GCr15/45#钢润滑工况下的摩擦磨损特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对干态、齿轮油润滑、机油润滑和液压油润滑下的GCr15/45#钢的摩擦系数和磨损特性进行了研究,并以齿轮油为例研究了频率和载荷对摩擦系数和磨损特性的影响。
     试验在DELTALAB-NENE DS20型高精度液压式微动试验机上进行,摩擦副采用球-平面接触方式,分别在干态及不同润滑工况下开展了GCr15/45#钢的摩擦磨损试验。对比了频率为1Hz,载荷为200N下,干态和几种油润滑下GCr15/45#钢的摩擦磨损行为,并在频率分别为0.5Hz、1Hz、2Hz、5Hz,载荷分别为100N、200N时,研究了齿轮油润滑下频率和载荷对GCr15/45#钢摩擦磨损行为的影响。利用光学显微镜(OM)、扫描电子显微镜(SEM)和电子能谱仪(EDX)等材料表面分析测试设备对45#钢的磨痕表面进行了微观测试分析。
     主要结论如下:
     (1)稳定期内,干态下的摩擦系数大于油润滑下的摩擦系数;干态下的磨损比油润滑下的磨损严重。
     (2)干态下的主要磨损机制为粘着磨损和疲劳磨损,油润滑下的主要磨损机制为疲劳磨损;
     (3)润滑油的粘度对摩擦系数和磨损程度影响较大,较大的粘度有助于降低摩擦系数和磨损;稳定期内,粘度大的齿轮油润滑下摩擦系数最小,磨损最轻,其润滑效果最好;粘度小的液压油润滑下的摩擦系数最大,液压油润滑下磨损最严重,其润滑效果最差。
     (4)频率和载荷对摩擦磨损特性影响明显。在一定范围内,频率增大,摩擦系数总体呈减小的趋势,磨损面积减小;在一定范围内,载荷增加,摩擦系数减小,磨损面积增大,磨损加重。
In this paper, the friction and wear characteristics of GCr15/45# steels were studied under dry friction, gear oil lubrication, engine oil lubrication and hydraulic oil lubrication. And the effects of different frequency and different loads on friction and wear characteristics of GCr15/45# steels were investigated under gear oil lubrication.
     A series of tests were carried out on the DELTALAB-NENE DS20 tester under dry friction and different oil lubrication conditions, with the friction pairs contacted by ball-plane mode. The friction coefficient and wear mechanism are compared under dry friction and lubrication conditions at the frequency of 1Hz and the load of 200N. The effects of different frequency and different loads on friction and wear characteristics of GCrl5/45# steels were investigated under gear oil lubrication at the frequency of 0.5Hz, 1Hz,2Hz and 5Hz and the loads of 100N and 200N. Analyses of 45# steel's worn surfaces and wear debris were carried out by optical microscope, scanning electron microscope (SEM) and EDX.
     Main conclusions are drawn as follows:
     (1) The coefficient under dry friction is larger than that under oil lubrication conditions in stable period, and the worn surface under dry friction is severer than that under oil lubrication conditions.
     (2) The main wear mechanism under dry friction is adhesive wear and fatigue wear, and the main wear mechanism under oil lubrication conditions is fatigue wear.
     (3) The friction coefficient and wear behavior are affected a lot by oil viscosity. Gear oil whose viscosity is the highest leads the smallest friction coefficient and the most lightest worn surface. On the contrary, hydraulic oil whose viscosity is the lowest leads the largest friction coefficient and the severest worn surface.
     (4) The friction coefficient and wear behavior are affected obviously by frequency and loads. In a certain range, the friction coefficient and the area of wear scars have a tendency of decreasing with the increasing of frequency. And the friction coefficient has a tendency of decreasing with the increasing of load, while the area of wear scars gets larger.
引文
[1]Bharat Bhushan(B.布尚).葛世荣译.摩擦学导论[M].机械工业出版社,2007: 1~4
    [2]Dowson D.. History of Tribologoly[M], Second edition.Instn Mech. Engrs, London,1998
    [3]Amontons G.. De la resistance cause dans les Machines.Memoires de l'Acad emie Royale[M],1699:257~282
    [4]Coulomb C.A..Theorie des Machines Simples, en ayant regard au Froyyement de leurs Parties, et a la Roideur des Cordages[M]. Mem. Math. Phys., X, Paris,1785:161~342
    [5]Holm R..Electrical Contacts. Springer-Verlag[M], New York,1946.
