细胞色素P450基因单核苷酸多态性对药物安全性影响评价体系的建立和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物的有效性和毒性主要取决于药物在体内的药代动力学过程,包括药物在体内的吸收、分布、代谢和排泄等步骤。这些步骤若发生改变将会影响到药物的安全性。药物基因组学研究表明,当与药物相关的基因(如药物代谢酶、转运体和靶标的基因)发生变化后,将会改变药物的药代动力学过程,进而影响到药物的安全性和疗效。目前,对药物代谢的研究较为清楚。很多药物代谢酶已经被鉴定出来,其中最重要的一类就是细胞色素P450(CYP)家族。
     CYP家族参与代谢的药物约占市场上销售药物的80%以上。这些酶的基因多态性已经被证明可以影响药物在体内的清除和药物的相互作用,因此会增加药物不良反应的风险。目前在人体中发现的CYP单核苷酸多态性(SNP)已经多达1000多种,其中包括大量的非同义SNP (nsSNP)。这些nsSNP会导致表达氨基酸发生变化的CYP蛋白,因此很有可能会影响到这些CYP酶代谢药物的活性。少数CYP nsSNP的功能已经被证实可以引起药物代谢活性的降低,它们的临床效应也已经较好的阐明。但是,大部分CYP nsSNP造成的影响还不清楚。由于缺乏有效的工具和手段,CYP nsSNP对药物安全性的影响在药物开发过程中还没有能被很好的进行评估。
     为了弥补这个缺陷,本文建立了一套体外评估CYP nsSNP对药物安全性影响的实验体系。首先利用酵母表达了八种主要的CYP亚型和CYP3A4的17种多态性酶。利用这些重组CYP酶,选择荧光探针底物建立了快速、可靠的生化试验。进而检测这些CYP酶的代谢活性和药物对它们的抑制能力,并预测其对药物安全性的影响。利用这一实验体系,本文对17种CYP3A4多态性酶的代谢活性,以及8种多态性酶对17种药物抑制能力的影响进行了评估。结果发现9种CYP3A4多态性酶会导致其代谢活性的降低或完全丧失。导致活性降低的CYP3A4多态性酶也会影响大部分受测试药物的抑制能力,使它们的抑制能力明显减弱。
     此外,本文还利用建立的体系对一个新的候选药物——丹参素冰片酯(DBZ)的体外代谢进行了研究。对比了DBZ经过人和大鼠肝微粒体代谢的异同,包括代谢动力学、代谢产物的比较,以及代谢产物的鉴定;还鉴定出了参与DBZ代谢的主要CYP酶,CYP2C8; DBZ主要抑制的CYP亚型,CYP3A4。在此基础上,进一步研究了CYP2C8和CYP3A4的nsSNP对DBZ代谢和抑制能力影响。其结果显示CYP2C8*3会导致DBZ代谢清除率下降54%;CYP3A4*2、CYP3A4*12和CYP3A4*16会导致DBZ抑制能力的减弱。这些结果可以帮助了解DBZ的作用机制及DBZ的有效性和安全性,为DBZ的进一步临床试验提供了指导信息。
     通过本文的实验结果可知,本文建立的体系可以成功的用来评估CYP nsSNP对药物安全性的影响。这一体系可以用来进行药物基因组学的基础研究,检测CYP基因多态性对其活性的影响;也可以用在药物开发过程中,根据CYP基因型来设计临床试验。
CYPs are the most important drug-metabolizing enzymes, being responsible for 70-80% of all phase I-dependent metabolism of clinically useful drugs. More than 1000 single-nucleotide polymorphisms (SNPs) have been discovered in CYP genes, of which the most important ones are the non-synonymous SNPs (nsSNPs). nsSNPs lead to the expression of variant CYP enzymes that may possess altered metabolic activities and increase the risk of ADRs for individuals carrying the nsSNPs. Pharmacogenomic studies also indicate that CYP nsSNPs can have profound effects on the ability and potency of drugs to inhibit CYPs, thus resulting in unexpected drug-drug interactions (DDIs) in individuals carrying polymorphic genotypes.
     CYP genetic polymorphisms and CYP-mediated DDIs are both important in the assessment of drug safety and efficacy. However, the effects of CYP nsSNPs on DDIs are still underappreciated in drug development because methods are lacking to study the effects of a large number of SNPs.
     To address this deficiency, we established and experimentally validated a homogeneous yeast assay system consisting of eight human CYP isoforms and 17 CYP3A4 nsSNP variants. We tested the metabolic activities of those enzymes and their abilities to alter the drug's inhibitory potencies. The results suggested that 9 of the 17 CYP3A4 nsSNP variants can lead to deceased metabolic activities. Those variants also can weaken the inhibitory potencies of most tested drugs to CYP3A4.
