尿素控制性制备复合载体负载的Co-Mo催化剂及其反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油中的硫化物在高温燃烧时形成的SOx排放到大气中,给人体健康和环境带来危害,发达国家制定的几近“零”硫的柴油标准对炼油加工技术提出了极大的挑战。研究者尝试通过改进柴油脱硫工艺、反应器或催化剂等技术实现深度脱硫,大量的实践和研究表明,催化剂的改进仍是实现深度脱硫最经济有效的途径。目前工业装置上所用的加氢脱硫催化剂主要是传统浸渍法制备的催化剂,该催化剂在一般操作条件下,还不易实现深度脱硫的目标,而且抗毒性弱,在处理劣质高硫原料时,会缩短催化剂的使用周期,而少量已工业化的Ti02为载体的加氢脱硫催化剂因价格高、成型难、强度差等原因制约了其工业化应用规模。
     为此本文从两个方面对加氢脱硫(HDS)催化剂进行改进,首先在活性组分的分布和优化方面,利用制备过程中尿素对催化剂表面结构和晶粒结构的控制作用,采用新型的尿素矩阵燃烧法(UMxC)、尿素螯合剂法(UCA),来负载加氢脱硫的活性组分;另一方面,从载体改性的角度出发,通过在氧化铝载体中分别引入TiO2、MgO制备系列复合载体负载的Co-Mo/Al2O3-TiO2、Co-Mo/Al2O3-MgO加氢脱硫催化剂。采用X射线衍射(XRD)、激光拉曼光谱(LRS)、高分辨率透射电镜(HRTEM)、X射线光电子能谱(XPS)、N2物理吸附法、红外光谱(FT-IR)、程序升温还原(TPR)等技术对催化剂进行表征。
     在不锈钢管式固定床反应器(管长600mm,φ40mm×10mm)中,以噻吩(T)、苯并噻吩(BT)和(或)二苯并噻吩(DBT)的二甲苯溶液为模型化合物,以3% CS2的环己烷溶液为预硫化剂,对催化剂的活性进行了考评,结合表征结果,从HDS反应机理上探究了制备方法、复合载体组成、反应条件的变化对催化剂活性的影响。在尿素矩阵燃烧法制备的Co-Mo/Al2O3-TiO2催化剂上研究了BT和DBT的加氢脱硫反应动力学。
     UMxC法的催化剂制备过程简单、省时,减少或避免了在焙烧过程中对催化剂晶粒结构的破坏,而且所制催化剂孔径分布更加均匀、孔体积高、负载的金属组分分散性好,尤其是未形成传统的共浸渍法所制催化剂出现的非活性P-CoMoO4结构和孪晶现象。活性评价表明UMxC法所制Co-Mo/Al2O3催化剂的活性比传统的顺序浸渍法(SI)和共浸渍法(CI)法的高10%左右。
     与CO-MO/Al2O3催化剂相比,TiO2的加入改变了Co-Mo/Al2O3-TiO2催化剂表面的电子结构、金属组分的多层晶粒结构的Lc/La值变大,Ti02的加入有利于金属组分在硫化后形成更多的高活性Co-Mo-S和MoS2相。在载体中适度引入Ti02可提高催化剂的活性,尤其是提高二苯并噻吩的脱除率,实现深度脱硫的目的。
     活性评价表明:二苯并噻吩的脱除率受反应温度、LHSV、催化剂组成的影响较大,当反应温度在300-360℃,LHSV为3-6 h-1,Co/Mo摩尔比在0.3-0.5,TiO2添加比例为20%时,Co-Mo/Al2O3-TiO2(UMxC)催化剂脱除三种硫化物的活性均较高。
     UCA法制备的CO-Mo/Al2O3-TiO2催化剂平均孔径小,负载的金属组分晶粒有单层和多层结构,多层结构的层间距较大,可能有利于大分子与活性组分的接触,因尿素添加顺序和添加量的不同,形成了与UMxC法所制Co-Mo/Al2O3-TiO2催化剂不同的晶粒结构和孔结构,在相同反应条件下,虽然两种方法所制催化剂均呈现出了较高的加氢脱硫活性,但是UCA法所制催化剂的DBT脱除率比UMxC法的低。
     UCA法制备的Co-Mo/Al2O3-MgO催化剂的研究表明:与Al2O3单载体催化剂相比,MgO的加入对催化剂的结构有显著影响,随着MgO添加量的增加,氧化钼的还原温度升高,Co-O-Mo键物相增多;更多的活性金属以小团簇的形式负载在催化剂表面上,提供了更多不饱和活性位,催化剂硫化后易形成更多的高活性Co-Mo-S相;残炭特征峰减弱,表明MgO有利于抑制催化剂表面的积炭。活性评价表明:与Co-Mo/Al2O3-TiO2-0.2催化剂相比,Co-Mo/Al2O3-MgO-0.8催化剂在较低H2/HC(300)比下可达到更高的DBT脱除率。
     在催化剂的制备过程中尿素对催化剂表面性质和晶粒结构的控制作用显著,对尿素的控制作用机理进行了推测。尿素矩阵燃烧法制备过程简单,所制Co-Mo/Al2O3-TiO2催化剂的孔径大而均匀、晶粒分散性好、层数多,催化剂的加氢脱硫活性高。在消除了内扩散影响的条件下,获得了粒度为40~60目的该催化剂的加氢脱硫反应动力学数据,建立了BT和DBT的直接加氢脱硫反应动力学模型:其中KH2=
The sulfur in diesel converts into SOX while burning, which is harmful to human being healthy and natural environment. The increasingly strict non-sulfur diesel regulations being implemented by the developed countries bring great challenge to refinery technology. A lot of industrial practice and researches showed that the improvement of catalyst is still the most efficient way to reach deep desulfurization. Nowadays, most industrial catalysts are prepared using traditional method, which is difficult to produce low sulfur diesel and the weak poison resistance shortened the catalyst lifetime while processing high sulfur content feed.The expensive price, difficulty in shaping and weak strength hindered the industrialization scale up of TiO2 supported hydrodesulfurization catalyst or the bulk catalysts.
     In this work, our aim is to promote the hydrodesulfurization (HDS) catalyst activity from two aspects. Firstly, new Urea Matrix Combustion (UMxC) method and Urea Chelating Agent method (UCA) were used to optimize the active phase dispersion exploiting the controllable function of urea during the preparation. Secondly, the catalyst support is modified by adding TiO2 or MgO using the novel method. The surface properties and morphology were characterized using XRD, LRS, HRTEM, XPS,N2 physorption, FT-IR and TPR technologies.
     The HDS catalytic activity was tested in a stainless fixed-bed reactor(600mm long,Φ40mm×10mm).The xylene solution of B, BT and (or) DBT was used as the model compound, the 3% CS2 cyclohexane was used as the presulfur agent. Effects of preparation method, support component and reaction conditions on HDS catalytic activity were discussed corresponding to the HDS mechanism. The HDS reaction kinetics of BT and DBT were studied.
     It showed that the UMxC method had the characters of saving time, simple steps and avoiding the damage of catalyst crystal morphology. The catalyst presented uniform pores, higher pore volume and better dispersion, especially without forming nonactiveβ-CoMoO4 and twins crystal structure compared with that of co-impregnaition method.The HDS activity of Co-Mo/Al2O3 catalyst prepared using UMxC method was about 10% higher than that of prepared using sequential impregnation (SI) and co-impregnaition (CI) methods.
