骨形态发生蛋白BMP-4对大鼠肝卵圆细胞增殖和分化调控作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     肝卵圆细胞(hepatic oval cell, HOC)是成体肝组织中主要的多能干细胞,它的增殖与分化是肝损伤后实现肝再生和肝组织自体修复的重要途径,并受到多种细胞生长因子的调控。骨形态发生蛋白-4 (bone morphogenetic protein-4, BMP-4)是参与多种固有干细胞和移植干细胞修复和治疗急慢性器官损伤的重要调控因子。我们前期研究结果发现BMP-4可诱导大鼠HOC细胞系WB-F344定向分化为肝细胞表型。但BMP-4对大鼠原代HOC增殖与分化的影响及其生物细胞信号传导机制尚不清楚。本课题的研究目的即在于明确BMP-4对大鼠原代HOC增殖和向肝细胞定向分化的调控作用及其细胞内信号传导因子和通路,加深我们对BMP-4调控HOC定向分化的生物学功能及其分子机理的全面了解,为利用BMP-4及其细胞信号传导机制,定向诱导HOC分化促进肝再生和肝修复、治疗肝脏损伤奠定理论和应用基础。
     方法
     采用2-芴基乙酰胺+2/3肝切除构建雄性SD大鼠HOC增殖动物模型,Collagenase IV/Pronase肝脏原位灌注消化肝组织+三密度Percoll细胞梯度离心分离高纯度大鼠原代HOC,体外培养和传代扩增大鼠HOC。以MTT法了解BMP-4对大鼠原代HOC增殖的影响,RT-PCR检测大鼠BMP-4的Ⅰ型和Ⅱ型细胞受体在大鼠HOC细胞膜上的mRNA表达情况。采用实时荧光定量PCR、Western杂交和免疫荧光染色等技术明确HOC中BMP-4的主要细胞转录因子Smad1和ERK 1/2的mRNA和蛋白表达水平,以及磷酸化蛋白表达及其向细胞核内转移和聚集情况,从而了解BMP-4调控HOC的细胞信号传导机制。然后以RT-PCR检测大鼠HOC、成熟肝细胞和胆管细胞等HOC分化细胞标志物的mRNA表达,全自动生化检测仪和ELISA技术分别检测HOC分化后细胞合成,并向细胞培养液中分泌的尿素和白蛋白浓度,透射电子显微镜观察BMP-4处理后大鼠HOC的细胞超微结构以及细胞间连接,从而了解BMP-4对大鼠HOC向肝细胞定向分化的诱导作用。并利用基因重组技术,构建大鼠BMP-4和BMP4 shRNA重组腺病毒,转染大鼠HOC后异体脾脏移植,观察其对大鼠CCl4急性肝损伤后肝组织修复与肝功能恢复的影响。
     结果
     成功建立大鼠HOC体内增殖模型,每只成年大鼠肝脏原位灌注分离可获得大约5.63±0.56×106个HOC,细胞活性率为90.32%+3.26%。BMP-4可呈剂量依赖性和时间依赖性促进培养大鼠HOC的增殖,且50 ng/ml是BMP-4理想的HOC作用浓度,以此浓度BMP-4干预6天后,HOC增殖可达到峰值。RT-PCR证实大鼠HOC上存在BMP-4的Ⅰ型细胞受体(BMPR-Ⅰ)的二个亚型BMPR-1A和BMPR-1B,以及BMP-4的Ⅱ型细胞受体BMPR-Ⅱ的表达。50 ng/ml的BMP-4作用对大鼠HOC的Smad1、ERK 1/2 mRNA及其蛋白表达水平无影响,但可促进蛋白的磷酸化及其向细胞核内转移和聚集。BMP-4(50ng/ml)处理大鼠HOC12天后,可观察到HOC干细胞标志物c-kit.胆管细胞标志物CK19和β4-integrin的mRNA表达显著降低或消失,而成熟肝细胞标志物TAT-1、A1b和G6Pase的mRNA表达则显著增强。同时,BMP-4处理组HOC培养液中尿素浓度(1.32±0.32 mmol/L)分别是Noggin+BMP-4组(0.61±0.09 mmol/L)和空白对照组(0.59±0.13 mmol/L)的2.16倍和2.24倍;BMP-4处理组HOC培养液中Alb浓度(68.256±13.256 ng/ml)分别是Noggin+BMP-4组(14.735±4.012 ng/ml)和空白对照组(15.897±4.283 ng/ml)的4.63倍和4.29倍,差异均具有统计学意义(p<0.05)。透射电子显微镜显示BMP-4诱导分化后HOC的超微结构以及相邻细胞间的良好连接,表明BMP-4可促进细胞向上皮细胞良好分化。BMP-4拮抗剂Noggin可显著抑制BMP-4诱导大鼠HOC体外增殖和向肝细胞分化的生物学作用。成功构建大鼠BMP-4和BMP4 shRNA重组腺病毒,HOC异体脾脏移植动物实验发现术后第12天,BMP-4腺病毒感染HOC移植组大鼠脾脏可见HOC分化后的肝细胞定置和“脾化肝”,肝组织修复明显,且该组的大鼠死亡率、毛发、精神、活动量、食欲等一般情况,以及体重、白蛋白和谷丙转氨酶(ALT)等肝功能指标明显优于HOC脾脏移植组、BMP4 shRNA腺病毒感染HOC脾脏移植组等五个实验对照组。
     结论
     BMP-4与大鼠HOC上BMPR-Ⅰ和BMPR-Ⅱ细胞受体结合后,可同时通过其细胞转录因子Smad1和ERK-1/2及其蛋白磷酸化实现细胞内信号传导,诱导大鼠HOC体外增殖并向肝细胞定向分化。BMP-4诱导分化的大鼠HOC具有成熟肝细胞的蛋白合成和分泌功能,以及细胞超微结构和细胞间连接,BMP-4可通过HOC异体脾脏移植促进大鼠急性肝损伤后的肝组织修复与肝功能恢复。
Background & Objective
     Hepatic oval cell (HOC) is the major source of pluripotent stem cells in adult liver. The proliferation and differentiation of HOC, which is regulated by a series of cell growth factors, is one of the most important approaches and mechanisms of liver regeneration and tissue recovery following liver injury. Bone morphogenetic protein-4 (BMP-4) is a critical regulator involved in the treatment of different acute and chronic organs injury using several kinds of inherent and transplanted stem cells. WB-F344 cell, which was an adult rat HOC cell line, had been proved to be directionality differentiated into hepatic phenotype in our previous studies. However, the effects and the cellular signaling transduction mechanisms of BMP-4 on the proliferation and differentiation of the primary rat HOC remain unclear. The aims of the present stydy are to investigate the regulative effects and the intracellular signaling moleculars of BMP-4 on rat primary HOC proliferation and orientational differentiation into hepatocytes. The results will help us to have a better understanding for the biological functions and the molecular mechanisms of BMP-4 regualtion on HOC proliferation and orientational differentiation into hepatocytes, so as to provide the theoretical principle and clinical application basis for the treatment of liver injury by taking the advantages of BMP-4 and its cellular signaling transduction to promote liver regeneration and tissue revovery.
     Methods
