神经母细胞瘤细胞系原位荷瘤及转移瘤荷瘤鼠模型的建立及基因芯片差异表达的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用新鲜肿瘤组织,建立神经母细胞瘤体外细胞系,通过建立神经母细胞瘤荷瘤鼠原位荷瘤与转移瘤模型,比较二者差异,从而证明肿瘤异质性理论并进一步探讨神经母细胞瘤转移机制。
     方法:分2批建立神经母细胞瘤荷瘤鼠模型,先利用从术中新鲜肿瘤标本建立人体外神经母细胞瘤细胞系,制备单细胞悬液,通过Typlan细胞计数法,调整细胞浓度为2.5×10~7/ml。接种于裸鼠(N=11)和SCID小鼠(N=3)皮下,建立荷瘤鼠原位荷瘤与转移瘤模型,再利用荷瘤鼠模型建立的鼠原位瘤体外细胞系及我们自建的人体外细胞系,再次接种于裸鼠(N=20)皮下(人细胞系N=8;鼠细胞系N=6)及腹腔(人细胞系N=6),观察并比较致瘤情况。接种浓度均为2.5×10~7/ml的单细胞悬液0.5ml。
     结果:裸鼠2批共接种34只,第一批接种14只,致瘤7只,其中单侧皮下致瘤3只,双侧腹膜后致瘤1只,全身转移有明显恶液质体征的裸鼠1只(有明显的肝脏转移和恶液质体征),SCID鼠2只致瘤,其中1只单侧皮下致瘤,1只腹膜后双侧致瘤。即裸鼠(5/11)和SCID小鼠(N=2/3)荷瘤成功。以上均经过体格检查及CT和核磁共振病理检查证实。裸鼠致瘤率为45.5%,SCID鼠致瘤率为66.7%。致瘤时间最短4周,最长18周,平均9.5周;第二批接种20只,全部致瘤,其中鼠原位瘤体外细胞系皮下接种组6只仅接种局部致瘤,人体外细胞系皮下注射组则5只发生注射原位局部致瘤,3只发生肝脏或腹腔转移,腹腔接种6只均出现腹部脏器转移。所有转移瘤模型均有肝脏转移,均经病理证实。致瘤率为100%。致瘤时间最短4周,最长10周,平均7周。
     结论:我们两次均成功建立神经母细胞瘤荷瘤鼠皮下原位荷瘤及转移瘤模型,同时转移瘤模型均有肝脏受累,证实我们自己建立的神经母细胞瘤细胞系具有局部致瘤及转移特性,并且转移具有器官特异性的特点,说明细胞系中存在具有转移潜性的细胞亚群,而此类细胞亚群正是肿瘤转移的细胞生物学基础,从而证明肿瘤异质性理论,为进一步探讨神经母细胞瘤转移机制奠定基础,并为下一步通过基因芯片寻找神经母细胞瘤转移相关基因创造了良好的开端。
     目的:比较神经母细胞瘤荷瘤鼠模型原位瘤和转移瘤基因表达谱,寻找与神经母细胞瘤转移相关基因改变,深入探讨神经母细胞瘤的转移机制。
     方法:采用SuperArray系列Oligo Tumor Metastasis Microarray基因芯片4张分3组对同一细胞系建立的荷瘤鼠模型原位瘤及转移瘤组织进行芯片杂交,检测发光信号,通过对图像和数据分析比较原位瘤与转移瘤的共同差异表达基因。
     结果:在113个候选转移相关基因中,筛选出25个显著差异表达基因。功能涉及介导细胞黏附、凋亡及基质金属蛋白酶、细胞因子、细胞转录、细胞周期调节、细胞生长与增殖、凋亡诱导等方面。
     结论:同一细胞系建立的荷瘤鼠模型转移瘤与原位瘤基因表达谱存在差异,提示这些基因可能与神经母细胞瘤转移特性密切相关,这些基因有可能成为神经母细胞瘤转移潜在的代表基因而值得进一步关注和深入研究。
Objective: By establishing the bear-tumor nude mice model of transplanted tumor in situ and metastatic tumor, heterogenicity of tumor theory is proved, and so, we can discuss the metastasis mechanism of neuroblastuma deeply.
     Methods: Took the fresh tumor tissue from the patient under the sterilizing: situation during the operation, used the enzyme digestion method to establish the in vitro cell line. We inoculated the single cell suspension by the mode of hypodermic injection for 11 SPF nude mice and 3 SCID mice, established the bear-tumor nude mice model of local tumor in situ and metastatic tumor, then use the in vitro cell line of the bear-tumer nude mice model of local tumor in situ and the human in vitro cell line we had established to inoculate the single cell suspension by the mode of hypodermic injection for 14 nude mice and the mode of celiac injection for 6 nude mice. The injected dose is 0.5 ml in the consistence of 2.5×10~7/ml.
     Results: We obtained the bear-cancer nude mice models (5/14) and the SCID mice models (2/3). There are two nude mice with metastasis all over the body, the others obtain the tumor at inoculated site. The second time all the nude mice totally bear tumor. In the human in vitro cell line hypodermic injection group, there are 5 nude mice wita metastasis, the others obtain the tumor at inoculated site; In the mouse in vitro cell line hypodermic injection group, all the 6 mice bear the tumor at inoculated site; in the human in vitro cell line celiac injection group , all the 6 nude mice are with metastasis in abdominal viscera. All were testified by pathology.