     Compared with Co-Mo/Al2O3 catalyst, the addition of TiO2 changed the electronic states of catalyst surface and the Lc/La of multi-layer crystal increased, benefited forming more high active Co-Mo-S andMoS2 phase. Proper addition of TiO2 favors improving catalytic activity, especially increasing the removal of DBT.
     The HDS tests showed that the reaction temperature, LHSV and catalytic component notably affected the removal of DBT. The Co-Mo/Al2O3-TiO2 (UMxC) catalyst with 20% TiO2 addition content and 0.3~0.5 Co/Mo(mole ratio) presented the best removal ratio of the three sulfur compounds at:300-360℃,3~6 h-1 LHSV.
     Co-Mo/Al2O3-TiO2 catalysts prepared using UCA method had the character of smaller average pore diameter, mono-layer and multi-layer crystal morphology, bigger layer space which may be beneficial to the connection of big molecular DBT with active component. The addition sequence and content of urea resulted in different crystal and pore morphology. The activity of Co-Mo/Al2O3-TiO2 catalyst prepared using UCA method was lower than that of UMxC method, although the catalysts prepared using the two methods both presented high catalytic activity.
     The results of Co-Mo/Al2O3-MgO catalyst prepared using UCA method showed that MgO greatly affected the morphology of catalyst compared with Al2O3 mono-support. With the rising of MgO content, the reduction temperature of Mo-oxide increased, Co-O-Mo cluster raising, more metal component existed as small clusters on the surface of catalyst forming more unsaturated sites, thus benefited forming more and higher active Co-Mo-S phase after sulfurization. The decrease of residual carbon peak meant the trend of lower accumulation of carbon. The HDS reaction results showed that Co-Mo/Al2O3-MgO catalyst presented higher activity at low H2/HC ratio (300) compared with Co-Mo/Al2O3-TiO2 catalyst.
     The addition amount and sequence of urea affected the catalyst morphology significantly during the preparation. The control function of urea on catalyst textural properties and crystal morphology was expected. The Co-Mo/Al2O3-TiO2 (UMxC) catalyst presented higher average pore diameter, uniform dispersion and multi-layer crystal morphology and high HDS activity. The HDS reaction kinetics data of 40~60 mesh Co-Mo/Al2O3-TiO2 (UMxC) catalyst gained by the elimination of inner-diffusion, the direct HDS reaction of BT and DBT hyperbolic type kinetics models were:
     The parameters in the above kinetics models were as following: k2
引文
[1]http://www.eastmoney.com
    [2]Final Report by the European Commission on the Revision of Directive 98/70/EC
    [3]Pawelec B., Halachev T., Olivas A., et al. Impact of preparation method and support modification on the activity of mesoporous hydrotreating Co-Mo catalysts[J]. Applied Catalysis A:General.2008,348:30-41
    [4]Song C. An overview of new approaches to deep desulfurization for ultra-clean Gasoline, diesel fuel and jet fuel [J]. Catal Today.2003,86:211-263
    [5]Qiherima, Li H.F., Yuan H.,et al. Effect of Alumina Support on the Formation of the ActivePhase of Selective Hydrodesulfurization Catalysts Co-Mo/Al2O3[J]. Chin. J. Catal., 2011,32:240-249
    [6]Li X., Han D.Z., Xu Y.Q., et al.Bimodal mesoporous γ-Al2O3:A promising support for CoMo-based catalyst inhydrodesulfurization of 4,6-DMDBT[J]. Materials Letters 2011,65(12):1765-1767
    [7]Wang L., Zhang Y.N., Zhang Y.L., et al. Hydrodesulfurization of 4,6-DMDBT on a multi- metallic sulfide catalyst with layered structure[J]. Applied Catalysis A:General 2011,394:18-24
    [8]Teh C. Ho, Jonathan M. McConnachie. Ultra-deep hydrodesulfurization on MoS2 and Co0.1MoS2:Intrinsic vs. environmental factors [J]. Journal of Catalysis 2011,277: 117-122
    [9]Gonzalez-Cortes, S. L.. Comparing the hydrodesulfurization reaction of thiophene on γ-Al2O3 supported CoMo, NiMo and NiW sulfide catalysts[J]. Reaction Kinetics and Catalysis Letters.2009,97 (1):131-139
    [10]Gonzalez-Cortes S.L., Rodulfo-Baechler S.M.A., Xiao T.C., et al. Rationalizing the catalytic performance of γ-alumina-supported Co(Ni)-Mo(W) HDS catalysts prepared by urea-matrix combustion synthesis[J]. Catalysis Letters.2006,111 (1-2):57-66
    [11]Gonzalez-Cortes S.L., Xiao T.C., Costa P.M.F.J.,et al. Urea-organic matrix method:An alternative approach to prepare Co-MoS2/γ-Al2O3 HDS catalyst[J]. Applied Catalysis A: General.2004,270 (1-2):209-222
    [1]Leflaive P., Lemberton J. L., Perot G., et al. On the origin of sulfur impurities in fluid catalytic cracking gasoline-Reactivity of thiophene derivatives and of their possible precursors under FCC conditions [J].Applied Catalysis A:General.2002,227(1-2): 201-215
    [2]沈学优,刘建勇.空气中多环芳烃的研究进展[J].环境污染与防治.2000,21(6):32-35
    [3]周逸潇,许庆峰,杨丽等.汽车尾气污染的净化处理技术[J].天津化工.2009,15(6):54-56
    [4]李佳徽,李道华.我国汽车尾气污染的危害及其防治[J].内江师范学院学报.2009,24(8):70-75
    [5]孙健,兰卓.小议机动车尾气污染的控制对策[J].环境科学与管理.2005,30(6):18-20
    [6]孙利,章建华,沈本贤.清洁汽车燃料-LPG在化油器发动机上的应用研究[J].环境污染与防治.2002,24(3):154-156
    [7]堀尾忠正,堀尾知代.车用轻烃油和油公核磁共振传递剂[J].能源技术.2002,23(4):151-154.