     The animal models with proliferated HOC was set up by the methods of N-2-fluorenyl-acetamide gavage in combined with 2/3 hepatectomy in adult male Sprague-Dawley rats. Rat HOC was isolated and purified by in situ liver perfusion with Collagenase IV/ Pronase, which was followed by cellular gradient centrifugation using three density gradients of Percoll. The isolated primary rat HOC was cultured and sub-cultured to be amplified in vitro. The effects of BMP-4 on the proliferation of primary rat HOC was detected by MTT assay. RT-PCR was employed to determine mRNA expression of TypeⅠand TypeⅡBMP-4 receptors on rat HOC cytomembrane. To understand the intracellular signaling moleculars and transduction pathways of BMP-4 in rat HOC, the techniques of Real-time PCR, Western blot and immunofluorescent staining were used to explore mRNA and protein expression, as well as the phosphorylated protein expression and its accumulation in HOC nucleus of Smad1 and extracellular regulated protein kinases 1/2 (ERK 1/2), which were two major transcription factors of BMP-4. To approach the induction of BMP-4 on HOC orientational differentiation into hepatocytes, the cell markers of rat HOC, mature hepatocytes and biliary epithelia cell (BEC) were measured by RT-PCR for their mRNA expression. The concentrations of urea and albumin secreted by differentiated HOC into HOC culture medium were tested by automated biochemistry examination and ELISA assay. The HOC ultrastructures and cell-cell junctions were checked on a transmission electron microscope (TEM). Rat BMP-4 and BMP4 shRNA recombinant adenovirus were constructed applying gene recombination. The HOC infected by either BMP-4 or BMP4 shRNA recombinant adenovirus was applied in allograft models of rat spleen transplantation to observe the effects of BMP-4-carrying HOC transplantation on the recovery of liver tissue and functions following acute liver injury by carbon tetrachloride (CCl4) gavage.
     Results
     About 5.63±0.56 x 106 HOC with 90.32%±3.26% living cells were isolated from each Sprague-Dawley rat successfully established HOC proliferation in vivo. Recombinant BMP-4 protein could boost the proliferation of HOC in vitro in both dose-dependent and time-dependent manners. Comparing with either lower or higher BMP-4 concentrations. 50 ng/ml of BMP-4 was the optimal concentration on HOC proliferation promotion, which reached its peak at the sixth day of BMP-4 treatment at the concentration of 50 ng/ml. The existence and mRNA expression of BMPR-1A, BMPR-1B and BMPR-II on HOC cytomembrane were proved by RT-PCR. BMP-4 treatment at the concentration of 50 ng/ml could not influence mRNA and protein expression of both Smadl and ERK 1/2. However, BMP-4 intervention significantly enhanced phosphorylated Smad1 and ERK 1/2 proteins and its accumulation in HOC nucleus. Following 12-day treatment of BMP-4 at 50 ng/ml, the stem cell marker of c-kit and BEC markers of CK19 andβ4-integrin significantly faded or vanished, but the mRNA markers of matured hepatocytes including TAT-1、Alb and G6Pase were significantly increased in rat HOC. Meanwhile, the urea concentrations secreted by HOC into the cultured medium in BMP-4 treatment group (1.32±0.32 mmol/L) exhibited 2.16-fold and 2.24-fold of that in Noggin treament group (0.61±0.09 mmol/L) and the blank control (0.59±0.13 mmol/L), and the Alb concentrations in HOC cultured medium in BMP-4 group (68.256±13.256 ng/ml) were 4.63-fold and 4.29-fold of that in Noggin group (14.735±4.012 ng/ml) and the blank control (15.897±4.283 ng/ml), respectively (p< 0.05, respectively). The HOC ultra-structures and intercellular junctions observed under TEM indicated that BMP-4 induced rat primary HOC to differentiate into epithelium-like cells in vitro. Noggin, which acted as BMP-4 antagonist, could specifically block the regulative effects of BMP-4 on rat HOC proliferation and its differentiation into hepatocytes. The rat HOC infected with the constructed BMP-4 and BMP4 shRNA adenovirus were applied in rat spleen allografts. On the ninth day after intraspleenic HOC transplantation into homogenous rats receiving CCl4 gavage, the fixation of hepatocytes differentiated from transplanted HOC and the specific "hepaticized spleen", obviously recovered liver tissue, significanltly improved general conditions of rats'mortality, hair, spirit, movement and appetite, as well as the liver functional indices including total bilirubin (TBIL), albumin, ALT and AST were observed in spleen transplantation of the HOC infected with BMP-4 adenovirus, as compared with that of the other five experimental control groups including BMP4 shRNA adenovirus-infected HOC transplantation, etc.