     Conclusions: we successfully establish the bear-tumor mice model of local tumor in situ and metastatic tumor twice. It proved that our human in vitro cell line we had established has local oncogenesis and metastasis character, and metastasis is organ specific. So heterogenicity of tumor theory is proved. Our experiments can supply a very important basis for the further research to the metastasis mechanism of neuroblastuma.
     Objective: By comparing gene expressions of the local tumor in situ with metastatic tumor of bear-tumor nude mice model, search the related metastatic gene.
     Methods: 4 SuperArray series Oligo Tumor Metastasis Microarray were divided 3 group, hybridize the local tumor in situ and metastatic tumor of bear-tumor nude mice model, detect photogenesis signal, by analyzing image and data ,find the differential gene between the local tumor in situ and metastatic tumor.
     Results: In 113 candidate gene, we screen 25 signifcant different expression genes between local tumor in situ and metastatic tumor of neuroblastoma, including Cell adhesion genes ;Apoptosis genes ;Cell cycle genes; Matrix metalloproteinases; Cell growth and proliferation genes; Apoptosis genes.
     Conclusions: It exists significant difference in gene expression between local turnoi in situ and metastatic tumor of neuroblastoma that were established by the same cell line. these genes maybe closely correlate with neuroblastoma metastasis. These genes may be characteristic matastasis genes of neuroblatoma, so it's worth to advanced study.
引文
1. Ara T, Declerck YA. Mechanisms of invasion and metastasis in human neuroblastoma. Cancer Metastasis Rev. 2006,25(4):645-657.
    2. Nishio N, Mimaya J, HorikoshiY et al. Spontaneous regression of metastases including meningeal metastasis after gross resection of primary tumor in an infant with stage 4 neuroblastoma. J Pediatr Hematol Oncol. 2006, 28(8):537-539.
    3. Burchill S. Micrometastases in neuroblastoma: are they clinically important? J. Clin. Pathol. 2004, 57:14-20
    4. Patrick M, ilain P. Metastasis: a question of life or death. Nature Reviews Cancer, 2006, 6:449-458.
    5.司徒镇强,吴军正.细胞培养.第一版.西安:世界图书出版公司,1999 71-72.
    6.郝希伟,董蓓,鹿洪亭,等.神经母细胞瘤荷瘤鼠模型建立的实验研究.中华小儿外科杂志,2005,26:372—375
    7.施新猷,主编.现代医学实验动物学.北京:人民军医出版社,2000 582-583.
    8. Martinez A, Kahwash S. Disseminated neuroblastoma in nude rat, A xenofrafl model of human malignancy. Cancer, 1996, 77: 409-419.
    9. Bogenmann E.A metastatic neuroblastoma model in scid mice .Int J Cancer. 1996, 67(3):2968-2973.
    10. Fowler CL, Zimmer CC, Ruktanouchai D, et al. Two new human neuroblastoma cell lines exhibiting tumorigenesis and metastasis in the nude mouse model. Anticancer Res, 1998, 18: 1393-1398.
    11.鹿洪亭,董蓓,罗兵,等.ATRA诱导神经母细胞瘤细胞分化及TrkA表达的研究.中华小儿外科杂志,2004,25(1):71~74.
    12. Li LN,Zhang HD,Yuan SJ etal. Establishment and characterization of a novel human. colorectal cancer cell line (CLY) metastasizing spontaneously to the liver in nude mice. Oncol Rep,2007,17(4):835-840.
    13.高晓宁,唐锁勒.神经母细胞瘤转移动物模型建立的研究进展.国外医学儿科学分册2004,31:74~76.
    14. Talamadge JE,Singh RK,Fidler IJ etal,.The Emergence of Tumor Metastases.Cancer Biol Ther. 2007, 6:833-836.
