数字医学技术在器官移植中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     传统的实质脏器解剖学研究主要针对固定的尸体标本,由于没有进行灌注,脏器内部管道塌陷,肝脏等实质脏器本身的立体和空间构象改变,所获得的管道数据与活体肝脏管道结构不符。现代影像学(螺旋CT、MRI等)的发展,将移植外科推向了一个新的阶段。虽然如此,但肝脏等实质脏器管道结构的复杂性和变异性仍然是引起手术大出血和器官移植术后管道并发症的关键问题。医学图像可视化和虚拟现实技术进行虚拟脏器及其外科手术的研究为解决这些难题带来了希望。随着计算机技术、图像处理技术、物理学与医学的交叉融合和迅速发展,外科诊断与治疗的手段正在发生着很大的变化。近年来出现的计算机辅助手术系统,虚拟外科手术系统等就是在信息科学迅速发展并应用于医学领域产生的成果。外科医生通过这些先进的技术手段在术前、术中、术后对手术进行辅助支持。使外科手术越来越安全、可靠、精确,创伤越来越小。利用计算机辅助三维重建并进行虚拟手术的研究十分活跃。Raptopouls V.行螺旋CT血管造影三维重建,能同时完成显示门静脉、肝静脉全貌及其复杂的空间解剖结构关系,可直观评价门静脉、肝静脉的位置、管径、阻塞程度及其侧支循环情况。Wigmore SJ则利用螺旋CT肝脏扫描图片进行三维重建,虚拟肝脏切除,评估肝切除手术后肝衰的危险性,从而决定肝脏的切除范围。肝脏3D及其虚拟手术是利用CT, MRI等图像序列进行处理,构造出能显示肝脏各结构的三维几何模型,将看不见的人体器官能以三维形式“真实”地显示出来,即可视化。它的优点是在空间中具有准确的定位,可以立体地从不同角度观察各解剖结构、测量各种数据,促进肝脏临床解剖学的发展,同时虚拟肝脏的各种手术,并可以利用肝癌患者的肝脏及其肿瘤的影像(CT、MRI等)扫描数据进行图像融合和更新,从而使外科医师在计算机上反复进行手术规划,反复演练手术过程并优化手术方案,提高手术技能,提高手术的安全性,降低手术并发症。
     一数字医学技术在活体肾移植中的临床应用价值
     目的
     1.建立肾脏及其血管的腹腔三维模型,了解肾脏及其血管解剖结构及变异特点;
     2.通过三维重建供受体腹腔三维模型,研究其在指导临床活体肾移植手术中的应用价值;
     3.建立仿真活体肾移植手术环境,完成活体肾移植手术,研究其在临床手术中的指导作用。
     方法
     1.材料
     (1)16排螺旋CT及其图像后处理工作站;(2)双筒高压注射器及造影剂;(3)高配置计算机;(4) DICOM查看器;(5) ACDSee图片转换软件;(6)MI-3DVS系统(自行研制的医学图像三维可视化系统);(7) FreeForm Modeling System及其自带的PHANTOM设备。
     2.研究对象
     广东省第二人民医院2009年1月至2010年12月5例亲属活体肾移植病例。受体中,男性5例,女性0例,年龄29-50岁,平均36岁,均明确诊断为慢性肾功能不全尿毒症期而首次接受肾移植术。原发病包括慢性肾小球肾炎、慢性肾盂肾炎、糖尿病肾病、IgA肾病等。受者术前均接受血液透析或腹膜透析治疗。
     供体男性3例,女性2例,年龄46-56岁,平均53岁。供受者关系:父母供给子女3例,子女供给父母0例,兄弟姐妹供肾2例,旁系亲属供肾者0例,妻子供给丈夫0例。
     供、受体血型情况:5例供、受者ABO血型完全相同。
     供、受体配型情况:淋巴细胞毒交叉配合试验为阴性。HLA配型情况:1抗原错配者0例,2抗原错配者3例,3抗原错配者1例,4抗原错配者1例,HLA完全错配0例。受者群体反应性抗体检测PRA>10%0例,PRA<10% 5例。
     3.数据采集
     将研究对象行16排螺旋CT常规腹部平扫和增强扫描,并在图像后处理工作站将扫描数据(包括平扫期、动脉期、门静脉期、肝静脉期)刻盘存储。
     4.数据转换
     将刻录的数据导入个人计算机中,利用DICOM查看器将原始数据的格式转化为BMP格式,再利用ACDSee图片转换软件调整图片大小、顺序等。
     5.医学图像三维可视化系统(MI-3DVS)分割重建
     将处理后的CT数据导入自主开发的医学图像三维可视化系统(MI-3DVS)进行程序分割重建,并保存为STL格式。
     6.平滑和去噪
     将重建好的各部分STL格式的图像导入到FreeForm Modeling System中,对管道、肾脏进行平滑、去噪,并进一步保存为STL格式。将处理好的各部分再次导入到FreeForm Modeling System软件中,并配以不同颜色。
     7.肾移植仿真手术
     将研究对象三维重建后,分别选取活体肾移植供、受体,并将它们导入到FreeForm Modeling System及其自带的PHANTOM力反馈设备中,建立起活体肾移植仿真手术环境,手术步骤包括:左/右肾切取;植肾术(右侧)等。
     8.肾移植临床手术
     根据三维重建及仿真手术,进行临床手术。
     结果
     1.三维重建
     5例三维重建的供、受体肾脏、肾动脉、肾静脉等模型清晰,立体感强。各血管走行符合解剖特点。5例中,发现供体肾动脉变异2例,其中1例变异为肾动脉存在副肾动脉,1例存在过早分支,未见肾静脉变异情况。在1例供体动脉三维模型中,供体左右肾动脉均存在变异,左肾动脉自腹主动脉发出后,可见两条分支,为过早分支;右肾动脉自腹主动脉发出后,也存在两条分支,右肾动脉下方发现一支副肾动脉。
     2仿真手术
     在FreeForm Modeling System应用系统及其自带的PHANToM力反馈设备中,虚拟出了活体肾移植手术环境,并利用自主开发出的仿真手术刀、仿真手术针及仿真血管钳等完成了活体肾移植可视化仿真手术全部过程。
     3临床手术
     临床上,根据三维重建及仿真手术的结果,均顺利的完成了活体肾移植手术。术后供、受体恢复良好,未发生明显并发症。
     结论
     1.三维重建肾脏及血管,可用于指导临床活体肾移植手术;
     2.活体肾移植仿真手术在供、受体血管吻合中具有重要的指导作用。
     二数字医学技术在背驮式肝移植中的应用研究
     目的
     1.建立背驮式肝移植供受体肝脏及其血管的腹腔三维模型,了解肝脏及其血管解剖结构及变异特点;
     2.通过三维重建供受体腹腔三维模型,研究其在指导临床背驮式肝移植手术中的应用价值;
     3.建立仿真背驮式肝移植手术环境,完成背驮式肝移植手术,研究其在临床手术中的指导作用。
     方法
     1.材料CT扫描仪:PHILIPS BRILLIANCE64排螺旋CT扫描仪,探测器组合为0.625mm×64,荷兰PHILIPS公司生产。余同前。
     2.研究对象供体:“健康”体检者,男,28岁,身高173cm,体重66Kg,肝肾功能正常,CT提示肝、胆、胰、脾未发现异常,临床未发现肝脏疾病。受体:男,41岁,身高168cm,体重76Kg。肝功能:丙氨酸氨基转移酶(ALT):287IIU/L,天门冬氨酸氨基转移酶(AST):193IU/L,γ-谷氨酸酰基转移酶(GGT):57 IIU/L;总胆红素:12.3μmol/l,直接胆红素:7.2μmol/l。CT:肝右叶有一5×4cm的低密度影,未发现其它病灶。甲胎蛋白(AFP):86.42μg/l(0~10.9u g/1),癌胚抗原(CEA):11.45μg/l(0~10μg/l)。
     3.数据采集
     将研究对象行64排螺旋CT常规上腹部平扫和增强扫描,并在图像后处理工作站将扫描数据(包括平扫期、动脉期、门静脉期、肝静脉期)刻盘存储。
     4.数据转换,医学图像三维可视化系统(MI-3DVS)分割重建,平滑和去噪:同前。
     5.背驮式肝移植仿真手术
     包括供体肝脏切取术,受体病肝切除术,供肝植入术。
     结果
     1.64排螺旋CT扫描
     共收集供体四期(平扫期、动脉期、门静脉期、肝静脉期)扫描图层均为437张,受体四期扫描图层均为372张。在64排螺旋CT自带的Mxview工作站上对扫描的图像质量进行分析:供、受体肝脏轮廓清晰,断面管道造影剂充填较好,各种血管管道清晰。动脉期:供受体腹主动脉及其各个分支均清楚显示,肝动脉及左肝动脉、右肝动脉以及下属分支均能清楚显示,受体动脉管径较细,追踪动脉走向及动脉与肝实质界限较困难。静脉期:供受体肝静脉主干显示良好,下腔静脉内造影剂充填较均匀。门静脉期:供体门静脉显示良好,受体门静脉系统肝外管道显示良好,肝内门静脉左支显示略差,右支显示良好。