     Conclusions
     Following the binding to TypeⅠandⅡreceptors on rat HOC cytomembrane, BMP-4 transducts its intracellular signal through its transcription factors of Smadl and ERK-1/2 to induce HOC proliferation and orientational differentiation into hepatocytes with protein synthesis and secretion functions, as well as the ultrastructures and intercellular junctions of mature hepatocytes. Rat HOC spleen allografts regulated by BMP-4 will promote the liver tissue regeneration and liver function recovery in the rats with acute liver injury.
引文
[1]Zhang L, Theise N, Chua M, Reid LM. The stem cell niche of human livers: symmetry between development and regeneration. Hepatology 2008; 48(5):1598-607.
    [2]Kandilis AN, Koskinas J, Tiniakos DG, Nikiteas N,Perrea DN. Liver regeneration:focus on cell types and topographic differences. Eur Surg Res 2010;44(1):1-12.
    [3]Petersen BE. Hepatic "stem" cells:coming full circle. Blood Cells Mol Dis 2001; 27(3):590-600.
    [4]Nagy P, Bisgaapd C, Santoni-Rugiu E, Thorgeirsson SS. In vivo infusion of growth factors enhances the mitogenic response of rat hepatic ductal (oval) cells after administration of 2-acetylaminofluorene. Hepatology,1996,23(1):71-9.
    [5]Knight B, Matthews VB, Akhurst B, Croager EJ, Klinken E, Abraham LJ, et al. Liver inflammation and cytokine production, but not acute phase protein synthesis, accompany the adult liver progenitor (oval) cell response to chronic liver injury. Immunol Cell Biol 2005; 83(4):364-74.
    [6]Dalgetty DM, Medine CN, Iredale JP, Hay DC. Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 2009; 297(2):G241-8.
    [7]Sell S, Leffert HL. Liver cancer stem cells. J Clin Oncol 2008; 26(17):2800-5.
    [8]Fiegel HC, Lange C, Kneser U, Lambrecht W, Zander AR, Rogiers X, et al. Fetal and adult liver stem cells for liver regeneration and tissue engineering. J Cell Mol Med 2006; 10(3):577-87.
    [9]Walkup MH, Gerber DA. Hepatic stem cells:in search of. Stem Cells 2006; 24(8):1833-40.
    [10]Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem 2010;147(1):35-51.
    [11]Nohe A, Keating E, Knaus P, Petersen NO. Signal transduction of bone morphogenetic protein receptors. Cell Signal 2004; 16(3):291-9.
    [12]Lin SY, Chen CL, Wu YL, Yang YC, Hwu YM. Ratio of Wnt3a to BMP4 doses is critical to their synergistic effects on proliferation of differentiating mouse embryonic stem cells. Cell Prolif 2008; 41(3):492-505.
    [13]Li H, Corrales CE, Wang Z, Zhao Y, Wang Y, Liu H, et al. BMP4 signaling is involved in the generation of inner ear sensory epithelia. BMC Dev Biol 2005; 5:16.
    [14]Sadlon TJ, Lewis ID, D'Andrea RJ. BMP4:its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells 2004; 22(4):457-74.
    [15]Usas A, Ho AM, Cooper GM, Olshanski A, Peng H, Huard J. Bone regeneration mediated by BMP4-expressing muscle-derived stem cells is affected by delivery system. Tissue Eng Part A 2009; 15(2):285-93.
    [16]Mimeault M, Hauke R,Batra SK. Stem cells:a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 2007; 82(3):252-64.
    [17]Usas A, Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 2007; 28(36):5401-6.
    [18]Mimeault M, Batra SK. Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 2008; 4(1):27-49.
    [19]Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 2006; 24(11):1402-11.
    [20]Shen H, Huang GJ, Gong YW. Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and trans-differentiation. World J Gastroenterol 2003; 9(4):784-7.
    [21]Fan J, Shen H, Sun Y, Li P, Burczynski F, Namaka M, et al. Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smadl and ERK1/2 in rat hepatic stellate cells. J Cell Physiol 2006; 207(2):499-505.
    [22]Fan J, Shen H, Dai Q, Minuk GY, Burzynski FJ, Gong Y. Bone morphogenetic protein-4 induced rat hepatic progenitor cell (WB-F344 cell) differentiation toward hepatocyte lineage. J Cell Physiol 2009; 220(1):72-81.
    [23]Passino MA, Adams RA, Sikorski SL, Akassoglou K. Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science 2007; 315(5820):1853-6.
    [24]Nagai H, Terada K, Watanabe G, Ueno Y, Aiba N, Shibuya T, et al. Differentiation of liver epithelial (stem-like) cells into hepatocytes induced by coculture with hepatic stellate cells. Biochem Biophys Res Commun 2002; 293(5):1420-5.
    [25]Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci U S A 2002; 99(12):8078-83.
    [26]Alison MR, Poulsom R, Forbes SJ. Update on hepatic stem cells. Liver 2001; 21(6):367-73.
    [27]Lowes KN, Croager EJ, Olynyk JK, Abraham LJ, Yeoh GC. Oval cell-mediated liver regeneration:Role of cytokines and growth factors. J Gastroenterol Hepatol 2003; 18(1):4-12.
    [28]Fujikawa T, Hirose T, Fujii H, Oe S, Yasuchika K, Azuma H, et al. Purification of adult hepatic progenitor cells using green fluorescent protein (GFP)-transgenic mice and fluorescence-activated cell sorting. J Hepatol 2003; 39(2):162-70.
    [29]Yao P, Zhan Y, Xu W, Li C, Yue P, Xu C, et al. Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-kappaB. J Hepatol 2004; 40(3):391-8.
    [30]Kato H, Shimomura T, Murai R, Gonda K, Ishii K, Yoshida Y, et al. Regulation of hepatic oval cell proliferation by adenoviral mediated hepatocyte growth factor gene transfer and signal transduction inhibitors. Hepatogastroenterology 2007; 54(75):821-5.
    [31]Maggie H. Walkup, David A. Gerber. Hepatic stem cells:in search of. Stem Cells 2006; 24(8):1833-40.
    [32]Signal transduction of bone morphogenetic protein receptors. Cellular Signalling 2004; 16(3):291-9.
    [33]Aoki H, Fujii M, Imamura T, Yagi K, Takehara K, Kato M, et al. Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci 2001; 114(Pt 8):1483-9.
    [34]Ye L, Lewis-Russell JM, Kyanaston HG, Jiang WG. Bone morphogenetic proteins and their receptor signaling in prostate cancer. Histol Histopathol 2007; 22(10):1129-47.
    [35]Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A 1995; 92(17):7632-6.
    [36]Ten Dijke P, Korchynskyi O, Valdimarsdottir G, Goumans MJ. Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrinol 2003; 211(1-2):105-13.
    [37]Takeda M, Mizuide M, Oka M, Watabe T, Inoue H, Suzuki H, et al. Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski. Mol Biol Cell 2004; 15(3):963-72.
    [38]Zeng S, Chen J, Shen H. Controlling of bone morphogenetic protein signaling. Cell Signal 2010; 22:888-93.
    [39]Zhou Q, Heinke J, Vargas A, Winnik S, Krauss T, Bode C, et al. ERK signaling is a central regulator for BMP-4 dependent capillary sprouting. Cardiovasc Res 2007; 76(3):390-9.
    [40]Park HY, Wu C, Yaar M, Stachur CM, Kosmadaki M,Gilchrest BA. Role of BMP-4 and Its Signaling Pathways in Cultured Human Melanocytes. Int J Cell Biol 2009; 2009:750482.
    [41]Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996; 86(4):599-606.
    [42]Lord JC, Hartzer K, Toutges M, Oppert B. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J Microbiol Methods 2010; 80(2):219-21.
    [43]金世龙,刘宝华,刘宏鸣,顾红光,杨俊涛,申海军,肖静.大鼠肝卵圆细胞的分离培养及干细胞标志分析.中国普外基础与临床杂志,2007;14(1):68-71.
    [44]Tirnitz-Parker JE, Tonkin JN, Knight B, Olynyk JK, Yeoh GC. Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet. Int J Biochem Cell Biol 2007; 39(12):2226-39.
    [45]He ZP, Tan WQ, Tang YF, Zhang HJ, Feng MF. Activation, isolation, identification and in vitro proliferation of oval cells from adult rat livers. Cell Prolif 2004; 37(2):177-87.
    [46]Gaca MD, Pickering JA, Arthur MJ, Benyon RC. Human and rat hepatic stellate cells produce stem cell factor:a possible mechanism for mast cell recruitment in liver fibrosis. J Hepatol 1999; 30(5):850-8.
    [47]Alison M, Sarraf C. Hepatic stem cells. J Hepatol 1998; 29(4):676-82.
    [48]姚鹏,詹轶群,许望翔,李长燕,杨晓明,胡大荣.细胞生长因子体外对大鼠肝干细胞的影响.中华肝脏病杂志,2003,11(1):33-6.
    [49]Zhang W, Chen XP, Zhang WG, Zhang F, Xiang S, Dong HH, et al. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration. World J Gastroenterol 2009; 15(5):552-60.
    [50]Jeffery TK, Upton PD, Trembath RC, Morrell NW. BMP4 inhibits proliferation and promotes myocyte differentiation of lung fibroblasts via Smadl and JNK pathways. Am J Physiol Lung Cell Mol Physiol 2005; 288(2):L370-8.
    [51]Liu SY, Zhang ZY, Song YC, Qiu KJ, Zhang KC, An N, et al. SVZa neural stem cells differentiate into distinct lineages in response to BMP4. Exp Neurol 2004; 190(1):109-21.
    [52]Nimmagadda S, Geetha Loganathan P, Huang R, Scaal M, Schmidt C, Christ B. BMP4 and noggin control embryonic blood vessel formation by antagonistic regulation of VEGFR-2 (Quek1) expression. Dev Biol 2005; 280(1):100-10.
    [53]Chen DF, Du SH, Zhang HL, Li H, Zhou JH, Li YW, et al. Autocrine BMP4 signaling involves effect of cholesterol myristate on proliferation of mesenchymal stem cells. Steroids 2009; 74(13-14):1066-72.
    [54]Qi X, Li TG, Hao J, Hu J, Wang J, Simmons H, et al. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 2004; 101(16):6027-32.
    [55]Gambaro K, Aberdam E, Virolle T, Aberdam D, Rouleau M. BMP-4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursors.Cell Death Differ 2006; 13(7):1075-87.
    [56]Miyazono K, Maeda S, Imamura T. BMP receptor signaling:transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 2005; 16(3):251-63.
    [57]Xin H, Li Y, Chen X, Chopp M. Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells. J Neurosci Res 2006; 83(8):1485-93.
    [58]Suzuki A, Iwama A, Miyashita H, Nakauchi H,Taniguchi H. Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development 2003; 130(11):2513-24.
    [59]Kim J, Adam RM, Freeman MR. Activation of the Erk mitogen-activated protein kinase pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell cycle withdrawal and STAT3 phosphorylation. Cancer Res 2002; 62(5):1549-54.
    [60]Salasznyk RM, Klees RF, Hughlock MK, Plopper GE. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Commun Adhes 2004; 11(5-6):137-53.
    [61]Khalil N, Xu YD, O'Connor R, Duronio V. Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-betal-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK. J Biol Chem 2005; 280(52):43000-9.
    [62]Weiss TS, Lichtenauer M, Kirchner S, Stock P, Aurich H, Christ B, et al. Hepatic progenitor cells from adult human livers for cell transplantation. Gut 2008; 57(8):1129-38.
    [63]Bost F, Aouadi M, Caron L, Binetruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005; 87(1):51-6.
    [1]Aleem Khan A, Parveen N, Habeeb MA,Habibullah CM. Journey from hepatocyte transplantation to hepatic stem cells:a novel treatment strategy for liver diseases. Indian J Med Res 2006; 123(5):601-14.
    [2]Roskams TA, Libbrecht L,Desmet VJ. Progenitor cells in diseased human liver. Semin Liver Dis 2003; 23(4):385-96.
    [3]Kuhlmann WD, Peschke P. Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury. Int J Exp Pathol 2006; 87(5):343-59.
    [4]Yovchev MI, Grozdanov PN, Zhou H, Racherla H, Guha C,Dabeva MD. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology 2008; 47(2):636-47.
    [5]Fausto N. Liver regeneration and repair:hepatocytes, progenitor cells, and stem cells. Hepatology 2004; 39(6):1477-87.
    [6]Alison M, Golding M, Lalani el-N,Sarraf C. Wound healing in the liver with particular reference to stem cells. Philos Trans R Soc Lond B Biol Sci 1998; 353(1370):877-94.
    [7]Knight B, Akhurst B, Matthews VB, Ruddell RG, Ramm GA, Abraham LJ, et al. Attenuated liver progenitor (oval) cell and fibrogenic responses to the choline deficient, ethionine supplemented diet in the BALB/c inbred strain of mice. J Hepatol 2007; 46(1):134-41.
    [8]Oh SH, Witek RP, Bae SH, Zheng D, Jung Y, Piscaglia AC, et al. Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology 2007; 132(3):1077-87.
    [9]Tirnitz-Parker JE, Tonkin JN, Knight B, Olynyk JK, Yeoh GC. Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet. Int J Biochem Cell Biol 2007; 39(12):2226-39.
    [10]Lowes KN, Croager EJ, Olynyk JK, Abraham LJ, Yeoh GC. Oval cell-mediated liver regeneration:Role of cytokines and growth factors. J Gastroenterol Hepatol 2003; 18(1):4-12.
    [11]Omary MB, Ku NO, Toivola DM. Keratins:guardians of the liver. Hepatology 2002;35(2):251-7.
    [12]Darlington GJ. Molecular mechanisms of liver development and differentiation. Curr Opin Cell Biol 1999; 11(6):678-82.
    [13]Suzuki A, Raya A, Kawakami Y, Morita M, Matsui T, Nakashima K, et al. Nanog binds to Smadl and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc Natl Acad Sci U S A 2006; 103(27):10294-9.
    [14]Heng BC, Yu H, Yin Y, Lim SG,Cao T. Factors influencing stem cell differentiation into the hepatic lineage in vitro. J Gastroenterol Hepatol 2005; 20(7):975-87.
    [15]Grigoriadis AE, Heersche JN, Aubin JE. Continuously growing bipotential and monopotential myogenic, adipogenic, and chondrogenic subclones isolated from the multipotential RCJ 3.1 clonal cell line. Dev Biol 1990; 142(2):313-8.
    [16]Shalhoub V, Conlon D, Tassinari M, Quinn C, Partridge N, Stein GS, et al. Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes. J Cell Biochem 1992; 50(4):425-40.
    [17]Shen CN, Slack JM, Tosh D. Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2000; 2(12):879-87.
    [18]Burke ZD, Shen CN, Ralphs KL, Tosh D. Characterization of liver function in transdifferentiated hepatocytes. J Cell Physiol 2006; 206(1):147-59.
    [19]Tanaka H, Murphy CL, Murphy C, Kimura M, Kawai S,Polak JM. Chondrogenic differentiation of murine embryonic stem cells:effects of culture conditions and dexamethasone. J Cell Biochem 2004; 93(3):454-62.
    [20]Dasgupta A, Hughey R, Lancin P, Larue L, Moghe PV. E-cadherin synergistically induces hepatospecific phenotype and maturation of embryonic stem cells in conjunction with hepatotrophic factors. Biotechnol Bioeng 2005; 92(3):257-66.
    [21]Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol 2005; 7(4):436-51.
    [22]Bian L, Guo ZK, Ai HS. Hepatocyte growth factor and its immunoregulatory activity. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007; 15(2):441-4.
    [23]Coradeghini R, Guida C, Scanarotti C, Sanguineti R, Bassi AM, Parodi A, et al. A Comparative Study of Proliferation and Hepatic Differentiation of Human Adipose-Derived Stem Cells. Cells Tissues Organs 2009.
    [24]He ZP, Tan WQ, Tang YF, Feng MF. Differentiation of putative hepatic stem cells derived from adult rats into mature hepatocytes in the presence of epidermal growth factor and hepatocyte growth factor. Differentiation 2003; 71(4-5):281-90.
    [25]Liu ML, Mars WM, Zarnegar R, Michalopoulos GK. Collagenase pretreatment and the mitogenic effects of hepatocyte growth factor and transforming growth factor-alpha in adult rat liver. Hepatology 1994; 19(6):1521-7.
    [26]Nohe A, Keating E, Knaus P, Petersen NO. Signal transduction of bone morphogenetic protein receptors. Cell Signal 2004; 16(3):291-9.
    [27]Usas A, Ho AM, Cooper GM,.Olshanski A, Peng H, Huard J. Bone regeneration mediated by BMP4-expressing muscle-derived stem cells is affected by delivery system. Tissue Eng Part A 2009; 15(2):285-93.
    [28]Li H, Corrales CE, Wang Z, Zhao Y, Wang Y, Liu H, et al. BMP4 signaling is involved in the generation of inner ear sensory epithelia. BMC Dev Biol 2005; 5:16.
    [29]Sadlon TJ, Lewis ID, D'Andrea RJ. BMP4:its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells 2004; 22(4):457-74.
    [30]Qi X, Li TG, Hao J, Hu J, Wang J, Simmons H; et al. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 2004; 101(16):6027-32.
    [31]Mimeault M, Batra SK. Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 2008; 4(1):27-49.
    [32]Mimeault M, Hauke R,Batra SK. Stem cells:a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 2007; 82(3):252-64.
    [33]Usas A, Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 2007; 28(36):5401-6.
    [34]Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem 2010; 147(1):35-51.
    [35]Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res 1998; (346):26-37.
    [36]Ebendal T, Bengtsson H, Soderstrom S. Bone morphogenetic proteins and their receptors:potential functions in the brain. J Neurosci Res 1998; 51(2):139-46.
    [37]Zeng S, Chen J, Shen H. Controlling of bone morphogenetic protein signaling. Cell Signal 2010; 22:888-93.
    [38]Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 2006; 24(11):1402-11.
    [39]Duncan SA, Watt AJ. BMPs on the road to hepatogenesis. Genes Dev 2001; 15(15):1879-84.
    [40]Rossi JM, Dunn NR, Hogan BL, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 2001; 15(15):1998-2009.
    [41]Kinoshita T, Miyajima A. Cytokine regulation of liver development. Biochim Biophys Acta 2002; 1592(3):303-12.
    [42]Shen H, Huang GJ, Gong YW. Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and trans-differentiation. World J Gastroenterol 2003; 9(4):784-7.
    [43]Fan J, Shen H, Sun Y, Li P, Burczynski F, Namaka M, et al. Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smadl and ERK1/2 in rat hepatic stellate cells. J Cell Physiol 2006; 207(2):499-505.
    [44]Fan J, Shen H, Dai Q, Minuk GY, Burzynski FJ, Gong Y. Bone morphogenetic protein-4 induced rat hepatic progenitor cell (WB-F344 cell) differentiation toward hepatocyte lineage. J Cell Physiol 2009; 220(1):72-81.
    [45]Fougere-Deschatrette C, Imaizumi-Scherrer T, Strick-Marchand H, Morosan S, Charneau P, Kremsdorf D, et al. Plasticity of hepatic cell differentiation: bipotential adult mouse liver clonal cell lines competent to differentiate in vitro and in vivo. Stem Cells 2006; 24(9):2098-109.
    [46]Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci U S A 2002; 99(12):8078-83.
    [47]刘君,薛玲,张萌,车丽洪,昊惠茜,胡瑞德.肝细胞生长因子和表皮生长因子联合体外诱导大鼠肝卵圆细胞分化的研究.中华病理学杂志2007;36(11):756-9.
    [48]Yasui O, Miura N, Terada K, Kawarada Y, Koyama K,Sugiyama T. Isolation of oval cells from Long-Evans Cinnamon rats and their transformation into hepatocytes in vivo in the rat liver. Hepatology 1997; 25(2):329-34.
    [49]Wang J, Clark JB, Rhee GS, Fair JH, Reid LM, Gerber DA. Proliferation and hepatic differentiation of adult-derived progenitor cells. Cells Tissues Organs 2003; 173(4):193-203.
    [50]Qin AL, Zhou XQ, Zhang W, Yu H, Xie Q. Characterization and enrichment of hepatic progenitor cells in adult rat liver. World J Gastroenterol 2004; 10(10):1480-6.
    [51]Weiss TS, Lichtenauer M, Kirchner S, Stock P, Aurich H, Christ B, et al. Hepatic progenitor cells from adult human livers for cell transplantation. Gut 2008; 57(8):1129-38.
    [52]Coleman WB, Smith GJ, Grisham JW. Development of dexamethasone-inducible tyrosine aminotransferase activity in WB-F344 rat liver epithelial stemlike cells cultured in the presence of sodium butyrate. J Cell Physiol 1994; 161(3):463-9.
    [53]Zhang W, Chen XP, Zhang WG, Zhang F, Xiang S, Dong HH, et al. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration. World J Gastroenterol 2009; 15(5):552-60.
    [54]Lavon N, Yanuka O,Benvenisty N. Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 2004; 72(5):230-8.
    [55]Passino MA, Adams RA, Sikorski SL, Akassoglou K. Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science 2007; 315(5820):1853-6.
    [56]Habibullah CM, Syed IH, Qamar A, Taher-Uz Z. Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation 1994; 58(8):951-2.
    [57]Gasbarrini A, Rapaccini GL, Rutella S, Zocco MA, Tittoto P, Leone G, et al. Rescue therapy by portal infusion of autologous stem cells in a case of drug-induced hepatitis. Dig Liver Dis 2007; 39(9):878-82.
    [58]Alison MR, Choong C, Lim S. Application of liver stem cells for cell therapy. Semin Cell Dev Biol 2007; 18(6):819-26.
    [59]王宇明,陈耀凯,郎松,李俊刚,刘国栋.大鼠肝卵圆细胞的分离培养及脾内移植研究.中华肝脏病杂志2003;11(6):328-30.
    [60]陈焱,陈耀凯,王宇明,夏杰.人胚胎骨髓间充质干细胞大鼠脾脏移植后向肝脏的迁移与分化的研究.中华实验外科杂志2008;25(9):1214.
    [61]Shafritz DA. Rat liver stem cells:prospects for the future. Hepatology 2000; 32(6):1399-400.
    [1]Knight PG, Glister C:TGF-beta superfamily members and ovarian follicle development. Reproduction 2006,132:191-206.
    [2]Gazzerro E, Canalis E:Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 2006,7:51-65.
    [3]Wordinger RJ, Clark AF:Bone morphogenetic proteins and their receptors in the eye. Exp Biol Med (Maywood) 2007,232:979-92.
    [4]Ye L, Lewis-Russell JM, Kyanaston HG, Jiang WG:Bone morphogenetic proteins and their receptor signaling in prostate cancer. Histol Histopathol 2007, 22:1129-47.
    [5]Guo X, Wang XF:Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 2009,19:71-88.
    [6]Shibuya H, Iwata H, Masuyama N, Gotoh Y, Yamaguchi K, Irie K, Matsumoto K, Nishida E,Ueno N:Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J 1998,17:1019-28.
    [7]Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K:Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995, 270:2008-11.
    [8]Avsian-Kretchmer O, Hsueh AJ:Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists. Mol Endocrinol 2004,18:1-12.
    [9]Valenzuela DM, Economides AN, Rojas E, Lamb TM, Nunez L, Jones P, Lp NY, Espinosa R 3rd, Brannan CI, Gilbert DJ,et al:Identification of mammalian noggin and its expression in the adult nervous system. J Neurosci 1995, 15:6077-84.
    [10]Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK,De Robertis EM:Xenopus chordin:a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 1994,79:779-90.
    [11]Eliasson P, Fahlgren A, Aspenberg P:Mechanical load and BMP signaling during tendon repair:a role for follistatin?. Clin Orthop Relat Res 2008, 466:1592-7.
    [12]Hemmati-Brivanlou A, Kelly OG, Melton DA:Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 1994,77:283-95.
    [13]Aoki F, Kojima I:Therapeutic potential of follistatin to promote tissue regeneration and prevent tissue fibrosis. Endocr J 2007,54:849-54.
    [14]Iemura S, Yamamoto TS, Takagi C, Uchiyama H, Natsume T, Shimasaki S, Sugino H, Ueno N:Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc Natl Acad Sci U S A 1998,95:9337-42.
    [15]Hopkins DR, Keles S, Greenspan DS:The bone morphogenetic protein 1/Tolloid-like metalloproteinases. Matrix Biol 2007,26:508-23.
    [16]Takahara K, Lyons GE, Greenspan DS:Bone morphogenetic protein-1 and a mammalian tolloid homologue (mTld) are encoded by alternatively spliced transcripts which are differentially expressed in some tissues. J Biol Chem 1994, 269:32572-8.
    [17]Ge G, Greenspan DS:Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res C Embryo Today 2006,78:47-68.
    [18]Mullins MC:Tolloid gets Sizzled competing with Chordin. Dev Cell 2006, 10:154-6.
    [19]Ambrosio AL, Taelman VF, Lee HX, Metzinger CA, Coffinier C,De Robertis EM:Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning. Dev Cell 2008,15:248-60.
    [20]Ross JJ, Shimmi O, Vilmos P, Petryk A, Kim H, Gaudenz K, Hermanson S, Ekker SC, O'Connor MB, Marsh JL:Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 2001,410:479-83.
    [21]Scott IC, Blitz IL, Pappano WN, Maas SA, Cho KW, Greenspan DS: Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling. Nature 2001,410:475-8.
    [22]Blader P, Rastegar S, Fischer N, Strahle U:Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid. Science 1997,278:1937-40.
    [23]Mathews LS, Vale WW:Molecular and functional characterization of activin receptors. Receptor 1993,3:173-81.
    [24]Canalis E, Economides AN, Gazzerro E:Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 2003,24:218-35.
    [25]Togo N, Ohwada S, Sakurai S, Toya H, Sakamoto I, Yamada T, Nakano T, Muroya K, Takeyoshi I, Nakajima T, et al:Prognostic significance of BMP and activin membrane-bound inhibitor in colorectal cancer. World J Gastroenterol 2008,14:4880-8.
