钛硅分子筛催化氧化脱除硫化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界各国为加强对环境污染的控制,不断提出更加严格的液体燃料含硫标准。面对不断降低的硫含量,传统加氢工艺受到挑战。目前,氧化脱硫法由于其反应条件温和、设备简单、脱硫效果好,成为研究的热点。
     本文以钛硅分子筛为催化剂,双氧水为氧化剂,对同时含有噻吩、苯并噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩多种硫化物的模拟燃料进行了氧化脱硫研究。考察了反应温度、催化剂孔径及种类对脱硫结果的影响。研究得出如下结论:提高反应温度可明显提高硫化物的脱除率,并且可以缩短反应达到平衡的时间;采用较大孔径的Ti-HMS分子筛做催化剂可以提高大分子硫化物4,6-二甲基二苯并噻吩的氧化脱除率;对于含大分子硫化物较多的模拟燃料,单独采用中孔分子筛Ti-HMS做催化剂即可达到较好的脱硫效果;对于含小分子硫化物较多的模拟燃料,以Ti-HMS与微孔分子筛TS-1的混合物或中微孔复合分子筛Ti-WMS做催化剂脱硫效果更好。
     另外,本文采用有机碱四丙基氢氧化铵(TPAOH)对微米TS-1进行碱改性,以改性后的TS-1为催化剂,H_2O_2为氧化剂,对含有2-甲基噻吩的正辛烷模拟燃料进行氧化脱硫研究。采用XRD、UV-Vis、TEM、N_2物理吸附等手段对改性前后的样品进行表征。考察了TPAOH浓度、改性温度以及改性时间对微米TS-1氧化脱除2-甲基噻吩性能的影响。结果表明,与未改性的样品相比,改性后的TS-1骨架结构未发生明显变化,骨架钛和非骨架钛含量略有降低,并且生成一些尺寸约为1.4nm和40-60nm的孔,比表面积和孔容增加。TPAOH改性后TS-1对2-甲基噻吩的脱除率由改性前的70.5%提高到93.9%。最佳改性条件为:TPAOH的浓度0.4mol/l,改性温度413K,改性时间24h。
Facing the increasing seriously environmental problems, the world has seen a more andmore stringent level for sulfur content in liquid fuels proposed in many countries. Thetraditional hydrodesulphurization process (HDS) becomes economically insufficient with thedecreasing sulfur in fuels. Currently, oxidative desulphurization (ODS) become the hotspotwhich is investigated extensively for its mild reaction condition, simple equipment, andhighly efficiency.
     In this paper, titanium containing molecular sieves and H_2O_2 were used as the catalystsand the oxidant, respectively, for the oxidative desulphurization of model fuel withmulti-types sulfur compounds including thiophene (Th), benzothiophene (BT),dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene(4, 6-DMDBT). The effect of thereaction temperature and the pore size and kinds of the catalysts on oxidative desulphurizationwas investigated. It has been shown that with the increase of the reaction temperature, theremoval rates of sulfur compounds have been improved. In addition, the reaction speed evenfast and reached the balance in a short time under higher temperature. The removal efficiencyof 4, 6-DMDBT was enhanced when the Ti-HMS with larger pore size was used as catalyst.Ti-HMS exhibited high activity in the oxidative desulphurization of model fuel, in which thelarge molecular sulfur compounds are in the majority. However, the meso-microporouscomposite Ti-WMS and mixture of Ti-HMS and TS-1 were preferable for oxidativedesulphurization of the model fuel containing more small molecular sulfides.
     The micron-scale TS-1 was modified by tetrapropylammonium hydroxide (TPAOH).The modified TS-1 was used as the catalyst in oxidative desulphurization of2-methylthiophene from model fuel and exhibited high activity. The samples before and aftermodification were characterized by XRD, UV-Vis, N_2 physical adsorption/desorption andTEM techniques. The modification conditions were investigated, including the concentrationof TPAOH, the modification temperature and the modification time. It has been shown thatthe modified sample possessed the typical MFI structure. After modification, the content offramework titanium as well as the extra-framework titanium in TS-1 decreased. However, themodified sample has larger surface area and pore volume than the original sample. In addition,some larger pores of about 1.4 nm and 40-60 nm have been found in the modified TS-1sample, which may be responsible for the improvement of catalytic behavior of TS-1. The modified sample exhibits excellent activity in oxidative removal of 2-Methylthiophene, withthe removal rate of 93.9%, much higher than that of original sample (70.5%). The optimalmodification conditions are as follows: the concentration of TPAOH is 0.4mol/l; thetemperature is 413K; the time is 24 h.