     2.三维重建
     程序分割的腹部三维模型重建迅速(供体重建共用时1.5小时,受体重建共用时2小时)。重建后的腹部脏器及管道系统显示清晰、逼真,较有效地模拟了腹部脏器情况,并能任意旋转、放大、缩小、透明化。肝脏透明化后,供受体肝内血管系统解剖结构正常,相互关系明晰。未发现血管的变异。
     3.仿真手术
     在FreeForm Modeling System应用系统及其自带的PHANToM力反馈设备中,虚拟出了背驮式肝移植环境,并利用此设备中二次开发出的仿真手术刀、仿真手术针及仿真血管钳等完成了背驮式肝移植可视化仿真手术全部过程,包括供肝切取,受体病肝切除,供肝植入,各步骤符合临床手术过程,并可通过手术刀切割,手术针缝合等手术操作,感受“力”反馈的感觉,真正体验手术的逼真性。
     结论
     1.三维重建的背驮式肝移植供受体解剖结构清楚,可指导临床手术方案的制定;
     2.背驮式肝移植仿真手术,帮助临床医师熟悉手术过程,减少手术失误,提高手术成功率。
     三数字医学技术在原位肝移植中的应用研究
     目的
     1.建立原位肝移植肝脏及其血管的腹腔三维模型,了解肝脏及其血管解剖结构及变异特点;
     2.通过三维重建供受体腹腔三维模型,研究其在指导临床原位肝移植手术中的应用价值;
     3.建立仿真原位肝移植手术环境,完成原位移植手术,研究其在临床手术中的指导作用。
     方法
     1.材料同前。
     2.研究对象供体:女性,33岁,身高159cm,体重57Kg,血常规、生化检查未见异常,CT提示:肝、胆、胰、脾未见异常。临床上未发现肝脏疾病;受体:男性,58岁,身高166cm,体重72kg,肝功能:丙氨酸氨基转移酶(ALT):578IIU/L,γ-谷氨酸酰基转移酶(GGT):325 IIU/L,总胆红素:35.1μmol/l,直接胆红素:17.8μmol/l。CT提示:肝右叶低密度肿物,病灶区肝内胆管扩张。甲胎蛋白(AFP):阳性,癌胚抗原(CEA):阴性。临床诊断为肝右外侧段胆管细胞癌。
     3.数据采集,数据转换,医学图像三维可视化系统(MI-3DVS)分割重建,平滑和去噪同前。
     4.劈裂式肝移植仿真手术供体肝脏切取术,受体病肝切除术,供肝植入术。
     结果
     1.64排螺旋CT扫描
     共收集供体四期(平扫期、动脉期、门静脉期、肝静脉期)扫描图层均为503张,受体四期扫描图层均为461张。在64排螺旋CT自带的Mxview工作站上对扫描的图像质量进行分析:供、受体肝脏轮廓清晰,断面管道造影剂充填良好,各种血管管道清晰。动脉期:腹主动脉及其各个分支均清楚显示,肝动脉及左肝动脉、右肝动脉以及下属分支均能清楚显示。受体动脉管径较细,追踪动脉走向及动脉与肝实质界限较困难。静脉期:肝静脉主干显示良好,下腔静脉内造影剂充填较均匀,供体肝静脉的属支能肉眼辨认至三级。门静脉期:供体门静脉显示良好,受体门静脉系统肝外管道显示良好,肝内,门静脉右支显示不清,左支显示尚可。
     2.三维重建
     程序分割的腹部三维模型重建迅速,其中供体重建共用时1.5小时,受体重建共用时1.5小时。重建后的腹部脏器及管道系统显示清晰、逼真,较有效地模拟了腹部脏器情况,并能任意旋转、放大、缩小、透明化。肝脏透明化后,供受体肝内血管系统解剖结构正常,相互关系明晰。未发现血管的变异。
     3.仿真手术
     在FreeForm Modeling System应用系统及其自带的PHANToM力反馈设备中,虚拟出了原位肝移植环境,并利用此设备中二次开发出的仿真手术刀、仿真手术针及仿真血管钳等完成了原位肝移植可视化仿真手术全部过程,包括供肝切取,病肝切除,供肝植入等,各步骤符合临床手术过程,并可通过手术刀切割,手术针缝合等手术操作,感受“力”反馈的感觉。
     结论
     1.三维重建的原位肝移植供受体解剖结构清楚,可指导临床手术方案的制定;
     2.原位肝移植仿真手术,帮助临床医师熟悉手术过程,减少手术失误,提高手术成功率。
     四数字医学技术在劈裂式肝移植中的应用研究
     目的
     了解劈裂式肝移植手术过程。
     方法
     1.材料同前。
     2.研究对象
     供体:“健康”体检者,男,25岁,身高170cm,体重63Kg,肝肾功能正常,CT提示肝、胆、胰、脾未发现异常,临床未发现肝脏疾病。
     受体1:男,51岁,身高165cm,体重66Kg。肝功能:丙氨酸氨基转移酶(ALT):387工IU/L,天门冬氨酸氨基转移酶(AST):243IU/L,γ-谷氨酸酰基转移酶(GGT):76 IIU/L;总胆红素:112.5μmol/l,直接胆红素:82.4μmol/l.CT:肝右叶有一16×12cm的低密度影,未发现其它病灶。甲胎蛋白(AFP):245.67μg/1(0-10.9μg/1),癌胚抗原(CEA):10.68μg/1(0~10μg/1).127IIU/L,天门冬氨酸氨基转移酶(AST):67IU/L,Y-谷氨酸酰基转移酶(GGT):19IIU/L;总胆红素:16.3 u mol/1,直接胆红素:11.5μmol/1。CT:肝左叶有一3×2cm的低密度影,未发现其它病灶。甲胎蛋白(AFP):24.56μg/1(0-10.9μg/1),癌胚抗原(CEA):2.45μg/l(0-10μg/1)。
     3.数据采集,数据转换,医学图像三维可视化系统(MI-3DVS)分割重建,平滑和去噪同前。
     4.劈裂式肝移植仿真手术供肝劈裂术,受体病肝切除术,供肝植入术。
     结果
     1.64排螺旋CT扫描
     共收集供体四期(平扫期、动脉期、门静脉期、肝静脉期)扫描图层均为511张,受体1四期扫描图层为427张,受体2四期扫描图层均为389张。在64排螺旋CT自带的Mxview工作站上对扫描的图像质量进行分析:供、受体肝脏轮廓清晰,断面管道造影剂充填良好,各种血管管道清晰。动脉期:供受体腹主动脉及其各个分支均清楚显示,肝动脉及左肝动脉、右肝动脉以及下属分支均能清楚显示,受体动脉管径较细,追踪动脉走向及动脉与肝实质界限较困难。静脉期:肝静脉主干显示良好,供受体下腔静脉内造影剂充填较均匀。门静脉期:2例供体及受体门静脉显示良好,门静脉系统肝外管道显示良好。
     2.三维重建
     程序分割的腹部三维模型重建迅速,其中供体重建共用时2.0小时,受体1重建用时1.5小时,受体2重建共用时1.0小时。重建后的腹部脏器及管道系统显示清晰、逼真,较有效地模拟了腹部脏器情况,并能任意旋转、放大、缩小透明化。肝脏透明化后,供受体肝内血管系统解剖结构正常,立体感强。未发现血管的变异。
     3.仿真手术
     在FreeForm Modeling System应用系统及其自带的PHANToM力反馈设备中,虚拟出了劈裂式肝移植环境,并利用此设备中二次开发出的仿真手术刀、仿真手术针及仿真血管钳等完成了劈裂式肝移植可视化仿真手术全部过程,包括供肝劈裂术,受体病肝切除术,供肝植入术等,各步骤符合临床手术过程,并可通过手术刀切割,手术针缝合等手术操作,感受“力”反馈的感觉。
     结论
     劈裂式肝移植的仿真手术复杂,是器官移植中难度最大的手术之一,数字医学在劈裂式肝移植中具有一定的应用价值。
     五数字医学在肝肾联合移植中的应用研究
     目的
     1.建立肝肾联合移植的腹腔三维模型,了解腹腔脏器及其血管解剖结构及变异特点;
     2.通过三维重建供受体腹腔三维模型,研究其在指导临床肝肾联合移植手术中的应用价值;
     3.建立仿真肝肾联合移植手术环境,完成肝肾联合移植仿真手术,研究其在临床手术中的指导作用。
     方法
     1.材料同前。
     2.研究对象
     供体:课题志愿者,男性,26岁,身高168cm,体重68Kg,血常规、生化检查未见异常,CT提示:肝、胆、胰、脾、肾脏等均未见异常;
     受体:课题志愿者,女性34岁,身高161cm,体重52Kg,血常规、生化检查未见异常,CT提示:肝、胆、胰、脾、肾脏未见异常。
     4.数据采集,数据转换,医学图像三维可视化系统(MI-3DVS)分割重建,平滑和去噪同前。
     4.肝肾联合移植仿真手术供肝供肾联合切取,病肝切除术,供肝供肾联合植入术。
     结果
     1.64排螺旋CT扫描
     共收集供体四期(平扫期、动脉期、门静脉期、肝静脉期)扫描图层均为503张,受体四期扫描图层均为861张。在64排螺旋CT自带的Mxview工作站上对扫描的图像质量进行分析:供、受体肝脏及肾脏等实质脏器轮廓清晰,断面管道造影剂充填良好,各种血管管道清晰。动脉期:供受体腹主动脉及其各个分支均清楚显示,肝动脉及左肝动脉、右肝动脉以及下属分支均能清楚显示,肾动脉显示清楚,受体髂内外动脉可清楚显示。静脉期:供受体肝静脉主干显示良好,下腔静脉内造影剂充填较均匀,肾静脉造影剂充填较好,髂内外静脉显示清楚。门静脉期:供体门静脉显示良好,受体门静脉系统肝外管道显示清楚。
     2.三维重建
     程序分割的腹部三维模型重建迅速,其中供体重建共用时1.5小时,受体重建共用时2.5小时。重建后的腹部脏器及管道系统显示清晰、逼真,较有效地模拟了腹部脏器情况,并能任意旋转、放大、缩小、透明化。肝脏透明化后,肝内血管系统解剖结构正常,相互关系明晰。未发现血管的变异。
     3.仿真手术
     在FreeForm Modeling System应用系统及其自带的PHANToM力反馈设备中,虚拟出了肝肾联合肝移植环境,并利用此设备中二次开发出的仿真手术刀、仿真手术针及仿真血管钳等完成了肝肾联合肝移植可视化仿真手术全部过程,包括供肝供肾联合切取,病肝切除术,供肝供肾联合植入术等,各步骤符合临床手术过程,并可通过手术刀切割,手术针缝合等手术操作,感受“力”反馈的感觉。
     结论
     1.三维重建的肝肾联合移植供受体解剖结构清楚,可指导临床手术方案的制定;
     2.肝肾联合移植仿真手术,帮助临床医师熟悉手术过程,减少手术失误,提高手术成功率。
Background
     The traditional anatomical organs study aim directly at cadaveric specimens. Since they were not perfused, the internal pipesal organ collapsed, the three-dimensional conformational space of the liver changed. So the pipeline structure which we obtained was different from the structure of the living liver. With the development of modern imaging (spiral CT, MRI, etc.), hepatobiliary surgery get to a new stage. The concept of surgical treatment of liver cancer is being transformed. Many liver cancers which encroached the porta hepatis, portal vein and inferior vena cava were excised; the living donor right liver and the enlarged right liver transplantation were performed. However, it remains the king problem that the complexity and variability of liver and other organ pipe structure cause complications. Such as, postoperative bleeding. Maybe, the study of medical image visualization and virtual reality technology can solve these problems. With the chiastopic fusion and the rapid development of the computer technology, the image processing technology, the medicophysics and the medicine, the surgical diagnosis and therapy experienced great change. In these years, the computer-assisted operation system and the virtual operation system are the achievements of the rapid development of the information science applied in the medical region. The surgeons can make the operation safely, reliably and accuratly with the advanced skills. The flying development in modern science and technology has built a concrete ground for the vital studies on the three-dimensional (3D) reconstruction of hepatic duct systems in recent years. The 3D reconstruction through hispeed CT angiography conducted by Raptopouls V, et al displayed the full views of portal and hepatic veins as well as the spatial conformational relations anatomically. Consequently the portal and hepatic veins can be located and their diameters, obstructions and collateral circulations can be evaluated. Wigmore SJ et. all reconstructed liver from the scanned images by helical CT and performed the virtual surgical incision of liver to access the risk of hepatic failure after hepatic incision and reckon the incision range. The three-dimension hepatic and the virtual surgery make use of such imagery sequence as CT and MRI, so as to display a three-dimensional model of the various structures of the liver, making the hiding human organ a visible "live" three-dimensional object, namely visualization. The strengths include:1) being specifically located in certain space; 2) Being observable in structure and being measurable and available while performing various surgeries on virtual liver; 3) Enhancing the advancement of anatomical liver. In various surgeries of virtue liver, the CT or MRI examination data of specific liver cancer patients could be employed for image fusion and update. Hence the surgeons can use their computers to conduct surgical planning and test the operational process repeatly. Such computerization exercise will help surgeons to optimize the planning, ensure the surgery quality and safety, and reduce the operative complications.
     Part 1. Studies on the Application of Digitalization in Living-related kidney transplantation
     Objective
     1. Establishing three-dimensional model of kidney and blood vessels in the abdominal cavity, find out the characteristics variability and anatomic structure of kidney and blood vessels;
     2. By establishing three-dimensional model of donor and receptor's abdominal cavity, finding out it's application value of guiding clinical Living-related kidney transplantation;
     3. Establishing simulated operation condition of Living-related kidney transplantation, accomplished the Living-related kidney transplantation, and do research on it's guidance in the clinical operations.
     Methods
     1.Materials:(1) PHILIPS BRILLIANCE 16-slice helical CT, Image process workstation;(2) binocular tube high pressure injector;(3)computer;(4) DICOM Viewer;(5) ACDSee (6) Medical image three-dimensional visualization system;(7) FreeForm Modeling System and PHANTOM.
     2. Examiners:There are 5 cases of Living-related kidney transplantation from 2009.1-2010.12.5 in Guangdong No.2 provincial people's hospital. Including 3 male receptor,2 female donor, ages 45-46, average age is36.3 male donator,2 female donator, ages 46-56, average age is 53. The relations between donator and receptor is
     3 cases from parents given child, sons or daughters given parents none,2 cases were given by brothers or sisters, other relatives given none, wife given husband none. There are 5 cases of Donator-receptor's ABO blood type ipentity, type 0 donate type B none, type 0 donate type A none, type 0 donate type AB none. Iymphocytotoxicity cross matching result is negative. HLA matching:antigen 1 mispairing none, antigen 2 mispairing 3 cases, antigen 2 mispairing 1 case, antigen 4 mispairing one case, HLA completely mispairing none. Receptors' penel reactive antibody test:PRA>10% zero, PRA<10% 5 cases. The protopathy. Including chronic glomerulonephritis, chronic pyelonephritis, diabetic nephropathy, IgA nephropathy etc.The receptors all accept dialysis therapy.
     3. Collection of CT scan data:plain scan and enhanced scan on epigastrium by 16-slice helical CT were done on the examines, and the scan data was burned and stored from Mxview which is a image postprocessing workstation of PHILIPS BRILLIANCE 64-slice helical CT.
     4. Data transformation:The burned data was imported into personal computers. Using DICOM viewer, translate the original data format into BMP format. Adjust the size, and order the pictures with ACDSee.
     5. The CT data which was translated was imported into Medical image three-dimensional visualization system and made procedure segmentation and three-dimensional reconstruction, then stored on the STL format.
     6. Smoothing:The models of the artery, portal vein and hepatic vein were imported into Free Form Modeling System, and smoothed in the system.
     7. Simulated operation of kidney transplantation:After rebuilt three-dimensional model of the objects, choosing donor and receptor of the living kidney transplantation. Leading-in the data into the Free Form Modeling System and PHANTOM, reconstruct the operation condition of the living-related kidney transplantation. Operating procedure including:right/left kidney resection; kidney transplantation(right), etc.
     8.Clinical operation of kidney transplantation:According rebuilding the three-dimensional model and Simulated operation of kidney transplantation, doing clinical operation.
     Results
     1. Three-dimensional model's reconstruct
     Kidney, arteria renalis, venae renales were clear and perspective in the Three-dimensional model which was built by 5 donator and receptor. In 5 cases,2 have Arteria renalis variation, one have accessory renal artery variation, one have early branches, no venae renales variation. Find out one case of donator's artery three-dimensional model, find out both left and right kidney of donator have variation, left ateria renalis can be seen two branches after leaving aorta abdominalis, those were early branches. The same as left ateria renalis. Besides, left ateria renalis has a accessory renal artery; thus one case of donator's artery three-dimensional model were early branches.
     2. Simulated operation
     In the Free Form Modeling System and PHANTOM, fictitious the operation condition of the living-related kidney transplantation. Besides, using simulated-scalpel, simulated surgical needle and simulated tissue forceps which innovated independently, completed the simulated operation of the living-related kidney transplantation.
     3. Clinical operation
     Clinically, according to the conclusion of three-dimensional rebuilt and simulated operation, the operation of living-related kidney transplantation was completely success. Donator and receptor recovered good, no obvious neopathy.
     Conclusion
     1. Three-dimensional rebuilt of the kidney and blood vessels, can be used for guiding clinical living-related kidney transplantation.
     2. Simulated operation of living-related kidney transplantation has important guidance in the donator receptor's vascular anastomosis.
     Part2. Studies on the Application of Digitalization in piggyback liver transplantation
     Objective
     1. Establishing piggyback liver transplantation for liver and blood vessels of the abdominal receptor three-dimensional model, understand the vascular anatomy of the liver and its structure and variation of characteristics;
     2. Through the abdominal reconstruction for three-dimensional model of the receptor and donator, study its guidance value in the clinical piggyback liver transplantation.
     3. To establish simulation piggyback liver transplant environment, complete piggyback liver transplantation, study it's guidance in clinical surgeries.
     Methods
     1. Materials:PHILIPS BRILLIANCE 64-slice helical CT, others is the same with part one.
     2. Examiners:the donor:the people who is health examination, CT showing:the liver,gallbladder, pancreas and spleen are normal; receptor:Hepatic function:ALT: 287IIU/L, AST:193IU/L, GGT:57 IIU/L, Total bilirubin:12.3μmol/l, direct bilirubin:7.2μmol/l. CT prompting:left lateral lobe of liver can be found one of the low-density video, others is not found focus of infection. Clinical diagnosis:primary liver carcinoma.
     3. Collection of CT scan data:plain scan and enhanced scan on epigastrium by 64-slice helical CT were done on the examines, and the scan data was burned and stored from Mxview which is a image postprocessing workstation of PHILIPS BRILLIANCE 64-slice helical CT.
     4. Data acquisition, data transformation, procedure segmentation, reconstruction, and smoothing are the same with part one.
     5. The main step of piggyback liver transplantation is the liver excision of the donor, hepatectomy of receptor, the donor implanting to the receptor.
     Results
     1. The results of 64-slice spiral CT scan
     For donor,437 images of four periods are collected,372 images for receptor. All the images are good. The contrast agent for the receptor of the left branch of portal vein is filled poor, others are good.
     2. The results of 3D reconstruction
     The abdominal 3D model is clear, realistic and seeming three-dimensional. The abdominal organs and ducts can be simulated effectively, and can be rotated randomly, magnified, decreased and made being transparency.
     3. Simulation surgery
     In Freeform Modeling System and its own system of Phantom force-feedback, the environment of piggyback liver transplantation was built. And using the secondary development of a simulation electric knives, simulation surgical needle and simulation tissue forceps, the simulation surgery of the piggyback liver transplantation can be operated. All the steps are in accordance with the process of clinical operations. We have a strong sense of feedback in cutting and saturation.
     Conclusion
     1. Donor and recipient anatomical structure can be seen clearly in the three-dimensional reconstruction of piggyback liver transplantation, thus can be optimized clinical surgical procedures;
     2. Simulation of piggyback liver transplantation surgery can help clinicians familiar with the procedure, reduce surgical errors and improve the success rate of surgery.
     Part3:Studies on the Application of Digitalization in orthotopic liver transplantation
     Objective
     1. To establish orthotopic liver transplantation and three-dimensional model of abdominal blood vessels, liver and vascular anatomy. To understand the structure and variation of characteristics;
     2. Through the abdominal reconstruction for three-dimensional model receptor. To study its clinical orthotopic liver transplantation in the application;
     3. Establishing simulating orthotopic liver transplantation environment, complete the transplant in former situation. Study it's guidance in the clinical surgery.
     Methods
     1. Materials:the same with part one.
     2.Examiner:Liver transplantation donor:Female,33 years old, height 159cm, weight 57Kg, blood, biochemical tests were normal, CT Note:liver, gallbladder, pancreas, spleen were normal. Clinical liver disease was not found; Recipients orthotopic liver transplant:male,58 years old, height 173 cm, weight 72kg, liver function: alanine amino transferase (ALT):578IU/L,γ-glutamic acid acyl transferase (GGT): 325 IU/L, total bilirubin:35.1μmol/l, direct bilirubin:17.8μmol/l. CT Hint:right lobe of liver low-density mass, expansion of intrahepatic bile duct lesions. Alpha-fetoprotein (AFP):positive, carcinoembryonic antigen (CEA):negative. Clinical diagnosis of right-lateral segment liver bile duct carcinoma.
     3. Data acquisition, data transformation, procedure segment, reconstitution, smoothing is the same with part one.
     4. the main step of orthotopic liver transplantation are the liver excision of the donor, hepatectomy of receptor, the donor implanting to the receptor.
     Results
     1. The results of 64-slice spiral CT scan
     For donor,503 images of four periods are collected,461 images for receptor. All the images are good. The contrast agent for the receptor of the left branch of portal vein is filled poor, others are good.
     2. The results of 3D reconstruction
     The abdominal 3D model is clear, realistic and seeming three-dimensional. The abdominal organs and ducts can be simulated effectively, and can be rotated randomly, magnified, decreased and made being transparency.