    [8]徐云强,唐小牙,曲晓峰.燃油添加剂在汽车内燃机排气净化中的应用研究[J].小型内燃机.2000,9(2):25-28
    [9]安高军,柳云骐,柴永明等.柴油加氢脱硫精制催化剂制备技术[J].化学进展.2007,19:243-248
    [10]郑赢惠.清沽燃料生产技术评述[J].当代石油石化.2003,11(1):4-6
    [11]Slli Y. H., Li D. D.. Low Sulfur Trend of Fuel Oils[J]. Petrol. Ref. Engine.1999,29 (8): 16-22
    [12]刘磊,吴新民.加氢脱硫催化剂载体和活性组分的研究进展[J].工业催化.2008,16(8):1-7
    [13]Wang H. M., Xiao H. W., Zhang M. H.. Synthesis of Bulk and Supported Molybdenum Carbide by a Single-step Thermal Carbufizafion Method[J]. Chem. Mater.2007,19 (7): 1801-1807
    [14]周志军,田晓飞,王萍等.镍钨系列氮化物催化剂的加氢脱硫催化性能[J].石油化工高等学校学报.2003,16(4):20-23
    [15]Song C.. An overview of new approaches to deep desulfurization for ultra-clean gasoline,diesel fuel and jet fuel[J]. Catal Today.2003,86:211-263
    [16]吴新民,吴杰,龚良发.纳米介孔硅铝分子筛的合成及其加氢脱硫性能[J].石油学报(石油加工).2007,23(1):92-95
    [17]Iwama Y., Ichikuni N., Bando K. K.. Effect of Co Addition for Carburizing Process of Ti-oxide/SiO2 into TiC/SiO2 [J]. Applied Catalyst A:General.2007,323:104-109
    [18]Vit Z.. Iridium Sulfide and Ir Promoted Mo Based Catalysts[J]. Applied Catalyst A: General.2007,322:142-151
    [19]Wang W. B., Shi S. M., Wang S. J., et al. Desulfurization of Gasoline by Electro-chemistry Coupled up Chemical Oxidation[J]. Acta Petrolei Sinica(Petroleum Processing Section).2005,21 (5):41-47
    [20]Yasuaki O., Keiji O., Masatoshi K.. Effects of Suppoft on the Activity of Co-Mo Sulfide Model Catalysts[J]. Applied Catalyst A:General.2002,226 (1/2):115-127
    [21]师希娥,翟尚儒,戴立益等.纳米硅铝介孔分子筛的合成及其催化裂化性能[J].物理化学学报.2000,20(3):265-270
    [22]Nunez S., Escobar J., Vazquez A..4,6-Dimethyl-dibenzothiophene conversion over Al2O3-TiO2-supported noble metal catalysts [J].Materials Chemistry and Physics.2011, 126(1-2):237-247
    [23]Nag N.K., Sapre A.V., Broderick D. H., et al. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfide CoO-MO/Al2O3 The relative reactivities [J]. Journal of catalysis.1979,57:509-512
    [24]Houalla M., Nag N.K., Sapre A.V., et al. Hydrodesulfurization of dibenzothiophene catalyzed by sulfide cobalt oxide-molybdenum trioxide/Al2O3:the reaction network. Aiche Journal.1978,24:1015-1021
    [25]孙仲超,王瑶,王安杰等.MCM-41担载的镍钼硫化物上二苯并噻吩的加氢脱硫反应动力学[J].催化剂学报.2004,25:439-444
    [26]Song C.S., Ma X.L.. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization [J].Applied Catalysis B:Environmental 2003,41:207-238
    [27]Mike H..Makfining-premium Distillates Technology:the Future of Distillate Upgrading[C]. NP RA Annual Meeting, San Antonio, Texas.2000
    [28]Slavik K..Improving Motor Fuel Quality [C]. NPRA Annual Meeting, San Antonio, Texas.1999
    [29]王华峰,宋华,王宝辉.柴油脱硫技术与展望[J].工业催化.2005,13(4):18-22
    [30]Robert E., Levy, Alkis S., et al. Unipure's ASR-2 Diesel Desulfurization Process:A Novel, Cost-Effective Process for Ultra-low Sulfur Diesel[C]. NPRA Annual Meeting, San Antonio.2001, AN-01-10
    [31]Doug Chapados.Desulfurization by selective Oxidation and Extraction of Sulfur-Containing Compounds to Economically Achieve Ultra-low Propoded Diesel Fuel Sulfur Requirements[C]. NPRA Annual Meeting.2000, AM-00-25
    [32]Frank J. Liotta, Yuan Han. Production of Ultra-low Sulfur Fuels by Selective Hydroperoxide Oxidation[C]. NPRA Annual Meeting.2003
    [33]崔盈贤,唐晓东,肖黄飞等.直馏柴油氧化脱硫催化剂的评选与优化脱硫技术研究[J].石油与天然气化工.2005,34(6):495-497
    [34]Amos Avidan, Bechtel coporation, Mark Cullen Sulphco lnc.Desulfurization via Selective Oxidation pilot Plant Results and Commercialization Plans[C]. National Petroleum Refiners Association Annual Meeting.2001, AM-01
    [35]Takayuki H., Yasuhiro S., Ken O.. Effect of photosensitizer and hydrogen peroxide on desulfurization of light oil by photochemical reaction and liquid-liquid extraction[J]. Ind Eng.Chem Res.1997,36:530-533
    [36]Yasuhiro S., Yasuto J., Takayuki H.. Visible light-induced desulfurization technique for light oil[J]. Chem Commun.1998:2601-2602
    [37]Yasuhiro S., Takayuki H., Isao K.. A deep desulfurization process for light oil by photrochemical reaction in an organic two phase Liquid-liquid extraction system[J]. Ind Eng.Chem Res.1998,37:203-211
    [38]Takayuki Hirai, Ken Ogawa, IsaoKomasawa. Desulfurization process for dibenzo-thiophenes from light oil by photochemical reaction and liquid-liquid extraction[J]. Ind Eng Chem Res.1996,35:586-598
    [39]Jiao H.L., Yang L.N., Shen J., et al. Desulfurization of FCC Gasoline Over Mordenite Modified with Al2O3[P]. US Patent:5730860.2006,24 (11):1301-1306
    [40]Sughrue E.L., Kharc G.P., Bertus B.J., et al. Desulfurization and novel sorbents for same[P]. US Patent:6254766.2001-07-03
    [41]Gislason J. Phillips. sulfur-removal process neal S commercialization [J]. Oil Gas.2002, 99 (47):74-76
    [42]Greenwood G. J., Kidd D., Reed L.. Meet gasoline pool sulfur and octane targents with the isal process[C]. NPRA Annual Meeting.2000
    [43]Oil & Gas Journal editral department. Philips petroleum has stared up a new 6000B/D unit at itsborger, Tex, Refinery [J]. Oil & Gas Journal.2001,99 (18):9
    [44]Babich I.V., Moulijn J.A.. Science and technology of novel processes for deep desulfurization of oil refinery streams:a review[J]. Fuel.2003,82:607-631
    [45]Getty E. G..New route for gasoline deep desulfur[J]. Chem Eng.2000,107 (11):17-21
    [46]余国贤,陈辉,陆善祥等.柴油催化氧化深度脱硫研究[J].高校化学工程学报.2006,20(4):616-621
    [47]Lesieur. System and method for desulfurizing gasoline or diesel fuel to produce a low sulfur-content fuel for use in an internal combustion engine[P]. US Patent:6129835. 2000
    [48]Lesieur. Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant[P]. US Patent:6454935.2002