     Furthermore, we tested a new chemical entity, tanshinol borneol ester (DBZ), in this system to systematically evaluate the effects of CYP nsSNPs on both the CYP-inhibition potential of DBZ and on DBZ metabolism. The inhibitory potency of DBZ toward three CYP3A4 allelic variants, CYP3A4.2,3A4.12, and 3A4.16, was reduced by 2-10 folds relative to prototype CYP3A4, which implies that DBZ may have less potential to interact with CYP3A4-metabolised drugs in patients carrying these three alleles. Furthermore, compared with prototypic CYP2C8, the allelic variant, CYP2C8.3, produced a 54% decrease in the intrinsic clearance of DBZ, which suggests a dosage adjustment of DBZ may be needed in patients carrying the CYP2C8*3 allele. This pharmacogenomic information could help to rationalize clinical trials of DBZ, including improving the selection of drug doses, drug combinations and volunteers. Our results suggest applications for this in vitro CYP assay system both for basic research in pharmacogenomics and for drug development.
引文
[1]Evans W. E., Relling M. V. Pharmacogenomics:translating functional genomics into rational therapeutics[J]. Science,1999,286:487-491.
    [2]Ingelman-Sundberg M. Pharmacogenetics:an opportunity for a safer and more efficient pharmacotherapy[J]. J Intern Med,2001,250(3):186-200.
    [3]Nebert D. W., Vesell E. S. Advances in pharmacogenomics and individualized drug therapy:exciting challenges that lie ahead[J]. Eur J Pharmacol,2004,500(1-3):267-280.
    [4]Bepler G. Pharmacogenomics:a reality or still a promise?[J]. Lung Cancer,2006,54 Suppl 2:S3-7.
    [5]Pirazzoli A., Recchia G. Pharmacogenetics and pharmacogenomics:are they still promising?[J]. Pharmacol Res,2004,49(4):357-361.
    [6]Evans W. E., Relling M. V. Moving towards individualized medicine with pharmacogenomics[J]. Nature,2004,429(6990):464-468.
    [7]Klein T. E., Altman R. B., Eriksson N., et al. Estimation of the warfarin dose with clinical and pharmacogenetic data[J]. N Engl J Med,2009,360(8):753-764.
    [8]Zhu Y., Shennan M., Reynolds K. K., et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes[J]. Clin Chem,2007,53(7):1199-1205.
    [9]Higashi M. K., Veenstra D. L., Kondo L. M., et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy[J]. JAMA,2002,287(13):1690-1698.
    [10]Veenstra D. L., Blough D. K., Higashi M. K., et al. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes[J]. Clin Pharmacol Ther,2005,77:353-364.
    [11]Kaminsky L. S., Zhang Z. Y. Human P450 metabolism of warfarin[J]. Pharmacol Ther,1997,73:67-74.
    [12]Takahashi H., Wilkinson G. R., Padrini R., et al. CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin:similarities yet differences[J]. Clin Pharmacol Ther,2004,75:376-380..
    [13]Schwarz U. I., Ritchie M. D., Bradford Y, et al. Genetic determinants of response to warfarin during initial anticoagulation[J]. N Engl J Med,2008,358:999-1008.
    [14]Klein T. E., Altman R. B., Eriksson N., et al. Estimation of the warfarin dose with clinical and pharmacogenetic data[J]. N Engl J Med,2009,360:753-764.
    [15]Rieder M. J., Reiner A. P., Gage B. F., et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose[J]. N Engl J Med,2005,352(22):2285-2293.
    [16]US Food and Drug Administration. Table of Valid Genomic Biomarkers in the Context of Approved Drug Labels.2010; http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm. Accessed Mar.29,2010.
    [17]Wang L., Weinshilboum R. M. Pharmacogenomics:candidate gene identification, functional validation and mechanisms[J]. Hum Mol Genet,2008,17(R2):R174-179.
    [18]Paegel B. M., Emrich C. A., Wedemayer G. J., et al. High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor[J]. Proc Natl Acad Sci U S A,2002, 99(2):574-579.
    [19]Sundquist A., Ronaghi M., Tang H., et al. Whole-genome sequencing and assembly with high-throughput, short-read technologies[J]. PLoS One,2007,2(5):e484.
    [20]Selick H. E., Beresford A. P., Tarbit M. H. The emerging importance of predictive ADME simulation in drug discovery[J]. Drug Discov Today,2002,7(2):109-116.