引文
[1] 山红红,李春义,赵博艺等.FCC汽油中硫分布和催化脱硫研究.石油大学学报(自然科学版).2001,25(6):78-81.
    [2] Ma X L, Sun L, Song C S. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catal. Today. 2002, 77:107-116.
    [3] Levy R E. Oxidative desulfurization is an attractive option for producing ULS products. ERTC 7th Annual Meeting, November 2002.
    [4] Phillips Petroleum, http://www.fuelstechnology.com/szorbdiesel.htm, December 2001.
    [5] 张艳维,沈健,杨丽娜等.汽油深度脱硫技术进展.精细石油化工进展.2004,5(6):48—51.
    [6] Rudzinski W E, Aminabhavi T M, Sassman S, et al. Isolation and characterization of the saturate and 12 Hydrocarbon Processing. 1999, 39.
    [7] Pyell U, Schober S, Stork G. Ligand-exchange chromatographic separation of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles on a chelating silica gel loaded with palladium (Ⅱ) or silver (Ⅰ) cations, Fresenius J. Anal. Chem., 1997,359 (7/8):538-541.
    [8] 冯钰,高金森,徐春明.清洁汽油生产技术现状及发展趋势.石化技术,2002,9(4):238-242.
    [9] 侯芙生.推动21世纪我国炼油工业的发展.石油炼制与化工 2002,33(1):3—4.
    [10] 李成岳,张金昌.汽油和柴油脱硫技术进展.石化技术与应用,2002,20(5):293—295.
    [11] 陈焕章,李永丹,赵地顺等.汽油利柴油氧化脱硫技术进展.化工进展.2004,23(9):913—916.
    [12] Oae S. Organic Sulfur Chemistry. CRC Press, BocaRaton, 1991.
    [13] Nakayama J, Nagasawa H, Sugihara Y, et al. Synthesis, Isolation, and Full Characterization of the Parent Thiophene 1, 1-Dioxide. J. Am. Chem. Soc., 1997, 119: 9077-9078.
    [14] Hidehiro N, Yoshiaki S, Nakayama J. Thiophene 1, 1-dioxide: Synthesis, isolation, and properties. Bull. Chem. Soc. Jpn., 1999, 72: 1919-1926.
    [15] Vasile H, Fajula F, Bousquet J. Mild oxidation with H_2O_2 over Ti-containing molecular sieves-A very efficient method for removing aromatic sulfur compounds form fuels. J. Catal., 2001, 198: 179-186.
    [16] Jursic B S. Suitability of furan, pyrrole and thiophene as dienes for Diels-Alder reactions viewed through their stability and reaction barriers for reactions with acetylene, ethylene and cyclopropene. An AM1 semiempirical and B3LYP hybrid density functional theory study. J. Mol. Stru. (Theochem), 1998, 454: 105-116.
    [17] 陈敏为等.有机杂环化合物.北京:高等教育出版社,1990.
    [18] 邢其毅等.基础有机化学.北京:高等教育出版社,1984.
    [19] NakayamaJ. 1-Oxides and 1,1-dioxides of thiophenes and selenophenes and related compounds. Bull. Chem. Soc. Jpn., 2000, 73(1): 1-17.
    [20] Jiang B W, Tilley T D. General, Efficient Route to Thiophene-1-Oxides and Well-Defined, Mixed Thiophene-Thiophene-1-Oxide Oligomers. J. Am. Chem. Soc., 1999, 121(41): 9744-9745 .
    [21] Suh M C, Jiang B W, Tilley r D. An efficient, modular synthetic route to oligomers based on zirconocene coupling: Properties for phenylene-thiophene-1-oxide and phenylene-thiophene-1,1-dioxide chains. Angew. Chem., Int. Ed., 2000, 39(16): 2870-2873.
    [22] Otsuki S, Nonaka T, Takashima N, et al. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction. Energy & Fuels. 2000, 14:1232-1239.
    [23] Sharipov A K, Suleimanova Z A, Faizrakhmanov I S. Oxidation of sulfur compounds of petroleum to sulfones under the foam-emulsion conditions. Neftekhimiya, 1994, 34(5): 459-466.
    [24] Zannikos F, Lois E, Stournas S. Desulfurization of petroleum fractions by oxidation and solvent extraction. Fuel. Pro. Tech., 1995, 42: 35-45.
    [25] Shiraishi Y, Tachibana K, Hirai T, et al. Desulfurization and Denitrogenation Process for Light Oils Based on Chemical Oxidation followed by Liquid-Liquid Extraction. Ind. Eng. Chem. Res., 2002, 41(17): 4362-4375.
    [26] Kazumasa Yazu, Takeshi Furuya, Keiji Miki, et al. Tungstophosphoric Acid-catalyed Oxidation Desulfurization of Light Oil with Hydrogen Peroxide in a Light Oil/Acetic Baphasic System. Chemistry letters. 2003, 32, 10: 920-921.
    [27] Tam Patrick S, James kkittrel. Oxidative Desulfurization of Diesel. Chem. Eng. 2001, 108(4): 23-28.
    [28] 杨丽娜,李德飞,李东胜等.石油二厂催化裂化柴油化学方法脱硫.抚顺石油学院学报.2002,22(2):22-24.
    [29] Aida T, Yamamoto D. Prepr.-Am. Chem. Soc., Div. Fuel Chem., 1994, 39(2): 623-629.
    [30] 孙刚,刘瑞婷,朱根权等.正交设计法选择最佳氧化抽提脱硫条件.石油化工高等学校学报,2001,14(4):31-34,39.
    [31] 孙刚,夏道宏.金属盐对轻质油品氧化脱硫效果的影响.燃料化学学报,2001,6(29):509-513.
    [32] Mure T, Fairbridge C, Ring Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H_2O_2 and formic acid/H_2O_2 systems. Appl. Catal. A: General. 2001, 219:267-280.
    [33] Collins F M, Andrew R L, Christopher S. Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. J. Mol. Catal. A, 1997, 117: 397-403.
    [34] Yatzu K, YamamotoY, FuruyaT, et al. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil. Energy Fuels., 2001,15(6): 1535-1536.
    [35] Yadzu K, Miki K, Ukegaw K. Method for oxidative desulphurization of liquid petroleum product and oxidative desulphurization plant.JP 2001354978, 2001.
    [36] Mute Te, Craig Fairbridge, Zhigniew Ring. Appl. catal. A. 2001, (219):267-280.
    [37] 单玉华,邬国英,李为民等.氧化法精制汽油或柴油的方法.CN 99119904,2001.
    [38] 杨金荣,侯影飞,孔瑛等.石油大学学报(自然科学版).2002,26(4):84—89.
    [39] 税蕾蕾,唐晓东,刘亮,王豪.柴油空气催化氧化脱硫的探索研究.工业催化,2003,11(9).
    [40] 崔盈贤,唐晓东,肖黄飞,杨军.直馏柴油氧化脱硫催化剂的评选与优化脱硫技术研究.石油与天然气化工,2005,34(6):(495—497).
    [41] 唐晓东,崔盈贤,何柏,李晶晶.柴油气-液-固催化氧化脱硫研究.西南石油大学学报,2007,29(1),(95—97).
    [42] Shiraishi Y, Hara H, Hiram T, et al. Deep desulfurization process for light oil by photosensitized oxidation using a triplet photosensitizer and hydrogen peroxide in an oil/water two-phase liquid-liquid extraction system. Ind. Eng. Chem. Res., 1999, 38(4): 1589-1595.
    [43] Shiraishi Y, Hara H, Hirai T, et al. Photochemical desulfurization of light oils using oil/hydrogen peroxide aqueous solution extraction system: Application for high sulfur content straight-run light gas oil and aromatic rich light cycle oil. J. Chem. Eng. Jp., 1999, 32 (1): 158-161.
    [44] Shiraishi Y, Hara H, Hiram T, et al. TiO_2-mediated photocatalytic desulfurization process for light oils using an organic two-phase system. J. Chem. Eng. Jp., 2002, 35 (5): 489-492.
    [45] Shiraishi Y, HaraH, Hiram T, et al. Oxidative desulfurization process for light oil using titanium silicate molecular sieve catalysts. J. Chem. Eng. Jp., 2002, 35 (12): 1305-1311.
    [46] Kinetics and Mechanism of Liquid Phase Oxidation of Thiophene over TS-1 Using H2O2 under Mild Conditions. L.Y. Kong, G. Li, X. S. Wang, Catal. Lett., 2004, 92(3-4): 163-167.
    [47] Mild Oxidation of Thiophene over TS-1/H_2O_2. L.Y. Kong, G. Li, X. S. Wang, Catal. Today, 2004, 93-95: 341-345.