    [49]Yang R.T., Hernandez-Maldonado, Yang H.F.. Desulfurization of transportation fuels with Zeolites under ambient conditions [J].Applied Catalysis A:General,1993-Elsevier
    [50]钱伯章,吴虹.石油生物脱硫技术及其应用前景[J].炼油设计.1999,29(8):26-31
    [51]Izumi Y.. Selective desulflarization of dibemothiophene by Rhodococcus erythrolis D-1 [J]. Appl.Environ.Microbiol.1994,60 (1):223-226
    [52]Omori T., Monna.Y.,Saiki.Y.. Desulfurization of dibenzothiophene by Corynebacterium sp.Strain SY1 [J].Appl.Environ.Microbio 1.1992,58 (3):911-915
    [53]Monticello D. J.. Biocatalytic desulfurization [J]. Hydrocarbon process.1994,73 (2): 39-45
    [54]Monticdlo D. J.. Continous process for biocatalytic desulfurization of sulfur bearing heterocylic molecules [P].US Patent:5472 875.1995
    [55]刘佳彦,杨向平.柴油的加氢脱硫与生物脱硫技术[P].齐鲁石油化工.2004,32(2):107-111
    [56]于国庆,高金森,徐春明.催化裂化加工含硫原油的技术[J].石化技术.2004,11(1):58-60,68
    [57]Gerald Parkinson. Another new route to deep-desulfurization of diesel fuel[J]. Chemical Engineering.2000,107 (4):19
    [58]宋金鹤,董群,辛明瑞等.柴油脱硫技术新进展[J].广州化工.2005,33(6):10-12
    [59]Bosmann A., Daatsevich L., Jess A., et al. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chem. Commun.2001:2494-2495
    [60]Zhang S. G., Zhang Z. C..Novel properties of Ionic Liquids in Selective Sulfur Removal from Fuels at Room Temperature[J]. Green Chemistry,2002,98 (4):376-379
    [61]Zhang S. G., Zhang Z. C.. Extractive Desulfurization and Denitrogenation of Fuels Using Ionic Liquids[J]. Ind. Eng. Chem. Res.2004,77 (43):614-622
    [62]王刚,赵野,朱金玲.国外柴油氧化脱硫技术评述[J].化工时刊.2005,19(10):49-52
    [63]姚国欣.国外炼油技术新进展及其启示[J].当代石油石化.2005,13(3):18-25
    [64]Shiflett W.. The Drive to Lower and Lower Sulfur:Criterion's New Catalysts Help. Refiners Tackle Sulfur[C]. NPRA Annual Meeting. New Orleans.2001, Mar.:18-20
    [65]EPA-Diesel RIA. Regulatory Impact Analysis:Heavy-duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements[J]. Air and Radiation,. United States Environmental Protection Agency.2000, Dec
    [66]Mayo S., Leliveld B., Plantenga F., et al. NPRA Annual Meeting.2001, AM-01-09
    [67]郭蓉,姚运海,周勇等.FH-DS柴油深度加氢脱硫催化剂的使用性能[J].当代化工2004,33(1):37-46
    [68]孙国权,方向晨,刘继华等.柴油含硫化合物在FH-UDS催化剂上的加氢脱硫研究[J].石油与天然气化工.2010,(5):39-45
    [69]何宗付,谢刚,刘学芬等.RS-1000催化剂在生产欧V柴油中的应用[J].石油炼制与化工.2009,40(6):29-32
    [70]闵恩泽,李成岳.绿色石化技术的科学与工程基础[M].北京:中国石化出版社,2002,188-244
    [71]李冬燕,余夕志,陈长林等.Ni2P/TiO2上噻吩加氢脱硫性能研究[J].高等化学工程学报.2006,20(5):825-830
    [72]Vissers J. P.R., Scheffer B., De Beer V. H. J., et al. Effect of the Support on the Structure of Mo-based Hydrodesulfurization Catalysts:Activated Carbon Versus Alumina [J]. Journal of Catalysis.1987,105:277-286
    [73]John R. Hayes, Richard H. Bowker, Amy F. Gaudette, et al. Hydrodesulfurization properties of rhodium phosphide:Comparison with rhodium metal and sulfide catalysts.[J]. Journal of Catalysis.2010,276:249-258
    [74]Oleg V. Klimov, Anastasiya V. Pashigreva, Martin A. Fedotov, et al.Co-Mo catalysts for ultra-deep HDS of diesel fuels prepared via synthesis of bimetallic surface compounds[J]. Journal of Molecular Catalysis A:Chemical.2010,322:80-89
    [75]季生福,李成岳,陈标华等.尿素燃烧法制备复合氧化物固溶体催化剂[J].石油化工.2004,33:1175-1176
    [76]Gonzalez-Cortes S.L., Rodulfo-Baechler S.M.A., Xiao T.C..Rationalizing the catalytic performance of γ-alumina-supported Co(Ni)-Mo(W) HDS catalysts prepared by urea-matrix combustion synthesis[J]. Catalysis Letters.2006,111 (1-2):57-66
    [77]Gonzalez-Cortes, S.L., Xiao T.C., Costa P.M.F.J., et al.Urea-organic matrix method:An alternative approach to prepare Co-MOS2/γ-Al2O3 HDS catalyst[J]. Applied Catalysis A: General.2004,270 (1-2):209-222
    [78]Gonzalez-Cortes S.L., Xiao T.C., Green M.L.H.. Urea-matrix combustion method:A versatile tool for the preparation of HDS catalysts[J]. Studies in Surface Science and Catalysis.2006,162:817-824
    [79]Gonzalez-Cortes S.L., Xiao T.C.,Lin T.W., et al. Influence of double promotion on HDS catalysts prepared by urea-matrix combustion synthesis[J]. Applied Catalysis A:General. 2006,302 (2):264-273
    [80]Rana M.S., Ramirez J., Ancheyta J., et al. Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent[J]. Journal of Catalysis.2007,246: 100-108
    [81]王继元,堵文斌,陈韶辉等.TiO2载体在柴油加氢脱硫中的应用进展[J].化工进展.2010,29(4):654-658
    [82]Ramirez J., Macias G., Castillo P., et al. The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts:analysis of past and new evidences[J]. Catalysis Today,2004,98:19-30
    [83]Ramirez J., Cedeno L., Busca G..The role of titania support in Mo-based hydro- desulfu-rization catalysts [J]. Journal of Catalysis.1999,184:59-67
    [84]Castillo-Villalon P., Ramirez J.. Spectroscopic Study of the Electronic Interactions in Ru/TiO2 HDS Catalysts [J]. Journal of Catalysis.2009,268:39-48
    [85]Cortees-Jacome M. A., Escobar J., Toledo-Antonio J. A., et al. Highly dispersed CoMoS phase on titania nanotubes as effcient HDScatalysts[J]. Catalysis Today,2008,130: 56-62
    [86]Shen B.J., Li H.F., Cheng W., et al. A Novel Composite Support for Hydrotreating Catalyst Aimed at Ultra-clean Fuels [J].Catalysis Today,2005,106:206-210
    [87]宋华,于洪坤,武昌春等.TiO2-Al2O3载体的制备及NiP/TiO2-Al2O3催化剂上的同时加氢脱硫和加氢脱氮反应[J].催化学报,2010,31(4):447-453
    [88]韦以,刘新香.Al2O3-TiO2复合载体的制备与表征[J].石油化工.2006,35(2):173-177
    [89]周惠波,侯凯湖,李会芳.Al2O3-TiO2复合载体焙烧温度对Co-Mo加氢脱硫催化剂性能的影响[J].石油炼制与化工.2009,40(3):12-16
    [90]Ng K.Y.S., Gulari E.. Molybdena on titania:Ⅱ.Thiophene hydrodesulfurization activity and selectivity [J]. Journal of Catalysis,1985,95 (1):33-40.