    [21]Guttendorf R. J. The Emerging Role of A.D.M.E. in Optimizing Drug Discovery and Design[EB/OL]. 2009. http://www.netsci.org/Science/Special/feature06.html. Accessed Mar.29,2010.
    [22]Wilkinson G. R. Drug metabolism and variability among patients in drug response[J]. N Engl J Med, 2005,352(21):2211-2221.
    [23]Oesch F. Importance of knowledge on drug metabolism for the safe use of drugs in humans[J]. Drug Metab Rev,2009,41(3):298-300.
    [24]Benedetti M. S., Whomsley R., Poggesi I., et al. Drug metabolism and pharmacokinetics[J]. Drug Metab Rev,2009,41(3):344-390.
    [25]Tate L. G. Characterization of phase Ⅰ and phase Ⅱ drug metabolism and the effect of beta-naphthoflavone in the liver and posterior kidney of the channel catfish, Ictalurus punctatus[J]. Arch Environ Contam Toxicol,1988,17(3):325-332.
    [26]Josephy P. D., Guengerich F. P., Miners J. O. "Phase Ⅰ and Phase Ⅱ" Drug Metabolism:Terminology that we Should Phase Out? [J]. Drug Metab Rev,2005,37(4):575-580.
    [27]Kadlubar S., Kadlubar F. F. Enzymatic Basis of Phase Ⅰ and Phase Ⅱ Drug Metabolism[A]. Enzyme-and Transporter-Based Drug-Drug Interactions, Progress and Future Challenges[M]:Springer; 2010.
    [28]Spatzenegger M., Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism [J]. Drug Metab Rev,1995,27(3):397-417.
    [29]Guengerich F. P. Human Cytochrome P450 Enzymes [A]. In:Ortiz de Montellano PR, ed. Cytochrome P450:Structure, Mechanism, and Biochemistry[M].3rd ed. New York:Kluwer Academic/Plenum Press; 2005:377-531.
    [30]Anzenbacher P., Anzenbacherova E. Cytochromes P450 and metabolism of xenobiotics[J]. Cell Mol Life Sci,2001,58(5-6):737-747.
    [31]Paine M. J. I., Scrutton N. S., Munro A. W., et al. Electron Transfer Partners of Cytochrome P450[A]. In: Ortiz de Montellano PR, ed. Cytochrome P450:Structure, Mechanism, and Biochemistry[M]. New York:Kluwer Academic/Plenum Press; 2005:115-148.
    [32]Nelson D. R. The Cytochrome P450 Homepage. Human Genomics 2009; 4:59-65. Available at: http://drnelson.uthsc.edu/CytochromeP450.html.
    [33]Poulos T. L., Johnson E. F. Structures of Cytochrome P450 Enzymes[A]. In:Ortiz de Montellano PR, ed. Cytochrome P450:Structure, Mechanism, and Biochemistry[M]. New York:Kluwer Academic/Plenum Press; 2005:87-114.
    [34]Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy:the past, present and future[J]. Trends Pharmacol Sci,2004,25:193-200.
    [35]Wienkers L. C., Heath T. G. Predicting in vivo drug interactions from in vitro drug discovery data[J]. Nat Rev Drug Discov,2005,4:825-833.
    [36]Wrighton S. A., Stevens J. C. The human hepatic cytochromes P450 involved in drug metabolism[J]. Crit Rev Toxicol,1992,22(1):1-21.
    [37]US Food and Drug Administration. Guidance for Industry:Drug Interaction Studies -Study Design, Data Analysis, and Implications for Dosing and Labeling[EB/OL].2006. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInfonnation/Guidances/UCM07 2101.pdf.Accessed 2010-3-15.
    [38]Guengerich F. P. Role of cytochrome P450 enzymes in drug-drug interactions[J]. Adv Pharmacol,1997, 43:7-35.
    [39]Bjornsson T. D., Callaghan J. T., Einolf H. J., et al. The conduct of in vitro and in vivo drug-drug interaction studies:a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective[J]. Drug Metab Dispos,2003,31:815-832.
    [40]Obach R. S., Walsky R. L., Venkatakrishnan K., et al. The utility of in vitro cytochrome P450 inhibition
    data in the prediction of drug-drug interactions[J]. J Pharmacol Exp Ther,2006,316:336-348.
    [41]Sim S. C. Home Page of the Human Cytochrome P450 (CYP) Allele Nomenclature Committee.2008; http://www.cvpalleles.ki.se/. Accessed Mar 22,2010.
    [42]Dahl M. L., Bertilsson L., Nordin C. Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite:relationship to the CYP2D6 genotype[J]. Psychophannacology (Berl),1996, 123(4):315-319.
    [43]Dalen P., