annuum by some abiotic elicitors. Chin J Appl Environ Biol, 2002, 8: 61~65
    [98]Vogeli U, Chappell J. Induction of sesquiterpene cyclase and suppression of squalene synthase activities in plant cell cultures treated with fungal elicitor. Plant Physiol, 1988, 88: 1291~1296
    [99]Keller H, Czernic P, Ponchet M, et, al. Sesquiterpene cyclase is not a determining factor for elicitor and pathogen-induced capsidiol accumulation in tobacco. Planta, 1998, 205: 467~476
    [100]He Shuilin, Zheng Jingui, Wang Xiaofeng, et,al. Plant Secondary Metabolism: Function, Regulation and Gene Engineering. Chin J Appl Environ Biol, 2002, 8(5): 558~563
    [101]Facchini PJ, Huber Allanach KL, Tari LW. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000, 54 (2): 121~38
    [102]Goddijn OJM, Pennings EJ, Schilperoort RA,et,al. Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgene Res, 1995, 4: 315~323
    [103]Canel C, Lopes-Cardoso M I, Whitmer S,et,al. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus rosues. Planta, 1998, 205: 414~419
    [104]Hain R, Bleseler B, Kindl H, et, al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol, 1990, 15: 325~335
    [105]Hain R, Reif HJ, Krause E, et, al. Disease resistance results from foreignphytoalexin expression in a novel plant. Nature, 1993, 361: 153~156
    [106]Tian WZ, Ding L, Cao SY, et, al. Rice transformation with a phytoalexin gene and bioassay of the transgenic plants. Bot Sci Acta, 1998, 40(9): 803~808
    [107]梁辉, 郑近, 段霞瑜等. 用基因枪法获得抗白粉病转芪合酶基因小麦. 科学通报, 1999, 44(24): 2244~2248
    [108]Tattersall DB, Bak S, Jones PR, et, al. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science , 2001, 12: 595~601
    [109]Yu O, Jung W, Shi J, et, al. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol, 2000, 124: 781~793
    [110]Ye X, Al-Babili S, Kloti A, et, al. Engineering proitamin A (β-carotene ) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287 :303~305
    [111]Baucher M, Monties B, Van Montagu M, et, al. Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci, 1998, 17: 125~197
    [112]Atanassova R, Favet N, Martz F, et, al. Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J, 1995, 8: 465~477
    [113]Leslievander Fits, Johan Memelink. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science,2000, 289: 295~297
    [114]Alan ML, Walbot V, Davis RW. Arabidopsis and Nicotiana anthocyanin production activated by maize regulator R and C1. Science, 1992 , 258: 1773~1175
    [115]Cane DE. BIOSYNTHETIC PATHWAYS: Biosynthesis Meets Bio informatics. Science, 2000, 87:818
    [116]Lange BM,Rujan T,Martin W,Croteau R. Isoprenoid biosynthesis:the evolution oftwo ancient and distinct pathway sacross genomes. Proc Natl Acad Sci USA,2000,7(13):172
    [117]Rohmer M,Knani M,Simonin P,et,al. Isoprenoid biosynthesis in bacteria:anovel pathway for the early steps leading to isopentenyl diphosphate.Biochem J,1993,295(Pt2):517
    [118]RohmerM.The discovery of amevalonate-independent pathway for isoprenoid biosynthesis in bacteria,algae and higherplants.Nat Prod Rep,1999,16:565
    [119]Schwende J, Zeidler J,Groner R,et,al.Incorporationof1-deoxy-D-xyluloseinto isopreneand phytolbyhigher plants and algae. F EBS Lett,1997, 414:129
    [120]Newman J D, Chappell J. Isoprenoid biosynthesis in plants:carbon partitioning with in the cytoplasmic pathway. Crit Rev Biochem Mol Biol,1999, 34:95
    [121]Eisenreich W, Schwarz M,Cartayrade A,et,al. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plant sand microor-ganisms. Chem Biol,1998,5:R221
    [122]Lichtenthaler H K. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol,1999,50:47
    [123]Schwender J,Seemann M,Lichtenthaler H K,et,al. Biosynthesis of isoprenoids (carotenoids,sterols,prenylside-chains of chloro-phylls and plastoquinone) via anovel pyruvate glyceraldehyde3-phosphatenon-mevalonate pathway in the greenalga Scenedesmus obliquus. Bio chem. J,1996, 316(1):73
    [124]Lange BM,Croteau R.Isoprenoid biosynthesis via amevalonate independ entpathway in plants:cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphatereduc to isomerase from peppermint. Arch Biochem Biophys,1999,365:170
    [125]Takahashi S, KuzuyamaT, Watanabe H, et, al. A 1-deoxy-D-xylulose5-phosphatereduc to isomerasecatalyzing the form ation oftwo ancient and distinct pathway sacross genomes. Proc Natl Acad Sci USA,2000,7(13):172
    [117]Rohmer M,Knani M,Simonin P,et,al. Isoprenoid biosynthesis in bacteria:anovel pathway for the early steps leading to isopentenyl diphosphate.Biochem J,1993,295(Pt2):517
    [118]RohmerM.The discovery of amevalonate-independent pathway for isoprenoid biosynthesis in bacteria,algae and higherplants.Nat Prod Rep,1999,16:565
    [119]Schwende J, Zeidler J,Groner R,et,al.Incorporationof1-deoxy-D-xyluloseinto isopreneand phytolbyhigher plants and algae. F EBS Lett,1997, 414:129
    [120]Newman J D, Chappell J. Isoprenoid biosynthesis in plants:carbon partitioning with in the cytoplasmic pathway. Crit Rev Biochem Mol Biol,1999, 34:95
    [121]Eisenreich W, Schwarz M,Cartayrade A,et,al. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plant sand microor-ganisms. Chem Biol,1998,5:R221
    [122]Lichtenthaler H K. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol,1999,50:47
    [123]Schwender J,Seemann M,Lichtenthaler H K,et,al. Biosynthesis of isoprenoids (carotenoids,sterols,prenylside-chains of chloro-phylls and plastoquinone) via anovel pyruvate glyceraldehyde3-phosphatenon-mevalonate pathway in the greenalga Scenedesmus obliquus. Bio chem. J,1996, 316(1):73
    [124]Lange BM,Croteau R.Isoprenoid biosynthesis via amevalonate independ entpathway in plants:cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphatereduc to isomerase from peppermint. Arch Biochem Biophys,1999,365:170
    [125]Takahashi S, KuzuyamaT, Watanabe H, et, al. A 1-deoxy-D-xylulose5-phosphatereduc to isomerasecatalyzing the form ation of
    [135]Wang C W, Oh M K, Liao J C. Engineered isopemoid pathway enhances astaxanth in production in Escherichia coli . Biotechnol Bioeng, 2000 62(2): 235~241
    [136]Kajiwara S, Fraser P D, Kondo K, et al. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J, 1997,324:421~426
    [137]Martin V J,Pitera D J,Withers S T, et al.Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnology, 2003,21(7): 796~802
    [138]Huang Q L, Roessner C A, Croteau R,et al Engineering Escherichia coli for the synthesis of taxadiene, a key inter mediatein the biosynthesis of taxol Bioorg . Med Chem,2001,9 2237~2242
    [139]Matthews P D, Wurtzel E T .Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol, 2000, 53: 396~400
    [140]Reiling K K,Yoshikuni Y,Martin V J. Mono and diterpene production in Escherichia coli . Biotechnol Bioeng, 2004,87 (2): 200~212
    [141]Martin V .J Yoshikuni Y, Keasling J D. The in vivo synthesis of plants esquiterpenes by Escherichia coli . Biotechnol Bioeng ,2001, 75( 5): 497~503
    [142]Kim S W, Keasling J D. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escheridiia coli enhances lycopene production. Biotechnol Bioeng ,2001, 72(4): 408~415
    [143]Carter O A, Peter R .J, Croteau R. Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry, 2003, 64(2): 425~433
    [144]Yamano S, Ishii T, Nakagawa M, et al. Metabolic engineering for production ofbeta-carotene and lycopene in Sacchararnyces cerevisiae. Bio sci Biotechnol Biochem, 1994, 58(6):1112~1114
    [148]Misawa N, Shimada H. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. Biotechno J,1997,59( 3): 169~181
    [145] Jackson B E, Hart-Wells E A, Matsuda S P. Metabolic engineering to produce sesquiterpenes in yeast. Org lett, 2003,5(10):1629~1632
    [146]Polakowski T, Stahl U, Lang C .Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechno J, 1998, 49: 66~71
    [147]Donald K A, Hampton R Y Fritz I B. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Sacchararuyces cerevisiae. AppI Environ Microbiol, 1997, 63 ( 9): 3341~3344
    [148]Verdoes J C, Sandmann G Visser H,et al. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast. XauthoFryhllomyces deudranous (Phaffra rhiodozyma).APPI Environ Microbiol. 2003,69( 7): 3728~3738
    [149]Shimada H, Kondo K, Fraser P D, et al. Increased carotenoid production by the food yeast candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 1998 64(7): 2676~2680
    [150]Wallaart T E, Bouwmeester H J, Hille J,et al. Amorph α-4,11-diene synthase:cloning and functional expression of a keyenzyme in the biosynthetic pathway of the novel antimalarial dmgartemisinin. Planta, 2001, 212(3): 460~465
    [151]Mann M, Harker M, Pecker J et al. Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol, 2000, 18( 8): 888~892
    [152]LuckerL Schwab W, Hautum B V,et al. Increased and altreed fragrance oftobacco plants after metabolic engineering using three monoterpene synthases from Lemon. Plant Physiol 2004,134 510~519
    [153]Ducreux L .J,Morris W J ,Hesley P E, et al. Metabolic engineering of high carotenoid potato tubers containing enhanced leves of beta-carotene and lutein. Exp Boi, 2005, 56( 409): 81~89
    [154]Lewinsohn E, Schalechet F, W ilkinson J, et al. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol, 2001, 127(30): 1256~1265
    [155]Masferrer A, Arro M, Manzano D, et al. Overexpression of Arabidopsis thaliana famesyl diphosphate synthase(FPAIS) in transgenic Arttbidopsis induces a cell death/senescence-like espouse and educed cytokinin levels . Plant J, 2002, 30( 2):123~132
    [156]Besumbes O, Sauret-Greto S, Phillipa MA, et al. Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first comet fitted precursor taxol technol. Bioeng, 2004 88(2): 168~175
    [157]Rosati C, Aquilani R, Dhamrapuri S,et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit .Planlt J, 2000, 24( 3): 413~419
    [158]Dhamrapuri S ,Rosati C, Pallara P, et al. Metabolic engineering of xanthophylls content in tomato fruits. FEBS Lets, 2002, 519(1-3): 30~34
    [159]Wang G Y, Keasling J D. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Nemaspora cmssa. Metab Eng, 2002, 4( 3): 193~201
    [160]Frigaard N U, Maresca JA, Yunker C E,et al. Genetic manipulation of carotenoid biosynthesis in the glen sulfur bacterium chlorobium tepidum. J Bacteriol, 2004,186(16): 5210~ 5220
    [161]Bach T J. Hydroxy methylglutary l-CoA reductase, a keyenzyme in phytosteroltobacco plants after metabolic engineering using three monoterpene synthases from Lemon. Plant Physiol 2004,134 510~519
    [153]Ducreux L .J,Morris W J ,Hesley P E, et al. Metabolic engineering of high carotenoid potato tubers containing enhanced leves of beta-carotene and lutein. Exp Boi, 2005, 56( 409): 81~89
    [154]Lewinsohn E, Schalechet F, W ilkinson J, et al. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol, 2001, 127(30): 1256~1265
    [155]Masferrer A, Arro M, Manzano D, et al. Overexpression of Arabidopsis thaliana famesyl diphosphate synthase(FPAIS) in transgenic Arttbidopsis induces a cell death/senescence-like espouse and educed cytokinin levels . Plant J, 2002, 30( 2):123~132
    [156]Besumbes O, Sauret-Greto S, Phillipa MA, et al. Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first comet fitted precursor taxol technol. Bioeng, 2004 88(2): 168~175
    [157]Rosati C, Aquilani R, Dhamrapuri S,et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit .Planlt J, 2000, 24( 3): 413~419
    [158]Dhamrapuri S ,Rosati C, Pallara P, et al. Metabolic engineering of xanthophylls content in tomato fruits. FEBS Lets, 2002, 519(1-3): 30~34
    [159]Wang G Y, Keasling J D. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Nemaspora cmssa. Metab Eng, 2002, 4( 3): 193~201
    [160]Frigaard N U, Maresca JA, Yunker C E,et al. Genetic manipulation of carotenoid biosynthesis in the glen sulfur bacterium chlorobium tepidum. J Bacteriol, 2004,186(16): 5210~ 5220
    [161]Bach T J. Hydroxy methylglutary l-CoA reductase, a keyenzyme in phytosterolAcad Sci USA,1998,95:2100~2104
    [170]鞠世杰,阎秀峰.高等植物的 3-羟基-3-甲基戊二酰辅酶 A 还原酶.植物生理学通讯, 2004, 40(1):104~110
    [171]WangY, DarnayBG,RodwellVW. Identification of the principal catalvtically important acidicresidues of 3-hydroxy-3-methylglutaryl coenzyme A reductase J Biol Chem, 1990, 265: 21634~21641
    [172]DarnayK,WangY,BodwellM. Identification of the cataiytically important histidine of HMG-coA a reductase. J Biol Chem, 1992, 267: 15064~15070
    [173]CaellesC, FerrerA, BalcellsLetal Isolation and structural charactorization of a cDNA encod- ing Arabidopsis thaliana 3-hydrox-3-methylglutaryl coenzyme A reductase Plant Mol Biol,1989,13; 627~638
    [174]Learned RM, Fink GR. 3-hydroxy-3-methylglutaryl coenzyme A reductase from Arabidopsis thalianais structurally distinct from the yeast and animal enzymes. Proc Natl Acad Sci USA,1989, 86: 2779~2783
    [175]Campos N,Boronat A.Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase .Plant Cell, 1995, 7: 2163~2174
    [176]Enjuto M, Balcells L, Campos N etal. Arabidopsis thaliana contains two differentially espressed 3-hydroxy-3-methylglutaryl coenzyme A reductase genes, which encode microsmal forms of the enzyme. Proc Natl Acad Sci USA, 1994, 91: 927~931
    [177]Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins the PEST hypothesis. Science,1986 ,234: 364~368
    [178]Olender EH, Sirmni RD.The intracellular targeting and memnrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase .J Biol Chm, 1992, 267; 4223~4235
    [179]Denbrnu CJ,Lang S, Cramer CL. Targeting and memnrane orientation ofAcad Sci USA,1998,95:2100~2104
    [170]鞠世杰,阎秀峰.高等植物的 3-羟基-3-甲基戊二酰辅酶 A 还原酶.植物生理学通讯, 2004, 40(1):104~110
    [171]WangY, DarnayBG,RodwellVW. Identification of the principal catalvtically important acidicresidues of 3-hydroxy-3-methylglutaryl coenzyme A reductase J Biol Chem, 1990, 265: 21634~21641
    [172]DarnayK,WangY,BodwellM. Identification of the cataiytically important histidine of HMG-coA a reductase. J Biol Chem, 1992, 267: 15064~15070
    [173]CaellesC, FerrerA, BalcellsLetal Isolation and structural charactorization of a cDNA encod- ing Arabidopsis thaliana 3-hydrox-3-methylglutaryl coenzyme A reductase Plant Mol Biol,1989,13; 627~638
    [174]Learned RM, Fink GR. 3-hydroxy-3-methylglutaryl coenzyme A reductase from Arabidopsis thalianais structurally distinct from the yeast and animal enzymes. Proc Natl Acad Sci USA,1989, 86: 2779~2783
    [175]Campos N,Boronat A.Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase .Plant Cell, 1995, 7: 2163~2174
    [176]Enjuto M, Balcells L, Campos N etal. Arabidopsis thaliana contains two differentially espressed 3-hydroxy-3-methylglutaryl coenzyme A reductase genes, which encode microsmal forms of the enzyme. Proc Natl Acad Sci USA, 1994, 91: 927~931
    [177]Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins the PEST hypothesis. Science,1986 ,234: 364~368
    [178]Olender EH, Sirmni RD.The intracellular targeting and memnrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase .J Biol Chm, 1992, 267; 4223~4235
    [179]Denbrnu CJ,Lang S, Cramer CL. Targeting and memnrane orientation ofgene encoding3-hydroxy-3- methylglutaryl coenzyme A reductase (CucumismeloL. reticulatus). Mol Genet Gencmics, 2001, 265:135~142
    [190] WntzingerLF, Bach TJ, HartmannM-A. Inhibition of sequalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3- methylglutaryl coenzyme A reductase. Plant Physiol, 2002, 130: 334~346
    [191]ChyeML, Tan CT, ChuaNH. Three genes encode 3-hydroxy-3-methylglutaryl coenzyme A reductase in Hevea brasi1iensis HMG1and HMG3 are differentially expressed .PIant Mol Biol,1992,19: 473~484
    [192]Aoyagi K, BeyouA, Moon K et al. Isolation and characterization of cDNAs encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase . PIant Physiol, 1993, 102:623~628
    [193]Park H-S, Denbow CJ, Cram CL. Structure and nucleotide squence of tomato HMG2 encodi- ng 3-hydroxy-3-methylglutaryl coenzyme A reductase. PIant Mol Biol, 1992,20: 327~331
    [194]Ha SH, LeeSW, Kim YM, et al. Molecular characterization of HMG2 gene encoding a 3-hydroxy-3-methylglutaryl coenzyme A reductase . Mol Cells, 2001, 11: 295~302
    [195]RupasingheHPV, Almquist KC, Paliyath G et al. Cloning of hmg 1 and hmg2 cDNAs encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase and their expression and activity in re1ation to alpha-farnesene synthesis in apple. Plant Physiol Bio chm, 2001, 39:933~947
    [196]陈大华,叶和春,李国风等.马铃薯 HMGR 基因的克隆、序列分析及其表达特征.植物学报,2000, 42:724~ 727
    [197] Narita JQ, Gruissem W. Tomato hydroxyl methylglutaryl-CoA rcductase is required early in fruit develapment but not during ripening. Plant Cell, 1989,1:181~190
    [198]Vogoli U, Chappell J. Induction of seequitarpene cycluse and suppression of squalene synthetase activities in plant cell cullures treated with fungal elicitor. Plant Physiol, 1998,88:1291~1296
    [199]Gillaspy G, Ben-David H, Gruissem W. Fruits: a developmental perspective. Plant Cell, 1993,5:1439~1451
    [200]Daraselia ND, Tarchevskaya S, Narita JQ. The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elirnents that direct high-level expression. Plant Physiol, 1996,112: 727~733
    [201] Tsankova E,Bohlmann F. A monoterpene from Aster bakersanus. Phytochemistry.1983,22(5):1285~1286.
    [202] Nagao T,Okabe H,Yamauchi T. Studies on the Constituents of Aster tataricus L. f. I. Structures of shionosides a and b,Monoterpene Glycosides Isolated from the root. Chem. Pharm. Bull,1988,36(2):571~577.
    [203] Jung C M,Kwon H C,Soj J et al. Two monoterpene peroxide glycosides from Asterscaber. Chem. Pharm. Bull,2001,49(7):912~914.
    [204] Wang C Z,Yu D Q,Diterpenoid Sesquiterpenoid and secoiridoid glucosides from Aster Auriculatus. Phytochemistry,1997,45(7):1483~1487.
    [205] Bohlmann F. Dutta L N, Knauf W et al. New Sesquiterpen lactone as Aster umbellatus . Phyto chemistry,1980,19:433~436.
    [206]Uchio Y,Nagasaki M,Eguchi S et al. Labdane Diterpene Glycosides with 6- deoxy- L- Idose from Aster spathuli folius maxim.Tetrahedron Lett,1980,21:3775~3778.
    [207]Yu S,W and M F,Ho C T et al. Lingulatus in two epimers of an unusual linear diterpene from Aster lingulatus . Phytochemistry,1998,49(2):609~612.
    [208]张嘉明, 陈耀祖, 李伯刚等. 灰枝紫菀化学成分的研究.中国中药杂志,1997,22(2):103~104.
    [209] Akihis A T,Kimur A Y,Koike K et al . Astertarione A:A triterpenoid kenton isolated from roots of Astertatsricus L . Chem. Pharm. Bull. 1998,46(11):1824~1826.
    [210] Sakai K,Nagao T,Okabe H. Triterpenoid saponins From the Ground Part of Aster agaratoides var.Phyto Chemistry,1999,51:309~318.
    [211]Nagao T,Iwase Y,Okabe H. et al. Studies on the Constituents of Asterscaberthunb. V. Structures of Six New echinocystic acid Glycosides Isolated From the Herb. Chem. Pharm. Bull,1993,41(9):1562~1566.
    [212]WANGZT,LUYH,YEWC,etal. Adipeptide isolated from Astertataricus L.f. J Chin Pharm Sci, 1999,8(3):171~172.
    [213] KOSEMURAS,OGAWAT, TOTSUKAK,etal. Isolationand structures of asterin,a new halogenated cyclicpent apeptide from Astertataricus. Tetrahedron Lett,1993,34(8):1291~1294.
    [214]MORITSH, NAGASHIMAS,TAKEYAK, etal. Structures and conformation of antitumour cyclic pentapeptides, astins A,Band C, from Aster tataricus. Tetrahedron, 1995,51(4):1121~1132.
    [215]MORITSH,NAGASHIMAS,SHIROTAO,etal.Two novel monochlorinated cyclic pentapeptides, astins D and E from Aster tatarius.Chem Letters,1993, (11): 1877~ 1880.
    [216] MORITAH, NAGASHIMAS,TAKEYAK,etal. Cyclic peptides from higher plants,Part.Three novel cyclic pentapeptides,astins F, G and H from Astertataricus.Hetercycles, 1994, 38(10): 2247~2252.
    [217]MORITAH, NGASHIMAS,TAKEYAK,etal. Anovel cyclicpen tapeptide with a ?-hydroxy-C-chloroproline from Astertataricus.Chem Letters,1994,(11):2009~2010.
    [218]MORITAH, NGASHIMAS,TAKEYAK,etal. Structure of a new peptide,astin J,from Astertataricus. Chem Pharm Bull,1995,43(2):271~273.
    [219] CHENGDL, YUS, HARTMANR, etal.Oligo peptides from Astertataricus. Phytochemistry, 1994, 36(4):945~948.
    [220]CHENGDL,YUS,HARTMANR, et al. New peptapeptides from Astertataricus. Phytochemistry, 1996, 41(1):225~227.
    [221]LUYH,WANGZT,XULS,etal. Multiphenolic compounds isolated from Astertataricus. Chin Tradit Herbal Drugs(中草药),2002,33(1):17~18.
    [222] WANGGY,WUT, LINGPC,et al. Phenolic compounds isolated from rhizome of Astertataricus. China J Chin Mater Med(中国中药杂志), 2003, 28(10):946~948.
    [223] LUYH,WANGZT,XULS,etal. Three anthraquinones isolated from Astertataricus L.f. J Chin P harm Sci, 2003,12(2):112~113.
    [224] GAOJH, WANGHW, ONGGQ,etal. NMR study on the structure and stereo chemistry of two pheonlic compounds from Astertataricus. Chin J Magnetic Resonance (波谱学杂志),1994, 11(4):391~397.
    [225] LUYH,WANGZT,YEWC,etal. Study on the Constitutents of Astertataricu L.f.. J China Pharm Univ(中国药科大学学学报),1998,29(2):97~99.
    [226] WANGGY,WUT,LINPC,etal. Triterpeno idsisolated from Astertataricus.Chin Tradit Herbal Drugs(中草药),2003,34(10):875~876.
    [227] AKIHISAT,KIMURAY,TAIT,etal. Astertar oneB: ahydroxytriterpenoidket one from the roots of Astertataricus L.Chem Pharm Bull,1999,47(8):1161~1163.
    [228]席荣英,白素平,孙祥德,等. 紫菀根中矿质元素及氨基酸质量分数的测定.氨基酸和生物资源 2003,25(2):8~9.
    [229]张积霞,白素平,席荣英,等. 紫菀和山紫菀微量元素的测定. 微量元素与健康研究, 2002, 19(1):37~38
    [230]杨玉林,贺志安.肝脏疾病实验诊断.北京:中国医药科技出版社,1996.288~304.
    [231]Kimura M,Sawada K,Miyagawa T,et al. Role of glutamate receptors and voltage-dependent calcium and sodium Channels in the extracellular glutamate aspartate accumulation and subsequent neuronal injury induced By oxygen glucose deprivation in cultural hippocampal neurons.Pharmacol Exp Ther,1998,285(1):178~185.
    [232] GAOYD,ZHANGC. Experiment on expectorant action of sha sheng ma dou ling tian nan xing zi wan. Natl Med J China(中华医学杂志),1956,42(10):959~963.
    [233] LIZ,NBL,YUQH,etal. Experimenta lstudies on the antitussive and expect orant effects of Ligularia fischeri Turca. And AstertataricusL.J Shen yang Coll Pharm(沈阳药学院学报),1987,4(2):136~139.
    [234] HUANGQB,ZHANGCS. Expector an taction of Chinese traditional medicine baibu zi wan qian hu kuan dong hua.Natl Med J China( 中 华 医 学 杂志),1954,40(11):849~852.
    [235] ZHAOXG, WANGZT, MAJY,etal. Studies on Chinese medicinal herbs shan zi wang root and rhizome(Ligulariae). Acomparison of expectorant and antitussive actions between zi wan root and chuan zi wan in mice.ChinTradt Herbal Drugs(中草药),1999,30(1):35~37.
    [236]QINYQ,XUSM. Active extraction on expector antaction of Astertataricus. Chin Pharm Bulletic(药学通报),1984,19(11):698~699.
    [237] LUYH,DAIY,WANGZT,etal. Study on codein and expector antaction and effective part and compounds of Astertataricus.Chin Tradit Herbal Drugs(中草药),1999,30(5):360~362.
    [238] LIY,WANGLH,SHENGL. Study on trachea of guineapig of zi wan and gan cao.Inform Tradit Chin Med(中医药信息),1999,16(4):47~48.
    [239] ZHOURG,TUJX. In fluence of codein action from concocted Astertataricus. Hunan Guiding JT CMP(湖南中医药导报),2000,6(4):56~56.
    [240] Morit A H,Nagas Hima S,Takeyak et al.. Structure of A new peptide,Astin J,from Astertataricus. Chem. Pharm . Bull.,1995,43(2):271~273.
    [241]Schopke T,Al Tawaha C,Wrayv et al.. Triterpenoids Aponins From Aster Bellidiastrum. Phytochemistry,1997,45(1):125~132.
    [242]NGTB,LIUF,LUYH,etal. Antioxidant activity of compounds from the medicinal herb Astertataricus.Comp Biochem Physiol PartC,2003,136(2):109~115.