    [91]Ng K.Y.S., Gulari E.. Molybdena on titania:Ⅰ. Preparation and characterization by Raman and Fourier Transform Infrared spectroscopy.[J]. Journal of Catalysis.1985,92 (2):340-354
    [92]Okamoto Y., Maezawa A., Imanaka T.. Active sites of molybdenum sulfide catalysts supported on Al2O3 and TiO2 for hydrodesulfurization and hydrogenation[J]. Journal of Catalysis.1989,120 (1):29-45
    [93]Inoue S., Muto A., Kudou H., et al. Preparation of novel titania support by applying the multi-gelation method for ultra-deep HDS of diesel oil[J]. Applied Catalysis A:General. 2004,269:7-12
    [94]Jolanta R.Grzechowiak, Iwona Wereszczako-Zielin. HDS and HDN activity of molybdenum and nickmolybdenum catalysts supported on alumina-titania carriers[J]. Catalysis Today.2007,119:23-30
    [95]Pophal C., Kameda, Hoshino F. K., et al. Hydrodesulfurization dibenzothiophene derivatives over TiO2-Al2O3 supported sulfided molybdenum catalyst[J]. Catalysis Today.1997,39(1-2):21-32
    [96]王鼎聪,孙晶.TiO2复合氧化物的制备及其加氢脱硫应用进展[J].抚顺烃加工技术.2005,(2):27-36
    [97]Wei Z.B., Xin Q., Delmon B., et al. Titania-modified hydrodesulphurization catalysts:I. Effect of preparation techniques on morphology and properties of TiO2—Al2O3 carrier[J]. Applied Catalysis.1990,63 (1):305-317
    [98]Wei Z.B., Yan W., Zhang H., et al. Hydrodesulfurization activity of NiMo/TiO2-Al2O3 catalysts[J]. Applied Catalysia A:General.1998,167 (1):39-48
    [99]邓存,周振华,童迅.TiO2调变对MoO3/γ-Al2O3和CoO-MoO3/γ-Al2O3催化性能的影响[J].分子催化.1998,12(2):107-112
    [100]魏昭彬,蒋少聪,辛勤.加氢脱硫催化剂研究:Ti02调变A1203载体对M003物化行为的影响[J].催化学报,1991,12(4):255-260
    [101]魏昭彬,蒋少聪,辛勤Mo/TiO2-Al2O3催化剂加氢脱硫性能的研究[J].石油化工.1993,22(1):5-9
    [102]Wei Z.B., Xin Q.. Investigation of the sulfidation of Mo/TiO2-Al2O3 catalysts by TPS and LRS[J]. Catalysis Letters.1992,15:255-267
    [103]李文钊,陈燕馨,张建胜等.TiO2对H2S/SO2的作用特性[J].石油化工.1991,20(6):395-401
    [104]Weiqiang Huang, Aijun Duan. Ti-modified alumina supports prepared by sol-gel method used for deep HDS catalysts[J]. Catalysis Today.2008,131:314-321
    [105]Aijun Duan, Ruili Li. Hydrodesulphurization performance of NiW/TiO2-Al2O3 catalyst for ultra clean diesel[J]. Catalysis Today.2009,140:187-191
    [106]Daniela Gulkova, Ludek Kaluza, Zdenek Vit, et al. Preparation of MoO3/MgO catalysts with eggshell and uniform Mo distribution by methanol assited spreading:Effect of MoO3 dispersion on rate of spreading[J]. Catalysis Communication,2006,7:276-280
    [107]Klicpera T., Zdrazil M.. High surface area MoO3/MgO:preparation by the new slurry impregnation method and activity in sulphided state in hydrodesulphurization of benzothiophene[J]. Catalysis Letters.1999,58 (1):47-51
    [108]Miroslav Zdrazil.MgO supported Mo,CoMo and NiMo sulfide hydrotreating catalysts[J].Catalysis Today.2003,86:151-171
    [109]Trejo F., Rana M.S.. Co-Mo/MgO-Al2O3 supported catalysts:An alternative approach to prepare HDS catalyst[J]. Catalysis Today.2008,130:327-336.
    [110]Stanislaus A., Marafi A., Rana M. S.. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production [J]. Catalysis Today.2010,153, (1-2):1-68
    [111]Alfredo Guevara-Lara, Alida E.. Cruz-Perez.Effect of Ni promoter in the oxide precursors of MoS2/MoO3-Al2O3 catalysts tested in dibenzothiophene hydride-sulfurization[J]. Catalysis Today.2010,149:288-294.
    [112]Beck J. S., Vartuli J. C., Roth W. J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J.AM.Chem.Soc.1992,114: 10834-10843.
    [113]Kresge M.E., Leonowice W. J., Roth, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature.1992,359:710-712
    [114]Song C., Reddy K.M.. Mesoporous molecular sieve MCM-41 supported Co-Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels[J]. Applied Catalysis A:General.1999,176:1-10
    [115]Breysse M., Afanasiev P., Geantet C., et al. Overview of support effects in hydrotreating catalysts[J]. Catalysis Today.2003,86 (1-4):5-16
    [116]Corma A.. From microporous to mesoporous materials and their use in catalysis[J]. Chem. Rev. Sci. Engr..1997,97:2373-2419
    [117]Biz S., Occelli M. L.. Synthesis and characterization of mesostructured materials[J]. Catal. Rev. Sci. Engr..1998,40 (3):329-407
    [118]Brunel D., Blanc A. C., Galameau A., et al. New trends in the design of supported catalysts on mesoporous silicas and their applications in fine chemicals[J]. Catalyst Today.2002,73:139-152
    [119]He X., Antonelli D.. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves[J].Angew.Chem. Int. Ed..2002,41 (2):214-229
    [120]On T. D., Desplantier-Giscard D., Danumah C., et al. Perspectives in catalytic applications of mesostructured materials[J]. Applied Catalyst general:A.2003,253: 545-602
    [121]Viswanathan B., Jacob B.. Alkylation, hydrogenation and oxidation catalyzed by meso-porous materials[J]. Catal. Rev. Sci. Eng..2005,47 (1):1-82
    [122]李忠燕,涂永善,杨朝合.MCM-41介孔分子筛改性研究新进展[J].石油化工与催化.2005,13(2):12-18
    [123]Corma A., Martinez A., Martinez-Sofia V., et al. Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst[J]. Catal.1995,153:25-230
    [124]Ramire I., Contreras R., Castillo P., et al. Characterization and catalytic activity of CoMo HDS catalysts supported on alumina-MCM-41 [J]. Applied Catalyst general:A. 2000,197:69-78
    [125]王瑶,王安杰,陈永英等.以MCM-41为载体担载Ni-Mo硫化物制备柴油深度加氢脱硫催化剂[J].石油学报.2003,19(5):36-41
    [126]Zdenek Vit, Daniela Gulkova, Ludek Kaluza, et al. Mesoporous silica-alumina modified by acid leaching as support of Pt catalysts in HDS of model compound.[J] Applied Catalysis B:Environmental 2010,100:463-471
    [127]Huang Z.D., Bensch W., Lotnyk A., et al.SBA-15 as support for NiMo HDS catalysts derived from sulfur-containing molybdenum and nickel complexes:Effect of activation mode [J]. Journal of Molecular Catalysis A:Chemical.2010,323:45-51
    [128]Alvaro Sampieri, Stephane Pronier, Sylvette Brunet, et al. Formation of heteropoly-molybdates during the preparation of Mo and NiMo HDS catalysts supported on SBA-15:Influence on the dispersion of the active phase and on the HDS activity [J]. Microporous and Mesoporous Materials.2010,130:130-141