    15. Dingli D,Michor F, Antal T etal.Murine models to evaluate novel and conventional therapeutic strategies for cancer.Am J Pathol. 2007 170(3):793-804.
    16.毕允力,高解春,姚明.肾母细胞瘤裸鼠移植瘤模型的建立及其生物学特性.中华小儿外科杂志,2000,21(2):115—118.
    17. Blanc E.Goldschneiider D,Ferrandis E,et al.MYCN enhances P-gp/MDRI gene expression in the human metastatic neuroblastoma IGR-N-91 model.Am J Pathol,2003,163 (1):321-331.
    18. Derenzini M ,Trere D ,Pession A, et al. Nucleolar size indicates the rapidity of cell proliferation in cancer tissues. J Pathol, 2000, 191: 181-186.
    19. Rowe DH, Huang JLJ, Manley C, et al. Suppression of primary tumor growth in a mouse model of human neuroblastoma. J Pediatr Surg, 2000, 35: 977-981.
    20. Piacentini M, Piredda L ,Starace DT ,et al.Differential growth of N-and S-type human neuroblastoma cells xenografled into scid mice correlation with apoptosis. J Pathol, 1996,180:515-522.
    21. Kuroda T, Honna T, Morikawa Aet al.Tumor cell dynamics and metastasis in advanced neuroblastoma.Pediatr Surg Int. 2005,21 (11):859-863.
    22. Gupta GP, Minn AJ,Kang Y et al.Identifying site-specific metastasis genes and functions.Cold Spring Harb Symp Quant Biol. 2005,70:149-158.
    23. Gomperts BN,Strieter RM. Chemokine-directed metastasis. Contrib Microbiol. 2006,13:170-190.
    24. Dai CY, Haqq CM,Puzas JE. Molecular correlates of site-specific metastasis.Semin Radiat Oncol. 2006,16(2): 102-110.
    25. Zlotnik A, Involvement of chemokine receptors in organ-specific metastasis.Contrib Microbiol. 2006,13:191-199.
    1. Ara T, Declerck YA. Mechanisms of invasion and metastasis in human neuroblastoma. Cancer Metastasis Rev. 2006,25(4):645-657.
    2. Nishio N, Mimaya J, HorikoshiY et al. Spontaneous regression of metastases including meningeal metastasis after gross resection of primary tumor in an infant with stage 4 neuroblastoma. J Pediatr Hematol Oncol. 2006, 28(8):537-539.
    3.吴湘如,朱明华,张忠德.KAI1/CD82在神经母细胞瘤组织中的表达及其与预后的关系.癌症,2005,24(7):885-887
    4.程瑜,董蓓,江布先,等.MMP-2、-9,TIMP-2、-1在神经母细胞瘤中的表达及临床意义.中华小儿外科杂志,2003,24(5):452~454.
    5. Cheung IY Vicker A Cheung NK. Sialyltransferase STX (ST8SialI): a novel molecular marker of metastatic neuroblastoma. Int J Cancer. 2006,119(1): 152-156.
    6. Stupack DG; Teitz T, Potter MD,et al. Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature. 2006,439(7072):95-99.
    7. Ren Y, Chan HM, Fan J ,et al. Inhibition of tumor growth and metastasis in vitro and in vivo by targeting macrophage migration inhibitory factor in human neuroblastoma.Oncogene. 2006,25(25):3501-3508.
    8. Patrick M, Alain P. Metastasis: a question of life or death. Nature Revie, ws Cancer, 2006, 6:449-458
    9. Eisen M B, Brown P O. DNA arrays for analysis of gene expression.Methods Enzymol, 1999, 303(1): 179-205.
    10. Debouck C. DNA microarrays in drug discovery and development. Nat Geret, 1999, 21(Suppl): 48-50.
    11.Chen J X,Tang R, Ying F, et al. Study on netastasis associated gene in carcinoma by cDNA microarray. Acad J Sec Mil Med Univ, 2000, 21(9): 806-811,
    12.许沈华,瀚舟,桂良,等。高低转移人卵巢癌细胞系基因表达谱差异.中国肿瘤. 2001,10(1):41-43
    
    13.PatrickM, Alain P. Metastasis: a question of life or death. Nature Reviews Cancer, 2006, 6:449-458.
    
    14. Raetz E A, Kim M K, Moos P, et al. Identification of genes that a reregulated transcriptionally by Mycin childhood tumors. Cancer, 2003,98:841-853.
    
    15. Takita J, Ishii M, Tsutsumi S, et al. Gene expression profiling and identification of novel prognostic marker genes in neuroblastoma . Genes Chromosomes Cancel-, 2004,40:120-132.
    
    16. Carr J, Bell E, Pearson AD, Kees UR, et al. Increased frequency of aberrations in the p53/MDM2/p14(ARF) pathway in neuroblastoma cell lines established at relapse.Cancer Res. 2006 , 66(4):2138-2145.
    
    17. Okuno T, Matsuoka M, Sumizawa T, Igisu H. Involvement of the extracellular signal-regulated protein kinase pathway in phosphorylation of p53 protein and exerting cytotoxicity in human neuroblastoma cells (SH-SY5Y) exposed to acrylamide.Arch Toxicol. 2006, 80(3): 146-153.
    
    18. Stadler CR, Knyazev P, Bange J, Ullrich A. FGFR4 GLY388 isotype suppresses motility of MDA-MB-231 breast cancer cells byEDG-2 gene repression.Cell Signa(?). 2006 , 18(6):783-794.
    
    19. Spinola M, Leoni VP, Tanuma J, et al. FGFR4 Gly388 Arg polymorphism and prognosis of breast and colorectal cancer. Oncol Rep. 2005 Aug;14(2):415-9
    
    20. Sossey-Alaoui K, Ranalli TA, Li X, et al. WAVE3 promotes cell motility and invasion through the regulation of MMP-1, MMP-3, and MMP-9 expression. Exp Cell Res. 2005 , 308(1):135-145.
    
    21.CoxG, O'byrne K J. Matrixmetalloproteinase and cencer. Anticancer Res,2001,21 (6B):4207-4219.
    
    22. Leeman MF,McKay J A,Murray G I.Mtrixmetalloproteinase 13 activity is associated with poor prognosis in colorectal cancer.Clin Pathol,2002,55(10)758-762.
    
    23.Gupta GP,Minn AJ,Kang Y et al.Identifying site-specific metastasis genes and functions.Cold Spring Harb Symp Quant Biol. 2005,70:149-158.
    24.Gomperts BN,Strieter RM. Chemokine-directed metastasis. Contrib Microbiol. 2006,13:170-190.
    25. Dai CY,Haqq CM,Puzas JE. Molecular correlates of site-specific metastasis. Semin Radiat Oncol. 2006 ,16(2):102-110.
    
    26. Zlotnik A, Involvement of chemokine receptors in organ-specific metastasis.Contrib Microbiol. 2006,13:191-199.
    27.Chu H,Zhou H,Liu Y et al. Functional expression of CXC chemokine recepter-4 mediates the secretion of matrix metalloproteinases from mouse hepatocarcinoma cell lines with different lymphatic metastasis ability.Int J Biochem Cell Biol. 2007, 39(1):197-205.
    