    [243] ZHENGHZ,DONGZH,SHEJ.Modern Study of Traditional Chinese Medicine(中药现代研究与应用).Beijing: XueYuan press 1998:4395~4395.
    [244] GUOJ,SHANJS,YANBS. Study on the atibacterial effect about tuberclebacillus of Chinese traditional medicine.Bull Chin Antitu-berc Assoc(中国防疫杂志),1964,5(3):481~487.
    [245] 李衍达,孙之荣,等(译).Baxevanis AD ,Ouellette BFF(著).生物信息学.北京: 清华大学出版社:2000,231~250.
    [246]钟 扬,王 莉,张 亮(主译).Mount DW(著).生物信息学.北京:高等教育出版社: 2003,301~345.
    [247] Park H ,Denbow C J ,Cramer C L. St ructure and nucleotide sequence of tomato HMG2 encoding 3-hydroxy-3-methyl-glutaryl coenzyme A reductase . Plant Mol B iol , 1992,20 (2) :327~331.
    [248] Campos N ,Boronat A. Targeting and topology in the membrane of plant 3-hydroxy-3- methylglutaryl coenzyme Areductase. Plant Cel l. 1995,7 (12) :2163~2174.
    [249]Loguercio L L ,Wilkins T A. Two genomic clones encoding 3-hydroxy -3-methylglutaryl- coenzyme A reductase f rom cotton ( Goss y pi um hi rsutum L. ). Plant Physiol , 1998,116 (2) :867~869.
    [250] J ain A K, Vincent R M , Nessler C L. Molecular characterization of a hydroxyl methylglutaryl -CoA reductase gene from mulberry ( Morus alba L. ) . Plant Mol B iol , 2000,42(4) :559~569.
    [251] Korth K L , Stermer B A ,Bhattacharyya M K, et al . HMG-CoA reductase gene families that differentially accumulate t ranscript s in potato tubers are developmentally expressed in floral tissues. Plant Mol B iol , 1997,33 (3) : 545~551.
    [252] Rupasinghe H P V ,Almmquist K C , Paliyath G, et al . Cloning of hmg1 and hmg2 cDNAs encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase and their expression and activity in relation to alpha2farnesene synthesis in apple. Plant Physiol B iochem , 2001,39 (11) :933 ~947.
    [253] 翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社: 2000,78 ~193.
    [254] Liu Y,Wang H , Ye HC , et al . Advances in the plant isoprenoid biosynthesis pathway and it s metabolic engineering . J I nteg rative Plant B io2005 ,47 (7) :769~782.
    [255]李 嵘等.植物萜类合成酶3-羟基-3-甲基戊二酰辅酶A 还原酶的生物信息学分析.广西植物,2006,26(5):464~473.
    [256]Pattnaik S.K., Chand P.K. In vitro propagation of the medicinal herbs Ocimum americanum L.syn.O. canum Sims (hoary basil) and Ocimum sanctum (holy basil). Plant Cell Reports, 1996,15, 846~850
    [257]Saxena C., Palai S.K., Samantaray S., Rout G.R., Das P. Plant regeneration from callus cultures of Psoralea corylifolia Linn. Plant Growth Regulation, 1997,22, 13~17.
    [258]Khalafalla M.M., Hattori K. A combination of thidiazuron and benzyladenine promotes multiple shoot production from cotyledonary node explants of fababean (Vicia faba L.). Plant Growth Regulation, 1999, 27,145~148.
    [259]Jusaitis M. Micropropagation of adult Swaisona formosa Leguminosae: Paplionoideae: Galgeae. In Vitro Cellular and Developmental Biology-Plant, 1997,33, 213~220.
    [260]Fracro F.,Echeverrigaray S.Micropropagation of Cunila galoides, a popular medicinal plant of South Brazil. Plant Cell Tissue and Organ Culture, 2001,64, 1~4.
    [261]Faisal M., Ahmad N., Anis M.Shoot multiplication in Rauvolfia tetraphylla L. using thidiazuron. Plant Cell Tissue and Organ Culture, 2005, 80, 187~192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700