    [129]王雪松,钟雄辉,王志良等.柴油加氢脱硫催化剂的研究进展[J].当代化工.2006,35(3):197-201
    [130]Jorge Ramirez, Felipe Sanchez-Minero. Support effects in the hydrotreatment of model molecules[J].Catalysis Today.2008,130:267-271
    [131]Naoto Koizumi,Yusuke Hamabe,Shohei Yoshida,et al. Simultaneous promotion of hydrogenation and direct desulfurization routes in hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiW catalyst by use of SiO2-Al2O3 support in combination with trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid[J]. Applied Catalysis A:General.2010,383:79-88
    [132]Sotiropoulou D., Yiokari C., Vayenas C. G., et al. An X-ray photoelectron spectro-scopy study of zirconia-supported Mo and Ni-Mo hydrodesulfurization catalysts [J]. Applied Catalysis A:General.1999,183:15-22
    [133]Jean Mazurelle, Carole Lamonier. Use of the cobalt salt of the heteropolyanion [Co2Mo10O38H4]6- for the preparation of CoMo HDS catalyst supported on Al2O3;TiO2 and ZrO2[J]. Catalysis Today.2008,130:41-49
    [134]李国然,李伟,张明慧等CoMo/ZrO2-Al2O3催化剂的加氢脱硫活性[J].石油学报.2003,19(5):22-26
    [135]Nikulshin P.A., Tomina N.N., Pimerzin A.A., et a 1.Investigation into the effect of the intermediate carbon carrier on the catalytic activity of the HDS catalysts prepared using heteropolycompounds[J]. Catalysis Today.2010,149:82-90
    [136]Ramos-Galvan C.E., Sandoval-Robles G, Castillo-Mares A., et al.Comparison of catalytic properties of NiMo/Al2O3 with NiMo supported on Al-,Ti-pillared clays in HDS of residual oils[J]. Applied Catalysis A:General.1997,150:37-52
    [137]Teh C. Ho, Qiao L.. Competitive adsorption of nitrogen species in HDS:Kinetic characterization of hydrogenation and hydrogenolysis sites [J]. Journal of Catalysis. 2010,269:291-301
    [138]Philippe M., Richard F., Hudebine D., et al. Inhibiting effect of oxygenated model compounds on the HDS of dibenzothiophenes over CoMoP/Al2O3 catalyst.[J]. Applied Catalysis A:General.2010,383:14-23
    [139]Hpsch J. M. J. G., Schuit G. C.A.. The CoO-MoO3/Al2O3catalyst:Ⅲ. Catalytic pro-perties [J]. Journal of Catalysis.1969,15 (2):179-182
    [140]Hensen E. M., Vissenberg V. H.. Kinetics and mechanism of thiophene hydrodesulfuri- zation over carbon-supported transition metal sulfides[J]. Journal of Catalysis.1996,1 63 (2):429-435
    [141]Anjie Wang, Xiang Li, Marina Egorova, et al.Kinetics of the HDS of 4,6-dimethyl-dibenzothiophene and hydrogenation intermediates over sulfided Mo/Al2O3 and NiMo/ Al2O3 [J]. Journal of Catalysis.2007,250 (2):283-293
    [142]Markel E. J., Schrader G. L.. Thiophene,2,3 and 2,5-dihydrothiophene, and tetra-hydrothiophene hydrodesulfurization on Mo and Re/Al2O3 catalysts[J]. Journal of Catalysis.1989,116(1):11-22
    [143]商红岩,刘晨光,柴永明等.二苯并噻吩在CoMo/CNT催化剂表面上的吸附行为研究[J].化学学报.2004,62(9):888-894
    [144]徐永强,刘晨光.4,6-二甲基二苯并噻吩在CoMo/Al2O3上加氢脱硫反应机理的研究[J].炼油技术与工程.2000,33(8):21-25
    [145]徐永强,刘晨光.二苯并噻吩在MoO3/Al2O3催化剂上的自发单层分散.燃料化学学报[J].2003,31(1):71-73
    [146]Hagenbach G, Courty P., Delmon B. Physicochemical investigations and catalytic activity measurements on crystallized molybdenum sulfide-cobalt sulfide mixed catalysts[J]. Journal of Catalysis.1973,31:264-273
    [147]Pirotte, D., Grange,P., Delmon B. Experimental proof of the remote control effect in the contact synergy mechanism in hydrodesulfurization catalysts[J]. Studies in Surface Science and Catalysis.1981,7:1422-1423
    [148]Karroua M., Centeno A., Matralis H.K., et al. Synergy of hydrodesulfurization and hydrogenation on chemical mixtures of cobalt sulfide on carbon and molybdenum disulfide and alumina[J]]. Applied Catalysis.1989,51:21-26
    [149]Topsoe.N.Y., Topsoe H.. Characterization of the structure and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorption[J]. Journal of Catalysis. 1983,84:386-401
    [150]Grimblot J. Genesis. Achitecture and nature of sites of Co(Ni)-MoS2 supported hydrodefulfurization catalysts[J].Catalysis Today.1998,41:111-128
    [151]Schuit G.C. A., Gates B.C..Chemistry and engineering of catalytic hydrode sulfuri-zation[J].Aiche Journal.1973,19:417-438
    [152]Daagem M., Chianelli R.R..Structure-Function relations in molybdenum sulfide catalysts:the "Rim-Edge modle [J]. Journal of Catalysis.1994,149:414-427
    [153]Shimada H..Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance [J]. Catalysis Today.2003,86 (1-4):17-29
    [154]Hensen M., Vanveen R.. Encapsulation of transition metal sulfides in faujasite zeolite for hydroprocessing applications[J]. Catal Today.2003,86:87-109
    [155]Topsoe H., Clausen B.S..Active sites and support effets in hydrodesulfurization catalysts[J].Applied Catalysis.1986,25:273-293
    [156]Besenbacher, Brorson F., M., Clausen B.S., et al. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts:Insight into mechanistic, structural and particle size effects [J]. Catalysis Today.2008,130:86-96
    [157]Topsoe H.. The role of Co-Mo-S type structures in hydrotreating catalysts[J]. Applied Catalysis A:General.2007,322:3-8
    [158]Dermard Delmon, Gilbert F. Froment.Remote control of catalytic sites by spillover species:A chemical reaction engineering approach[J].Catalysis reviews:Science and Engineering.1996,38(1)69-100
    [159]Jinwen Chen, Hong Yang, Zbigniew Ring. HDS kinetics study of dibenzothiophenic compounds in LCO[J]. Catalysis Today.2004,98:227-233
    [160]Vanrysselberghe V., Gall R. L., Froment G.F..Hydrodesulfurization of 4-methyldi-benzothiophene and 4,6-dimethyldibenzothiophene on a Co-Mo/Al2O3 catalyst Reaction network and kinetics[J]. Ind Eng Chem Res.1998,37 (4):1235-1242
    [161]余夕志,董振国.柴油馏分加氢脱硫动力学及反应器研究进展[J].燃料化学学报.2005,33(3):372-378
    [162]Wang Yao, Sun Zhongchao, Wang Anjie, et al. Kinetics of hydrodesulfurization of di-benzothiophene catalyzed by sulfided Co-Mo/MCM-41. Ind En Chem Res.2004,43: 2324-2329
    [163]朱泽霖,李承烈.噻吩在Mo-Ni-Co/Al2O3催化剂上的加氢脱硫动力学[J].华东理工大学学报.1996,22(4):412-416
    [164]金杏妹.工业应用催化剂[M].华东理工出版社.2004.