    28.Muller A, Homey B , Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature , 2001 ,410 (6824) :5056
    1. Palmieri D, Chambers AF, Felding-Habemann B et al. The biology of metastasis to a sanctuary site. Clin Cancer Res. 2007, 13(6):1656-1662.
    2. Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006 Dec 1;20(23):3199-214. Review.
    3. Esufali S, Charames GS, Pethe VV et al. Activation of tumor-specific splice variant rac1b by dishevelled promotes canonical wnt signaling and decreased adhesion of colorectal cancer cells. Cancer Res. 2007, 67(6):2469-2479.
    4. Kass S, Osaki M, Sato I, et al. Immunolocalization of E-cadherin and {beta}-catenin in human pterygium. Br J Ophthalmol. 2007 Mar 14; [Epub ahead of print]
    5. Dunehoo AL, Anderson M, Majumdar S, et al.Cell adhesion molecules for targeted drug delivery. J Pharm Sci. 2006 ,95(9):1856-1872.
    6. PateyN , VazeuxR, CanioniD , etal. Intercellular adhesion moleculs-3 on endothelial cells: expression in tumors butnotin Inflammatory responses. AmJ Pathol, 1996,148:465-472
    7. Wang S, Coleman EJ, Pop LM, et al. Effect of an anti-CD54 (ICAM-1) monoclonal antibody (UV3) on the growth of human uveal melanoma cells transplanted heterotopically and orthotopically in SCID mice. Int J Cancer. 2006,118(4): 932-941.
    8. Widel MS, Widel M. Mechanisms of metastasis and molecular markers of malignant tumor progression. I. Colorectal cancer. 2006,60:453-470.
    9.Allan AL, George R, Vantyghem SA, et al. Role of the integrin-binding protein osteopontin in lymphatic metastasis of breast cancer. Am j Pathol. 2006,169(1): 233-246.
    10. Kikkawa Y, Sanzen N, Fujiwara H, etal. Integrin binding specificity of laminin 10/11:laminin 10/11 are recognized by alpha3 betal,alpha6 beta1 and alpha6 beta4 integrins[J]. J Cell Sci, 2000, 113:869-876.
    11. Shaker OG, Ay El-Deen MA, Abd El-Rahim MT, et al. Gene expression of E-selectin in tissue and its protein level in serum of breast cancer patients. Tumori. 2006 ,92(6):524-530.
    12. Silencing L-selectin expression by siRNA attenuated metastasis of marine lymphoid neoplasm cell P388D1 to peripheral lymph nodes. Leukemia. 2007 ,21(1): 180-183.
    13. Alexiou D, Karayi annakis AJ, Syrigos KN, et al. Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients :correlations with clinicopathological features, patient survival and tumour surgery. EurJCancer, 2001, 37(18): 2392-2397.
    14. Chen M, Geng JG. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch Immunol Ther Exp (Warsz). 2006 ,54(2):75-84.
    15. Chen S, Kawashima H, Lowe JB, et al. Suppression of tumor formation in lymph nodes by L-selectin-mediated natural killer cell recruitment. J Exp Mod. 2005 ,202(12): 1679-1689.
    