    [26]Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague J, Niehrs C:Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 1999, 401:480-5.
    [27]Samad TA, Rebbapragada A, Bell E, Zhang Y, Sidis Y, Jeong SJ, Campagna JA, Perusini S, Fabrizio DA, Schneyer AL, et al:DRAGON, a bone morphogenetic protein co-receptor. J Biol Chem 2005,280:14122-9.
    [28]Wan J, Zhang W, Wu L, Bai T, Zhang M, Lo KW, Chui YL, Cui Y, Tao Q, Yamamoto M, et al:BS69, a specific adaptor in the latent membrane protein 1-mediated c-Jun N-terminal kinase pathway. Mol Cell Biol 2006,26:448-56.
    [29]Chung PJ, Chang YS, Liang CL, Meng CL:Negative regulation of Epstein-Barr virus latent membrane protein 1-mediated functions by the bone morphogenetic protein receptor IA-binding protein, BRAM1. J Biol Chem 2002,277:39850-7.
    [30]Xu L:Regulation of Smad activities. Biochim Biophys Acta 2006,1759:503-13.
    [31]Ross S, Hill CS:How the Smads regulate transcription. Int J Biochem Cell Biol 2008,40:383-408.
    [32]Massague J, Seoane J, Wotton D:Smad transcription factors. Genes Dev 2005, 19:2783-810.
    [33]Hill CS:Nucleocytoplasmic shuttling of Smad proteins. Cell Res 2009, 19:36-46.
    [34]ten Dijke P:Bone morphogenetic protein signal transduction in bone. Curr Med Res Opin 2006,22 Suppl 1:S7-11.
    [35]Liang TJ, Yuan JH, Tan YR, Ren WH, Han GQ, Zhang J, Wang LC,Qin CY: Effect of ursodeoxycholic acid on TGF betal/Smad signaling pathway in rat hepatic stellate cells. Chin Med J (Engl) 2009,122:1209-13.
    [36]Whitman M:Signal transduction. Feedback from inhibitory SMADs. Nature 1997,389:549-51.
    [37]Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P:Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997,389:631-5.
    [38]Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K: Smad6 inhibits signalling by the TGF-beta superfamily. Nature 1997,389:622-6.
    [39]Moren A, Imamura T, Miyazono K, Heldin CH, Moustakas A:Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem 2005,280:22115-23.
    [40]Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH:A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 1999,400:687-93.
    [41]Tajima Y, Goto K, Yoshida M, Shinomiya K, Sekimoto T, Yoneda Y, Miyazono K,Imamura T:Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurfl) is essential for negative regulation of transforming growth factor-beta signaling by Smad7. J Biol Chem 2003,278:10716-21.
    [42]Itoh S, ten Dijke P:Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 2007,19:176-84.
    [43]Li RF, Zhang F, Lu YJ, Sui SF:Specific interaction between Smadl and CHIP: a surface plasmon resonance study. Colloids Surf B Biointerfaces 2005, 40:133-6.
    [44]Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A,Derynck R:Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 2001,98:974-9.
    [45]Inman GJ, Nicolas FJ, Hill CS:Nucleocytoplasmic shuttling of Smads 2,3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 2002,10:283-94.
    [46]Brown KA, Pietenpol JA, Moses HL:A tale of two proteins:differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem 2007,101:9-33.
    [47]Xiao Z, Watson N, Rodriguez C, Lodish HF:Nucleocytoplasmic shuttling of Smadl conferred by its nuclear localization and nuclear export signals. J Biol Chem 2001,276:39404-10.
    [48]Kretzschmar M, Doody J, Massague J:Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smadl. Nature 1997, 389:618-22.
    [49]Shen H, Huang G, Hadi M, Choy P, Zhang M, Minuk GY, Chen Y, Gong Y: Transforming growth factor-betal downregulation of Smadl gene expression in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2003, 285:G539-46.
    [50]Raju GP, Dimova N, Klein PS, Huang HC:SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smadl. J Biol Chem 2003,278:428-37.
    [51]Janknecht R, Wells NJ, Hunter T:TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev 1998,12:2114-9.
    [52]Harada J, Kokura K, Kanei-Ishii C, Nomura T, Khan MM, Kim Y,Ishii S: Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation. J Biol Chem 2003,278:38998-9005.
    [53]Rinaldo C, Prodosmo A, Siepi F, Soddu S:HIPK2:a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol 2007,85:411-8.
    [54]Baldessari D, Badaloni A, Longhi R, Zappavigna V, Consalez GG:MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. BMC Cell Biol 2004,5:48.
    [55]Warming S, Liu P, Suzuki T, Akagi K, Lindtner S, Pavlakis GN, Jenkins NA, Copeland NG:Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Kruppel-like zinc finger protein. Blood 2003,101:1934-40.
    [56]Hocevar BA, Brown TL, Howe PH:TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 1999,18:1345-56.
    [57]Iwasaki S, Iguchi M, Watanabe K, Hoshino R, Tsujimoto M, Kohno M:Specific activation of the p38 mitogen-activated protein kinase signaling pathway and induction of neurite outgrowth in PC 12 cells by bone morphogenetic protein-2. J Biol Chem 1999,274:26503-10.
    [58]Nakamura K, Shirai T, Morishita S, Uchida S, Saeki-Miura K, Makishima F: p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp Cell Res 1999, 250:351-63.
    [59]Hay E, Lemonnier J, Fromigue O, Marie PJ:Bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad-independent, protein kinase C-dependent signaling pathway. J Biol Chem 2001,276:29028-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700