    [165]罗雄麟,李瑞丽.石油馏分加氢脱硫反应动力学模型[J].石油学报(石油加工).1995,11(2):15-23
    [166]齐艳华,黄海涛,石玉林等.加氢裂化动力学模型及其工业应用[J].石油学报(石油加工),.1999,15(2):80-84
    [167]张津驰,周志明,曹益宁等.裂解汽油中噻吩加氢脱硫反应宏观动力学[J].化学反应工程与工艺.2007,23(1):42-47
    []68]罗翔,肖尚辰,侯凯湖.催化裂化汽油窄馏分加氢脱硫动力学研究[J].炼油技术与工程.2010,40(2):6-9
    [169]黄海涛,齐艳华,石玉林等.催化裂化柴油深度加氢脱硫反应动力学模型的研究[J].石油炼制与化工.1999,30(1):55-59
    [170]汪洪涛,王华,柴先锋.柴油加氢脱硫的动力学模型[J].化工进展2009,28(5):769-772
    [1]Gonzalez-Cortes S.L., Xiao T.C., Green M.L.H..Urea-matrix combustion method:A versatile tool for the preparation of HDS catalysts[J]. Studies in Surface Science and Catalysis.2006,162:817-824
    [2]Gonzalez-Cortes S.L., Xiao T.C., Costa P.M.F.J.,et al. Urea-organic matrix method:An alternative approach to prepare Co-MoS2/γ-Al2O3 HDS catalyst. Applied Catalysis A: General.2004,270 (1-2):209-222
    [3]Xiao T. C., Da, J.W.,Gonzalez-Cortes S. L.,et al. New method for hydrodesulfurization catalyst preparation[J].Absrtacts of papers of the American chemicsociety,2005,230: U2324-U2325
    [4]季生福,李成岳,陈标华等.尿素燃烧法制备复合氧化物固溶体催化剂[J].石油化工.2004,33:1175-1176
    [5]Ataloglou T., Fountzoula C., Bourikas K.,et al. Cobalt oxide/γ-alumina catalysts prepared by equilibrium deposition filtration:The influence of the initial cobalt concentration on the structure of the oxide phase and the activity for complete benzene oxidation[J]. Applied Catalysis A:General,2005.288 (1-2):1-9
    [6]Leyva C., Ancheyta J., Rana M.S.,et al.. A comparative study on the effect of promoter content of hydrodesulfurization catalysts at different evaluation scales[J]. Fuel. 2007,86:1232-1239
    [7]Rana M.S., Leyva C., Ancheyta J., et al. Effect of catalyst preparation and support composition on hydrodesulfurization of dibenzothiophene and Maya crude oil[J]. Fuel.2007,86:1254-1262
    [8]Papadopoulou C., Vakros J., Matralis H.K., et al.. On the relationship between the preparation method and the physicochemical and catalytic properties of the CoMo/γ-Al2O3 hydrodesulfurization catalysts[J]. Journal of Colloid and Interface Science.2003.261 (1):146-153
    [9]Gonzalez-Cortes S.L., Xiao T. C., Rodulfo-Baechler S.M.A.,et al. Impact of the urea-matrix combustion method on the HDS performance of Ni-MoS2/γ-Al2O3 catalysts[J]. Journal of Molecular Catalysis A:Chemical.2005,240 (1-2):214-225
    [10]Baghalha M., Hoseini S.M.. Long-term deactivation of a commercial CoMo-Al2O3 catalyst in hydrodesulfurization of a naphtha stream[J]. Industrial and Engineering Chemistry Research,2009.48 (7):3331-3340.
    [11]Escobar J., Toledo J.A., Cortes M.A., et al. Highly active sulfided CoMo catalyst on nano-structured TiO2[J]. Catalysis Today.2005,106 (1-4):222-226
    [12]Montesinos-Castellanos A., Zepeda T.A.. High hydrogenation performance of the mesoporous NiMo/Al(Ti,Zr)-HMS catalysts[J]. Microporous and Mesoporous Materials.2008,113 (1-3):146-162
    [13]Gonzalez-Cortes S.L., Rodulfo-Baechler S.M.A., Xiao T.C., et al. Rationalizing the catalytic performance of y-alumina-supported Co(Ni)-Mo(W) HDS catalysts prepared by urea-matrix combustion synthesis[J]. Catalysis Letters.2006,111(1-2):57-66
    [14]Zepeda T.A., Pawelec B.P., Fierro J.L.G., et al.Effect of Al and Ti content in HMS material on the catalytic activity of NiMo and CoMo hydrotreating catalysts in the HDS of DBT[J]. Microporous and Mesoporous Materials.2008,111(1-3):157-170
    [15]Afanasiev P.. The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts[J]. Journal of Catalysis.2010,269 (2):269-280
    [16]Vakros J., Papadopoulou C., Voyiatzis G.A., et al. Modification of the preparation procedure for increasing the hydrodesulfurisation activity of the CoMo/y-alumina catalysts. Catalysis Today.2007,127 (1-4):85-91
    [17]Murugan R., Chang H.. Thermo-Raman investigations on thermal decomposition of (NH4)6 Mo7O244H2O[J].Chem. Soc. Dalton Trans.2001,20:3125-3132
    [18]Eijsbouts S.. On the flexibility of the active phase in hydrotreating catalysts[J]. Applied Catalysis A:General.1997,158 (1-2):53-92
    [19]Chen K.D., Xie S.B., Bell A, T., et al. Alkali Effects on Molybdenum Oxide Catalysts for the Oxidative Dehydrogenation of Propane [J].Journal of Catalysis,2000, 195(2):244-252
    [20]Rana M.S., Ramirez J., Ancheyta J., et al. Support effects in CoMo hydride-sulfurization catalysts prepared with EDTA as a chelating agent[J]. Journal of Catalysis.2007,246 (1):100-108
    [21]刘敬利,蒋建明,魏昭彬等CoMo/TiO2和CoMo/γ-Al2O3催化剂硫化行为的研究[J].石油加工.1994,10(4):18-24
    [22]Maity S. K., Rana M. S., Ancheyta-juarez J., et al. Studies on physico-chemical chara-cterization and catalysis on high surface area titania supported molybdenum hydrotreating catalysts[J]. Applied Catalysis A:General.2001,205:215-225
    [23]Teng Y., Wang A. J., Li X., et al. Preparation of high-performance MoP hydro-desulfurization catalysts via a sulfidafion-reduction procedure [J]. Journal of Catalysis.2009,266:369-379
    [24]Nava R., Ortega R. A., Alonso G., et al. CoMo/Ti-SBA-15 Catalysts for dibenzo-thiophene desulfurization [J]. Catalysis Today.2007,127 (1-4):70-84
    [25]Ramirez J., Sanchez-Minero F. Support Effects in the Hydrotreatment of Modle Molecules [J]. Catalysis Today.2008,130:267-271
    [26]郑柯文,高金森,徐春明.噻吩催化裂化脱硫机理的量子化学分析[J].化工学报.2004,55(1):87-90
    [27]Tatiana Klimov, Paola Mendoza Vara, Ivan Puente Lee. Development of new NiMo/alumina catalysts doped with noble metals for deep HDS [J]. Catalysis Today. 2010,150:171-178