    [48] Thiophene Oxidation over Titanium Silicalite Using Hydrogen Peroxide. Kong L. Y., Li G., Wang X. S., Wang Y., Chinese J. Catat. (催化学报),2004,25(2): 89-90.
    [49] TS-1/双氧水催化体系中各种硫化物选择氧化的研究.孔令艳,李钢,王祥生,王云.催化学报,2004,25(10):775-778.
    [50] 深度脱除汽油中硫化物的催化氧化方法.王祥生,孔令艳,李钢.中国专利申请号:2003101251742.
    [51] 王云,李钢,王祥生等.Ti-HMS催化氧化脱除模拟燃料中的硫化物.催化学报.2005,26(7):567-570.
    [52] Iwamoto M, Tanaka Y, Hirosumi J, et al. Enantioselective oxidation of sulfide to sulfoxide on Ti-containing mesoporous silica prepared by a template-ion exchange method. Micro. Meso. Mater., 2001,48: 271-277.
    [53] 王豪,唐晓东,周建军等.柴油氧化脱硫技术研究进展.石油与天然气化工.2003,33(01):38—41.
    [54] Duhalt, et al. Enzymatic Oxidation Process for Desulfurization of Fossile Fuels. 2002, US6461859.
    [55] Ayala M, Tinoco R, Hernandez V, et al. Biocatalytic oxidation of fuel as an alternative tobiodesulfurization. Fuel Pro. Tech., 1998, 57: 101-111.
    [56] Grossman M J., SiskinM, Ferrughelli D T, et al. Method for the removal of organic sulfur from carbonaceous materials. U.S. 5910440, 1999.
    [57] Yen T F, Mei H, Lu S. Oxidative desulfurization of fossil fuels with ultrasound. US. 6402939, 2002.
    [58] Mei H, Yen T F, Mei B W. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization. Fuel, 2003, 82 (4): 405-414
    [59] Hirai T, Shiraishi Y, Ogawa K, et al. lnd. Eng. Chem. Res. 1997, (36):530.
    [60] Schucher, et al. Electrochemical Oxidation of Sulfur Compounds in Naphtha Using Ionic Liquids. 200i, US6274026.
    [61] Schuker. Electrochemical Oxidation of Sulfur Compiunds in Naphtha. 2002, US6338778.
    [62] 曹国英,李宏愿,夏清华等.TS-1分子筛催化剂上丙烯基氯的环氧化性能.催化学报,1995,16(3):217—221.
    [63] A, Tgangaraj, R. Kumar and P. Ratnasamy. Direct Catalutic Hydroxylation of Benzene With Hydrogen Peroxide Over Titanium -Silicate Zeolite. Applied Catalysis .1990, 57 (2) : L1-L3.
    [64] Yang W B, Liu XY. Hydroxylation of aromatic hydrocarbons with H2O2 over titanium silicalite (TS-1). Chin. J. Mol. Catal., 1998, 12 (2) : 83-84
    [65] 杨武斌.钛硅沸石分子筛的催化甲苯羟基化制酚类化合物的研究.大连理工大学硕士学位论文,1996.
    [66] 刘斌,李钢,王祥生.TS-1/H_2O_2催化模拟汽油中噻吩的选择氧化研究.燃料化学学报,2006,34(5):629-632.
    [67] Li G, Guo X W, Wang X S, et al. Synthesis of titanium silicalites in different template systems and their catalytic performance. Appl. Catal. A. 1999, 185 (1): 11-18.
    [68] Peter T T, Malama C, Thomas J P. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature, 1994, 368: 321.
    [69] Jin C Z, Li G, Wang X S, et al. Synthesis, Characterization and Catalytic Performance of Ti-Containing Mesoporous Molecular Sieves Assembled from Titanosilicate Precursors. Chem. Mater, 2007, 19:1664-1670.
    [70] 朱金华,沈伟,徐华龙,周亚明,余承忠,赵东元.水热一步法合成Ti-SBA-15分子筛及其催化性能研究.化学学报,2003,61(2):202-207.
    [71] 张莉.钛硅分子筛的结构与催化性能的研究.北京:北京石油科学研究院硕士学位论文,2000.
    [72] 李鹏.有机碱改性TS-1的表征及其甲乙酮氨氧化性能的研究.大连:大连理工大学硕士学位论文,2005.
    [73] BLASCO T, CAMLOR M A, CORMA A, etal. The state of Ti in titanoaluminosilicates isomorphous with zeolite Beta.[J].J Am Chem Soc,1993,115(25):11806-11813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700