     3. Simulation surgery
     In Freeform Modeling System and its own system of PHANToM force-feedback, the environment of piggyback liver transplantation was built. And using the secondary development of a simulation electric knives, simulation surgical needle and simulation tissue forceps, the simulation surgery of the piggyback liver transplantation can be operated. All the steps are in accordance with the process of clinical operations. We have a strong sense of feedback in cutting and saturation.
     Conclusion
     1. Three-dimensional reconstruction of the dorsal orthotopic liver transplantation donors and recipients have clearly anatomical structure, that can be optimized clinical surgical procedures;
     2. Simulation orthotopic liver transplantation surgery, can help clinicians familiar with the procedure, reduce surgical errors and improve the success rate of surgery.
     PART4:Studies on the Application of Digitalization in split liver transplantation
     Objective
     To understand the process of splitting liver transplantation surgery.
     Methods
     1. Materials:the same with part one.
     2. Examiners:Donor:"healthy" subjects were male,25 years old, height 170cm, weight 63Kg, liver and kidney function was normal, CT prompts the liver, gallbladder, pancreas, spleen, no abnormal clinical liver disease was not found. Receptor 1:Male,51 years old, height 165cm, weight 66Kg. Liver function:alanine amino transferase (ALT):387IU/L, aspartate aminotransferase (AST):243U/L, y-glutamic acid acyl transferase (GGT):76 IU/L; total bilirubin:112.5μmol/1, direct bilirubin:82.4μmol/l. CT:right lobe of liver with a 16×12cm of low density and found no other lesions. Alpha-fetoprotein (AFP):245.67μg/l (0~10.9μg/l), carcinoembryonic antigen (CEA):10.68ug/l (0~10μg/l). Receptor 2:Male,9 years old, height 121cm, weight 37Kg. Liver function:alanine amino transferase (ALT):127IU/L, aspartate aminotransferase (AST):67U/L, y-glutamic acid acyl transferase (GGT):19 IU/L; total bilirubin:16.3μmol/l, direct bilirubin:11.5μmol/ 1. CT:left lobe of liver with a 3×2cm of the low density and found no other lesions. Alpha-fetoprotein (AFP):24.56μg/l (0~10.9μg/l), carcinoembryonic antigen (CEA):2.45μg/l(0~10μg/l).
     3. Data acquisition, data transformation, procedure segment, reconstitution, smoothing is the same with part one.
     4. Split liver transplantation
     Results
     1. The results of 64-slice spiral CT scan
     For donor,511 images of four periods are collected,427 images for receptor I, 389 images for receptorⅡ. All the images are good. The contrast agent for the receptor of the left branch of portal vein is filled poor, others are good.
     2. The results of 3D reconstruction
     The abdominal 3D model is clear, realistic and seeming three-dimensional. The abdominal organs and ducts can be simulated effectively, and can be rotated randomly, magnified, decreased and made being transparency.
     3. Simulation surgery
     In Freeform Modeling System and its own system of PHANToM force-feedback, the environment of split liver transplantation was built. And using the secondary development of a simulation electric knives, simulation surgical needle and simulation tissue forceps, the simulation surgery of the split liver transplantation can be operated. All the steps are in accordance with the process of clinical operations. We have a strong sense of feedback in cutting and saturation.
     Conclusion
     Simulation surgery of Split liver transplantation is complexed, besides it's one of the most difficult surgery in the organ transplantation. Digital medicine in the split liver transplantation has a certain value.
     PART5:Studies on the Application of Digitalization in Combined Liver and Kidney Transplantation
     Objective
     1. Establish three-dimensional model of the abdominal cavity in the combined liver-kidney transplant, understand the structure and mutation of abdominal organs and vascular anatomy.
     2. Through the abdominal reconstruction for three-dimensional model receptor, study its clinical guidance in liver transplantation.
     3. Build simulation environment combined liver-kidney transplant, complete simulation of combined liver-kidney transplant surgery, and study its role in guiding clinical surgery.
     Methods
     1. Materials:the same with part one.
     2. Examiners:Donor:volunteer subjects, male,26 years old, height 168cm, weight 68Kg, blood, biochemical tests were normal, CT Note:liver, gallbladder, pancreas, spleen, kidney Dengjun no exception; Receptors:subject volunteers, female,34 years old,161cm,52Kg, blood biochemical tests were normal, CT Note:liver, gallbladder, pancreas, spleen, kidneys were normal.
     3. Data acquisition, data transformation, procedure segment, reconstitution, smoothing is the same with part one.
     4. The main step of combined liver and kidney transplantation are the liver and the kidney excision of the donor, hepatectomy of receptor, the donor implanting to the receptor.
     Results
     1 The results of 64-slice spiral CT scan
     For donor,503 images of four periods are collected,861 images for receptor. All the images are good. The contrast agent for the receptor of the left branch of portal vein is filled poor, others are good.
     2 The results of 3D reconstruction
     The abdominal 3D model is clear, realistic and seeming three-dimensional. The abdominal organs and ducts can be simulated effectively, and can be rotated randomly, magnified, decreased and made being transparency.
     3 Simulation surgery
     In Freeform Modeling System and its own system of PHANToM force-feedback, the environment of combined liver and kidney transplantation was built. And using the secondary, development of a simulation electric knives, simulation surgical needle and simulation tissue forceps, the simulation surgery of the combined liver and kidney transplantation can be operated. All the steps are in accordance with the process of clinical operations. We have a strong sense of feedback in cutting and saturation.
     Conclusion
     1. Three-dimensional reconstruction of the liver and kidney transplantation about the donor and recipient have clearly anatomical structure and can be optimized clinical surgical.
     2. Simulation of combined liver-kidney transplant surgery, can help clinicians familiar with the procedure, reduce surgical errors and improve the success rate of surgery.
引文
[1]陈亚珠,程胜.数字医学工程的现状与展望.现代临床医学生物工程学杂志.2007,13(1):1-3.
    [2]Wang YP.Wu P.Force feedback assisted nasoscope virtual surgery simulator. Journal of System Simulation,2001,13(3):404-407.
    [3]Spicer Mark,Apuzzo Michael. Virtual Reality:Neurosurgery and the Contemporary Landscape,Neurosurgery,2003,52(3):489-498.
    [4]Joel Brown.Real-Time Soft Tissue and Suture Simulation,PH.D in Stanford University,Nov.203.
    [5]Jeffrey Berkley,George Turkiyyah,Daniel Berg,Mark Ganter, Suzanne Weghorst.Real-Time Finite Element Modeling for Surgery Simulation:An Application to Virtual Suturing,IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2004,10(3):314-325.