    [28]Celine Fontainea, Yilda Romeroa, Antoine Daudinb, et al. Insight into sulphur compounds and promoter effects on Molybdenum-based catalysts for selective HDS of FCC gasoline [J]. AppliedCatalysis A:General.2010,388:188-195
    [29]Liu B.J.. Study on effects of NiMo HDS catalysts supported by Al2O3-TiO2 complex oxides [J]. Chinese Journal of molecular Catalysis.2004,18 (6):447-450
    [1]Arnoldy P., De Booys J.L., Scheffer B., et al. Temperature-Programmed Sulfiding and Reduction of CoO/Al2O3 catalysts. [J] Catal.1985,96:122-138
    [2]Rana M.S., Ramirez J., Ancheyta J., et al. Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent[J]. Journal of Catalysis.2007,246 (1):100-108
    [3]Hiromichi Shimada. Morphology and Orientation of MoS2 Clusters on Al2O3 and TiO2 Supports and Their Effect on Catalytic Performance [J].Catalysis Today.2003,86: 17-29
    [4]Topsφe H., Clausen B.S., Massoth F.E.. Hydrotreating catalysis[J]. Science and technology.1996,14 (10):1465-1465
    [5]Daage M., Chianelli R. R.. Structure-Function Relations in Molybdenum Sulfide Catalysts:The "Rim-Edge" Model [J]. Journal of Catalysis.1994,149:414-427
    [6]Maug F.C., Sahibed-Dine A., Gaillard M., et al. Modification of the Acidic Properties of NaY Zeolite by H2S Adsorption-An Infrared Study. Journal of Catalysis.2002,207: 353-360
    [7]Breysse M., Afanasiev P., Geantet C., et al. Overview of support effects in hydrotreating catalysts[J]. Catalysis Today.2003,86:5-16
    [8]Gallezot P.. The State and Catalytic Properties of Platinum and Palladium in Faujasite-type zeolites[J]. Catalysis Reviews-Science and Engineering.1979,20 (1):121-154
    [1]Klicpera T., Zdrazil M..High surface area MoO3/MgO:preparation by reaction of MoO3 and MgO in methanol or ethanol slurry and activity in hydrodesulfurization of benzothiophene.[J]Applied Catalysis A:Genaral 216(2001)41-50.
    [2]Lian, Y.X., Wang H.F.,. Zheng Q.X.,et al. Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al2O3 catalyst for water gas shift reaction[J]. Journal of Natural Gas Chemistry.2009,18 (2):161-166
    [3]Martin, C., Lamonier C., Fournier M., Mentre O., Harle V., Guillaume D., Payen.E. Preparation and Characterization of 6-Molybdocobaltate and 6-Molybdoaluminate Cobalt Salts. Evidence of a New HeteropolymolybdateStructure[J]. Inorganic Chemistry. 2004,45:4636-4644
    [4]Pawelec, B., Halachev T., Olivas A., et al. Impact of preparation method and support modification on the activity of mesoporous hydrotreating CoMo catalysts[J]. Applied Catalysis A:General.2008,348 (1):30-41
    [5]Vakros J., Papadopoulou C., Voyiatzis G.A., et al.Modification of the preparation procedure for increasing the hydrodesulfurisation activity of the CoMo/gamma-alumina catalysts[J]. Catalysis Today.2007,127 (1-4):85-91
    [6]Parola L. V., Deganello G., Tewell C.R., et al. Structural Characterisation of silica supported CoMo catalysts by UV Raman spectroscopy, XPS and X-ray diffraction techniques[J]. Applied Catalysis A:General.2002.235 (1-2):171-180
    [7]Frizi N., Blanchard P., Payen E., et al. Genesis of new HDS catalysts through a careful control of the sulfidation of both Co and Mo atoms:Study of their activation under gas phase[J]. Catalysis Today.2008,130 (2-4):272-282
    [8]Gonzalez-Cortes, S.L., Xiao T. C., Lin T.W., et al. Influence of double promotion on HDS catalysts prepared by urea-matrix combustion synthesis[J]. Applied Catalysis A:General. 2006,302:264-273
    [9]Rana M.S., Huidobro M.L., Ancheyta J., et al. Effect of support composition on hydrogenolysis of thiophene and Maya crude[J]. Catalysis Today.2005,107-108: 346-354
    [1]Vanrysselbereghe V., Gall R. L., Froment G. F.. Hydrodesulfurization of 4-methyldi-benzothiophene and 4,6-dimethyldibenzothiophene on a Co-Mo/Al2O3 catalyst:Reaction network and kinetics[J]. Ind Eng Chem Res.,1998,37 (4):1235-1242
    [2]Wang Yao, Sun Zhongchao, Wang Anjie, et al. Kinetics of Hydrodesulfurization of Dibenzothiophene Catalyzed by Sulfided Co-Mo/MCM-41. Ind En Chem Res.2004,43: 2324-2329
    [3]金杏妹.工业应用催化剂[M].华东理工出版社.2004.
    [4]朱泽霖,李承烈.噻吩在Mo-Ni-Co/Al2O3催化剂上的加氢脱硫动力学[J].华东理工大学学报.1996,22(4):412-416
    [5]余夕志,董振国.柴油馏分加氢脱硫动力学及反应器研究进展[J].燃料化学学报.2005,33(3):372-378
    [6]Teh C. Ho, Qiao L.. Competitive adsorption of nitrogen species in HDS:Kinetic characterization of hydrogenation and hydrogenolysis sites [J]. Journal of Catalysis. 2010,269:291-301
    [7]Markel E. J., Schrader G. L..Thiophene,2,3 and 2,5-dihydrothiophene, and tetrahydro-thiophene hydrodesulfurization on Mo and Re/Al2O3 catalysts[J]. Journal of Catalysis. 1989,116 (1):11
    [8]Philippe M., Richard F., Hudebine D., et al. Inhibiting effect of oxygenated model compounds on the HDS of dibenzothiophenes over Co-MoP/Al2O3 catalyst.[J]. Applied Catalysis A:General.2010,383:14-23
    [9]Hpsch J. M. J. G., Schuit G. C. A.. The CoO-MoO3-Al2O3 catalyst:Ⅲ. Catalytic properties [J]. Journal of Catalysis.1969,15 (2):179-182
    [10]Nag N. K., Brodedck D. H., Gates B. C.. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided CoO-MoO3/Al2O3:The relative reactivities [J]. Journal of Catalysis,1979,57 (3):509-512
    [11]Hensen E. M., Vissenberg V. H.. Kinetics and mechanism of thiophene hydro desulfuri-zation Over carbon-supported transition metal sulfides[J]. Journal of Catalysis.1996,1 63 (2):429-435
    [12]周果清,王庆.三维重构中一种快速全局最优算法[J].西北工业大学学报.2010,28(1):77-81
    [13]粟塔山,吴翎.参数化滤波器逼近问题的全局最优算法[J].国防科技大学学报2006,28(6):58-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700