    [6]W.B. Hardy and J. K. Hardy.Note on static friction and on the lubricating properties of certain chemical substances[M]. Phil. Mag.,1919(6):32
    [7]G. A. Tomlinson. A molecular theory of friction[M]. Phil. Mag., 1929(7):905
    [8]R. Holm. Die Reibungskraft in der wahren Kontaktflache[M]. Siemens Werke,1938(17):38
    [9]H.Ernst and M. E. Merchant. Surface friction between metals-A basic factor in the metal cutting process[J], Proc.Special Summer Conf.Friction and Surface Finish.MIT Press, Cambrige, Mass,1940:76
    [10]Bowden F. P. and Tabor D.The theory of metallic friction and the role of shearing and ploughing[J], Council Sci.and Ind.Reseach, Comm. of Australia, Bulletin 145,1942.
    [11]И.В.克拉盖尔斯基等著,汪一麟等译.摩擦学原理[M].机械工业出版社,1982
    [12]I-Meng Feng. Metal transfer and wear[J].Appl. Phys.,1952 (23):1011
    [13]J.T. Burwell and C. D. Strang. On the empirical law of adhesive wear[J]. Appl.Phys.,1952 (23):18
    [14]M. Kerridge. Metal transfer and the wear process [M]. Proc. Phys. Soc. B, London,1956(68):400
    [15]J. F. Archard.Contact and rubbing of flat surfaces[J].Appl.Phys., 1953(24):24
    [16]J.F.Archard and W. Hirst. The wear of metals under unlubricated
    conditions[M]. Proc. Roy. Soc., London,1956(236):397
    [17]J.T. Burwell. Survey of possible wear mechanism[J]. Wear,1957/1958 (1):119
    [18]O. Reynolds.On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments[M]. Philos. Trans. R. Soc., London, 1886:177
    [19]曲庆文.薄膜润滑理论[M].科学出版社,2006:1-2
    [20]孙大成.润滑力学讲义[M].北京:中国友谊出版公司,1991
    [21]赵振铎,邵明志,张召铎,王家安.金属塑性成形中的摩擦与润滑[M].化学工业出版社,2004:14~15
    [22]P. Jost. Some economic factors of tribology. Proc. JSLE-SLE Internat. Lubr.Conf., Elsevier, Amsterdam,1976
    [23]张津,李军,李春天,桑雪梅.金属摩擦表面耐磨自修复技术的研究[J].表面技术.2004,33(5):7-8
    [24]T.曼格,W.德雷泽尔.润滑剂与润滑[M].北京:化学工业出版社,2002
    [25]黄平,孟永刚,徐华.摩擦学教程[M].高等教育出版社,2007:31
    [26]D.F.摩尔.黄文治,谢振中,杨明安译.摩擦学原理和应用[M].机械工业出版社,1982
    [27]温诗铸,黄平.摩擦学原理[M].第三版.北京:清华大学出版社,2008:290~299
    [28]梁志杰,谢凤宽.摩擦电喷镀Ni-Al2O3复合镀层工艺与性能研究[J].电镀与精饰,2000(22):12~14
    [29]章志敏.高温高密度等离子体箍缩用钼丝材料研究.硕士学位论文.四川大学,2005
    [30]朱邦同.化学沉积改性纳米TiO2及纳米TiO2复合涂层的制备与性能研究.硕士学位论文.合肥工业大学,2008
    [31]张路长.超声波条件下稀土介入化学沉积钴-镍-硼合金镀层的研究.硕士学位论文.合肥工业大学,2007
    [32]莫继良.物理气相沉积(PVD)涂层的摩擦学行为研究.博士学位论文.西南交通大学,2008
    [33]秦清彬.超音速火焰喷涂陶瓷涂层的组织与性能研究及拉伐尔管的设计.硕士学位论文.中国石油大学,2007
    [34]李方坡.反应超音速火焰喷涂TiC-TiB2-Ni涂层组织与性能的研究.硕士学位论文.中国石油大学,2008
    [35]霍斯特·契可斯.摩擦学——对摩擦、润滑和磨损科学技术的系统分析[M].机械工业出版社,1984:108~110
    [36]中国机械工程学会摩擦学学会《润滑工程》编写组.润滑工程[M].机械工业出版社,1986:36~37
    [37]何柏,唐小东,李范书,李晶晶,肖黄飞.纳米润滑油添加剂技术的研究进展[J].化学工业与工程技术.2006(27):29~33
    [38]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004
    [39]A.Hanglein. Small Particle Research:Physical-Chemical Properties of Extremely Small Colloidal Metal and Semiconductor Partieles[J]. Chem. Rev.1989(89):260~262.