    16. Qian F, Hanahan D, Weissman IL. L-selectin can facilitate metastasis to lymphnodes in a transgenic mouse model of carcinogenesis . Proc Natl Acad Sci USA, 2001, 98(7): 3976-3981
    17. Danen EH. Integrins: regulators of tissue function and cancer progression. Curr Pharm Des. 2005,11(7):881-891.
    18. Sheridan C, Kishimoto H, Fuchs RK, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8(5):R59.
    19. Bendardaf R, Algars A, Elzagheid A, et al. Comparison of CD44 expression in primary tumours and metastases of colorectal cancer. Oncol Rep. 2006 ,16(4): 741-746.
    20. Khan SA, Cook AC, Kappil M, et al. Enhanced cell surface CD44 variant (v6, v9) expression by osteopontin in breast cancer epithelial cells facilitates tumor cell migration: novel post-transcriptional, post-translational regulation. Clin Exp Metastasis. 2005, 22(8):663-673.
    21. Kleiner S, Faisal A, Nagamine Y. Induction of uPA gene expression by the blockage of E-cadherin via Src- and Shc-dependent Erk signaling. FEBS J. 2007 ,274(1): 227-240.
    22. Dass CR, Nadesapillai AP, Robin D. Downregulation of uPAR confirms link in growth and metastasis of osteosarcoma. Clin Exp Metastasis. 2005, 22(8): 643-652.
    23. UlisseS, Baldini E, Toller M, et al. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer. BMC Cancer. 2006 ,6:216.
    24. Moran P, Li W, Fan B, et al. Pro-urokinase-type plasminogen activator is a substrate for hepsin. J Biol Chem. 2006, 281(41):30439-30446.
    25. Zhang Y, Wang C, Mizukami H, et al. Increased expression and activation of matrix metalloproteinase-2 (MMP-2) in 0-1N: hamster oral squamous cell carcinoma with high potential lymph node metastasis.J Exp Clin Cancer Res. 2006 ,25(3): 417-423.
    26.Vizoso FJ, Gonzalez LO, CorteMD, et al. Study of matrix metalloproteinases and their inhibitors in breast cancer. Br J Cancer. 2007 , 96(6):903-911.
    27. Mino N, Takenaka K, Sonobe M, et al. Expression of tissue inhibitor of metalloproteinase-3 (TIMP-3) and its prognostic significance in resected non-small cell lung cancer. J Surg Oncol. 2007 ,95(3):250-257.
    28. Verstappen J, Von den Hff JW. Tissue inhibitors of metalloproteinases (TIMPs): their biological functions and involvement in oral disease. J Dent Res. 2006 , 85(12):1074-1084.
    29. Bogaczewicz J, Jasielski P, Mosiewicz A, et al. The role of matr:'.x metalloproteinases and tissue inhibitors of metalloproteinases in invasion of tumours of neuroepithelial tissue. Neurol Neurochir Pol. 2006, 40(5): 404-412.
    30. Bogaczewicz J, Dudek W, Zubilewicz T, et al. The role of matrix metalloproteinases and their tissue inhibitors in angiogenesis. Pol Merkur Lekarski. 2006, 21(121):80-85.
    31. Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006,20(23):3199-3214.
    32. Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci. 2007 ,8(1):11-20.
    33. Sezeur A, Schielke A, Larue L, et al. The role of cadherin/catenin complex in malignant melanoma. Exp Oncol. 2006 ,28(3):187-193.
    34 Tonoli H, Barrett JC. CD82 metastasis suppressor gene: a potential target for new therapeutics? . Trends Mol Med. 2005 ,11 (12):563-570.
    35. Liu WM, Zhang XA. KAI1/CD82, a tumor metastasis suppressor. Cancer Lett. 2006 ,240(2): 183-194.
    36. TakedaT, Hattori N, Tokuhara, et al. Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res. 2007, 67(4):1744-1749.
    37. Stathatos N, Bourdeau I, Espinosa AV, et al. KiSS-1/G protein-coupled receptor 54 metastasis suppressor pathway increases myocyte-enriched calcineurin interacting protein 1 expression and chronically inhibits calcineurin activity. J Clin Endocrinol Metab. 2005 , 90(9):5432-5440.
    38. Terao Y, Kumano S, Takatsu Y, et al. Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Bioch(?) Biophys Acta. 2004 ,1678(2-3):102-110.
    39. Ikeguchi M, Yamaguchi K, Kaibara N. Clinical significance of the loss of KiSS-1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in esophageal squamous cell carcinoma. Clin Cancer Res. 2004, 10(4):1379-1383.
    40. Denk AE, Bettstetter M, Wild PJ, et al. Loss of maspin expression contributes to a more invasive potential in malignant melanoma. Pigment Cell Res. 2007 , 20(2) : 112-119.