    [6]KuhnapfeIU,Cakmak H.K,Maasz H.Endoscopic Surgery Training Using Virtual Reality and Deformable Tissue Simulation,Computers&Graphics,2000,24 (5): 671-682(12).
    [7]Satava RM. Virtual Reality Surgical Simulator. Surgical Endoscopy,1993, 7(3):203-205.
    [8]Yan LX.Key Technologies Research on Virtual Simualtion Surgery[PH,D. Thesis].Zhejiang:Zhejiang University,2001(in Chinese with English Abstract).
    [9]Wang ZGTang ZS.Wang TM.Liu D.Lei HB.Shen H. VR Based Computer Assisted Stereotactic Neurosurgery system.Chinese Journal of Computes, 2000,23(9):931-937.
    [10]ZM Zhou, CH Fang, LW Huang, et al. Three-dimensional Reconstruction of Pancreas Based on the Virtual Chinese Human-Female No.1. Postgraduate Medical Journal,2006,82; 392-396.
    [11]周五一,方驰华,黄立伟,等.肝脏管道灌注后数字化虚拟肝脏及其手术.第四军医大学学报,2006,27(8):712-716.
    [12]方驰华,周五一,虞春堂,等.肝脏管道系统灌注后薄层CT扫描和三维重建的 研究.中华外科杂志,2004,42(9):562-565.
    [13]朱新勇,方驰华,鲍苏苏,等.基于64排螺旋CT扫描数据的肝脏图像分割和三维重建.南方医科大学学报,2008,28(3):345-347.
    [14]Xu Qingzhen, Bao Susu, Peng Fengping, et al. Research on modified ivewire interaction segmentation algorithm. Journal of Computational Information Systemsv,2007,3(1):117-123
    [15]廖其光,鲍苏苏,潘家辉,等.基于VTK肝脏三维模型可视化研究与实现.计算机与数字工程,2008,220(2):102-104.
    [1]刘荣耀,王东文.肾移植研究的新进展.国外医学移植与血液净化分册,2005,3(1):23-25.
    [2]王亚伟,闵志廉.活体肾移植的几点体会.肾脏病与透析肾移植杂志,2006,15(1)50-51.
    [3]郑克立.临床肾移植学.科学技术文献出版社.
    [4]Davis C L, Delmonico F L. Living donor kidney transplantation:A review of the current practices for the live donor[J]. J Am Soc Nephrol,2005,16(7): 2098-2110.
    [5]Fang CH, Xie AW. Application of a Visible Simulation Surgery Technique in Preoperation Planning for Intrahepatic Calculi. World J Surg,2009.
    [6]Fang CH, Huang YP, Chen ML, et al. digital medical technology based on 64-slice computed tomography in hepatic surgery.chinese medical Journal.2010; 123(9)1149-1153.
    [7]Fang Chi-hua, Li XF, Li Z, et al. Application of medical image processing system in liver transplantation Hepatobiliary Pancreat Dis Int. 2010,9(4):346-351.
    [8]Rydberg J, Kopecky KK, Tann M, et al. Evaluation of prospective living renal donors for laparoscopic nephrectomy with multisection CT:the marriage of minimally invasive imaging with minimally invasive surgery. Radiographics, 2001,21:S223-S236.
    [9]Kawamoto S, Montgomery RA, Lawler LP, et al. Multi-detector row CT evaluation of living renal donors prior to laparoscopic nephrectomy. Radiographic,2004,24(2):453-466.
    [10]王杭,王国民,罗宝国,等.国人肾血管应用解剖学研究及其临床意义.复旦学报:医学版,2007,34(1):119-121.
    [11]Raman SS, Pojchamarnwiputh S, Muangsomboon K, et al. Surgically relevant normal and variant renal parenchymal and vascular anatomy in preoperative 16-MDCT evaluation of potential laparoscopic renal donors. AJR Am J Roentgenol,2007,188(1):105-114.
    [12]Nakamura Y, Konno O, Matsuno N, et al. How can we increase living related donor renal transplantations? Transplant Proc,2008,40(7):2104-2107.
    [13]Rydberg J, Kopecky KK, Tann M, et al. Evaluation of prospective living renal donors for laparoscopic nephrectomy with multisection CT:the marriage of minimally invasive imaging with minimally invasive surgery. Radiographics, 2001,21:S223-S236.
    [14]Chai JW, Lee W, Yin YH, et al. CT angiography for living kidney donors: accuracy, cause of misinterpretation and prevalence of variation. Korean J Radiol,2008,9(4):333-339.
    [15]Richstone L, Seideman C, Baldinger L, et al. Conversion during laparoscopic surgery:frequency, indications and risk factors. J Urol,2008,180(3):855-859.
    [16]Raman SS, Pojchamarnwiputh S, Muangsomboon K, et al. Surgically relevant normal and variant renal parenchymal and vascular anatomy in preoperative 16-MDCT evaluation of potential laparoscopic renal donors. AJR Am J Roentgenol,2007,188(1):105-114.
    [17]Singh AK, Sahani DV. Imaging of the renal donor and transplant recipient. Radiol Clin North Am,2008,46(1):79-93.
    [18]孔玉祥,范松青,张宇新,等.人体局部解剖学.北京:人民卫生出版社,2008:171.
    [19]Shakeri AB, Tubbs RS, Shoja MM, et al. Bipolar supernumerary renal artery. Surg Radiol Anat,2007,29(1):89-92.
    [20]张际青,胡小鹏,尹喜,等.多层螺旋CT在活体肾移植供者术前评估中的作用.中华器官移植杂志,2009,30(7):419-421.
    [21]Turkvatan A, Ozdemir M, Cumhur T, et al. Multidetector CT angiography of renal vasculature:normal anatomy and variants. Eur Radiol,2009,19(1): 236-244.
    [22]Tombul ST, Aki FT, Gunay M, et al. Preoperative evaluation of hilar vessel anatomy with 3-D computerized tomography in living kidney donors. Transplant Proc,2008,40(1):47-49.
    [23]Hung CJ, Lin YJ, Chang SS, et al. Five-year experience of adoption and evolution of laparoscopic living donor nephrectomy:results from a center without large volume of patients. Transplant Proc,2008,40(7):2112-2114.
    [24]Scatarige JC, Horton KM, Ratner LE, et al. Left adrenal vein localization by 3D real-time volume-rendering CTA before laparoscopic nephrectomy in living renal donors. Abdom Imaging,2001,26(5):553-556.