    [40]徐滨士,梁秀兵,马世宁,等.实用纳米表面技术[J].中国表面工程,2001,14(3):13~17
    [41]王晓勇,陈月珠.纳米材料在润滑技术中的应用[J].化工进展,2001(2):27~30
    [42]史佩京,刘谦,于鹤龙等.纳米铜微粒作为润滑油添加剂的分散方法及其摩擦学性能研究[J].石油炼制与化工,2005,36(3):33~37
    [43]张继辉,陈国需,杨汉民等.纳米锌粉自修复性能的研究[J].合成润滑材料,2004,31(1):1-3
    [44]姜秉新,陈波水,董浚修.铜型添加剂摩擦修复作用的可行性研究[J].机械科学与技术,1999,18(3):445~447
    [45]程鹏,李华锋,赵立涛,等.表面修饰纳米Ti02的自修复性能研究[J].材料导报,2004,18(8):291~29
    [46]官文超.碳纳米管-乙烯基砒咯烷酮聚合物的润滑性能研究[J].摩擦学学报,2002,22(2):236
    [47]Hu Z S, et al. Study on antiwear and reducing friction additive of nanometer ferric oxide [J]. Tribology International 1998,31 (7): 355
    [48]Merschdorf M. Photoemission from multiply excited surface Plasma ons in Ag nanoparticles [J]. Appl.Phys. A,2002,20(4):547
    [49]Sun Rong, Ling Mingjing, Gao Yongjian. Study on the cutting properties of water-based emulsified liquid containing OA/TiO2 nanoparticles and tea saponins[J]. Tribology,2002,22 (4):25
    [50]张泽武,刘维民,薛群基.含氮有机物修饰的纳米三氟化镧的摩擦学性能研究[J].摩擦学学报,2000,20(3):217~219.
    [51]霍玉秋,闫玉涛,刘晓霞等.单分散纳米Si02的制备及其作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,2005,25(1):34~38
    [52]陈浩,许松.纳米ZnO粒子对航空润滑油性能的影响[J].机械传动,2005,29(1):13~15
    [53]Chen G X. Stud ny on antiwear and reducing friction additive of nanometer aluminum borate[J].Lubr Eng,2000,57(4):36~39
    [54]陈爽,李楠,刘维明.油酸修饰PbO纳米微粒的合成及结构表征[J].化学研究,2002,13(3):5-8
    [55]蒋晓明,王晓勇,陈月珠.一种新型润滑油抗磨添加剂的研究[J].石油学报(石油加工),2001,17(6):24~29
    [56]胡泽善,王亚光,曹兴进等.纳米硼酸铜颗粒的制备及其用作润滑油添加
    剂的摩擦学性能[J].摩擦学学报.2001,20(4):292~295
    [57]Hu Z S. Tribochemical and thermochemical reactions of stearic acid on copper surfaces studied by exhibiting extreme pressure behavior when used as boundary additives in hot rolling aluminum metal[J]. Lubr Eng,2000,57(3):22~27
    [58]程西云,邓小桅,曹兴进等.纳米硼酸斓添加剂的摩擦性能研究[J].机械科学与技术,2001,20(3):438~439
    [59]张嗣伟.基础摩擦学[M].石油大学出版社,2001:22
    [60]Bowden F. P. and Tabor D.. The friction and Lubrication of Solids[M], Part Ⅱ. Oxford,1964
    [61]Bowden F. P. and Tabor D.. Brit. J.Appl. Phys.,1966(17):1521
    [62]李建明.磨损金属学[M].冶金工业出版社,1990:111~120
    [63]Doyle E. D. and Turley D.M.. Delamination effects in grinding. Wear,1978(51):269
    [64]Ruff A. W.. Deformation studies at sliding wear tracks in iron. Wear,1976(40):59
    [65]Syniuta W. and Corrow C..Wear,1970(23):127
    [66]Suh N. P..The delamination theory of wear. Wear [J],1973(25):111~ 124
    [67]温诗铸.摩擦学原理[M].清华大学出版社,1990:387~391
    [68]Bochet B. Nouvelles recherches experimentales sur le forttement de glissement[J].Annales des Mines,1861,19(38):27~120
    [69]Franke G. uber die Abhangigkeit der Gleitenden Reibung von der Geschwindigkeit[J].Civilingenieur,1882(23):206
    [70]戴雄杰主编.磨擦学基础[M].第四章,摩擦学原理.上海科学技术出版社,1984
    [71]谢贤清.铸造法制备TiC/AZ43复合材料连续润滑摩擦行为研究[J].航空材料学报,2000,20(4):46~51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700