    41. Zheng H, Tsuneyama K, Cheng C, et al. Maspin expression was involved in colorectal adenoma-adenocarcinoma sequence and liver metastasis of tumors. Anticancer Res. 2007 , 27 (1A):259-65.
    42. Marioni G, DAlessandro E, Giacomelli L, et al. Maspin nuclear localization is related to reduced density of tumour-associated micro-vessels in laryngeal carcinoma. Anticancer Res. 2006 ,26(6C):4927-4932.
    43. Umekita Y, Souda M, Yoshida H. Expression of maspin in colorectal cancer. In Vivo. 2006 ,20(6B):797-800.
    44. Cho JH, Kim HS, Park CS, et al. Maspin expression in early oral tongue cancer and its relation to expression of mutant-type p53 and vascular endothelial growth factor (VEGF).Oral Oncol. 2007 ,43(3):272-277.
    45. Romani AA, Soliani P, Desenzani S, et al. The associated expression of Maspin and Bax proteins as a potential prognostic factor in intrahepatic cholangiocarcinoma. BMC Cancer. 2006 ,6:255.
    46. Nakagawa M, Katakura H, Adachi M. Maspin expression and its clinical significance in non-small cell lung cancer. Ann Surg Oncol. 2006, 13(11): 1517-1523.
    47. Bailey CM, Khalkhali-Ellis Z, Seftor EA, et al. Biological functions of maspin. J Cell Physiol. 2006, 09(3):617-624.
    48. Meza-Junco J, Montano-Loza A, Aguayo-Gonzalez A. Molecular basis of cancer Rev Invest Clin. 2006, 58(1):56-70.
    49. Ternovoi VV, Curiel DT, Smith BF, et al. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. Lab Invest. 2006,86(8):748-766.
    50. Roger L, Gadea G, Roux P. Control of cell migration: a tumour suppressor function for p53? Biol Cell. 2006, 98(3):141-152.
    51. Slack AD, Chen Z, Ludwig A D, Hicks J, et al.MYCN-directed centrosorae amplification requires MDM2-mediated suppression of p53 activity in neuroblastoma cells. Cancer Res. 2007 , 67(6):2448-2455.
    52. Joerger AC, Fersht AR. Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene. 2007 , 26(15):2243-2254.
    53. Yamauchi J, Miyamoto Y, Tanoue A, et al. Ras activation of a Racl exchange factor, Tiaml, mediates neurotrophin-3-induced Schwann cell migration. Proc Natl Acad Sci U S A. 2005 ,102(41):14889-14894.
    54. Baumeister MA, Martinu L, Rossman KL, et al. Loss of phosphatidylinositol 3-phosphate binding by the C-terminal Tiam-1 pleckstrin homology doma(?) prevents in vivo Racl activation without affecting membrane targeting. J Biol Chem. 2003, 278(13): 11457-11464.
    55. Baumeister MA, Martinu L, Rossman F, et al. Loss of phosphatidylinositol 3-phosphate binding by the C-terminal Tiam-1 pleckstrin homology doma(?) prevents in vivo Racl activation without affecting membrane targeting. J Biol Chem. 2003 , 278(13):11457-11464.
    56. Garcia-Lopez D, Cuevas M J, Almar M, et al. Effects of eccentric exercise on NF-kappaB activation in blood mononuclear cells. Med Sci Sports Exerc. 2007, 39(4): 653-664.
    57. Kong D, Li Y, Wang Z, et al. Inhibition of Angiogenesis and Invasion by 3, 3' -Diindolylmethane Is Mediated by the Nuclear Factor-{kappa}B Downstrean Target Genes MMP-9 and uPA that Regulated Bioavailability of Vascular Endothelial Growth Factor in Prostate Cancer. Cancer Res. 2007,67(7):3310-3319.
    58. Oonuma T, Morimatsu M, Ochiai K, et al. Role of NF-kappaB in Constitutive Expression of MAIL in Epidermal Keratinocytes. J Vet Med Sci 2007 ,69(3): 279-284.
    59. Radisky DC, Bissell MJ. NF-kappaB links oestrogen receptor signalling and EMT.Nat Cell Biol. 2007 ,9(4):361-363.
    60. Yi C, Li X, Xu W, et al. Relationship between the expression of MTA-1 gene and the metastasis and invasion in human osteosarcoma. J Huazhong Univ Sci Technolog Med Sci. 2005, 25(4):445-447.
    61. Mahoney MG, Simpson A, Jost M, et al. Metastasis-associated protein (MTA) 1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene. 2002 , 21(14):2161—2170.
    1. Franga DL, Howell CG, Mellinger JD, et al. Single-stage reconstruction of perforated choledochal cyst: case report ardreview of the literature. Am Surg. 2005, 71: 398-401
    2.董蓓.先天性胆管扩张症.见:董蓓,主编.小儿肝胆外科学.北京:人民卫生出版社,2005.321—351
    3.董蓓,江布先,张虹等.先天性胆管扩张症合并肝内胆管扩张及复杂胆道畸形的诊断与治疗对策的研究.中华小儿外科杂志,2005,26:285-288
    4. Mary AT, Ann SF. The cystic duct: normal anatomy and disease processes. Radiographics, 2001, 21: 3-22
    5.周莺,李玉华,徐彬,等.先天性胆总管囊肿的MRCP诊断.上海第二医科大学学报,2004,24:856-858

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700