    [25]韩永坚,刘牧之.临床解剖学丛书:腹、盆腔分册.北京:人民卫生出版社,1992:372.
    [26]中国解剖学会体质调查委员会.中国人解剖学数值.北京:人民卫生出版社,2002:333-334.
    [27]Modi P. Retroperitoneoscopic donor nephrectomy for retroaortic renal vein draining into left common iliac vein. Urology,2008,71(5):964-966.
    [28]Raman SS, Pojchamarnwiputh S, Muangsomboon K, et al. Utility of 16-MDCT angiography for comprehensive preoperative vascular evaluation of laparoscopic renal donors. AJR Am J Roentgenol,2006,186(6):1630-1638.
    [29]Singh AK, Sahani DV, Kagay CR, et al. Semiautomated MIP images created directly on 16-Section multidetector CT console for evaluation of living renal donors. Radiology,2007,244(2):583-592.
    [30]Subramaniam M, Mizzi A, Roditi G. Magnetic resonance angiography in potential live renal donors:a joint radiological and surgical evaluation. Clin Radiol,2004,59(4):335-341.
    [31]Turkvatan A, Akinci S, Yildiz S, et al. Multidetector computed tomography for preoperative evaluation of vascular anatomy in living renal donors. Surg Radiol Anat,2009,31(4):227-235.
    [32]Rastogi N, Sahani DV, Blake MA, et al. Evaluation of living renal donors: accuracy of three dimensional 16-section CT. Radiology,2006,240(1):136-144.
    [33]Rydberg J, Kopecky KK, Tann M, et al. Evaluation of prospective living renal donors for laparoscopic nephrectomy with multisection CT:the marriage of minimally invasive imaging with minimally invasive surgery. Radiographics, 2001,21:S223-S236.
    [34]Raman SS, Pojchamarnwiputh S, Muangsomboon K, et al. Surgically relevant normal and variant renal parenchymal and vascular anatomy in preoperative 16-MDCT evaluation of potential laparoscopic renal donors. AJR Am J Roentgenol,2007,188(1):105-114.
    [35]Kawamoto S, Montgomery RA, Lawler LP, et al. Multi-detector row CT evaluation of living renal donors prior to laparoscopic nephrectomy. Radiographic,2004,24(2):453-466.
    [36]邓素雄,刘龙山,王长希,等.175例亲属活体肾移植临床报告.南方医科大学学报,2009,29(9):1878-1881.
    [1]Starzl T E,Koepl J,WellR,et al. Developmengt of a Suprahepatic Recipient Vena Cava Cufffor Liver transplantation [J].SGO,1979,149(1):761.
    [2]夏穗生.我国肾外大器官移植的进展[J].中华器官移植杂志,1999,20(2):67.
    [3]陈亚珠,程胜.数字医学工程的现状与展望[J].现代临床医学生物工程学杂志,2007,13(1):1-3.
    [4]彭民浩,杨定华,卢榜裕,等.背驮式同种原位肝移植术1例报告[J].广西医科大学学报,1996,13(1):1-5.
    [5]钟世镇主编.临床应用解剖学.北京:人民军医出版社.1998:355-356.
    [6]陈孝平,郭奉云.肝胆胰脾外科进展.武汉:湖北科学技术出版社.1995:120-126.
    [7]陆敏强.肝移植手术种的血管重建[J].中国实用外科杂志,2007,27(7):523-525.
    [1]戴小明,叶启发,齐海智,等.肝动脉变异与肝移植[J].中国现代手术学杂志,2006,6(10):179-182.
    [2]杨甲梅.原位肝移植的肝动脉重建[J].Chinese Hepatology,2004,9(3):190-191.
    [3]Reinig KD, Rush CG, Pelster, et al. Real-time visually and haptically accurate surgical simulation[J].Stud Health Technol Inform,1996,29:542.
    [4]Kockro RA,Serra L,Tseng-Tsai Y,et al.Planning and simulation of neurosurgery in a virtual reality environment[J].Neurosurgery,2000;46(1):118.
    [5]Wigmore SJ, Redhead,Yan XJ, et al.Virtual hepatic resection using three-dimensional reconstruction of helical computed tomography angioportograms[J].Ann Surg,2001; 233 (2):221.
    [1] 严律南.现代肝脏移植学.人民军医出版社.
    [2] Kilie M, Seu P, Goss JA, et aLMaintenance of the celiac traunk with the left-sided liver allograft for in situ split liver transplantation .Transplantation, 2002,73(8): 1252.
    [3] Azoulay D, Castaing D, Adam R ,et al. Split liver transplantation for two adulat recipients:feasibility and long-term outcomes.Ann Surg,2001,233(4):565.
    [4] Broering D,Mueller L,Ganschow R.et al. Is there still a need for living-related liver teansplantation in children? Ann Surg,2001,234(60):713.
    [1]Margreiter R,Kramer r, Huber C,et al. Combined liver and kidney transplantation. Lancet,1984,1:1077-1084.
    [2]于立新,叶启发,姚冰,等.肝肾联合移植的解剖学基础及临床应用.中国临床解剖学杂志,2001,19(4):365-366.
    [3]Chava SP, Singh B, Zaman MB, et al. Current indications for combined liver and kidney transplantation in adult. Transplant Rev(orlando),2009,23(2): 111-119.
    [4]徐健,于立新,邓文,等.肝肾联合移植22例报告.中华器官移植杂志,2010,31(7):415-417.
    [5]Dube GK, Cohen DJ. Simultaneous liver and kidney transplantation. Curr opin Nephrol Hypenrtens,2007,16(6):547-553.
    [6]Gonwa TA, McBride MA, Anderson K,et aL. Continued influence of preoperative renal function on outcome of orthotopic liver transplant(OLTX)in the US:where will MELD lead us?Am J Transplant,2006,6(11):2651-2659.
    [7]刘小友,于立新.肝肾联合移植的适应证.中华器官移植杂志,2000,21(5):319-320.
    [8]Kamada N. The immunology of experimental liver transplantation in the rat. Immunology,1985,55(3):369-89.
    [9]曲明,王营,史彦芬,等.肝、肾一期联合移植二例报告.中华器官移植杂志,2009,30(12):753-754.
    [10]郑树森.肝肾联合移植的移植部位和布局.中国现代手术学杂志,2001,5(1):5-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700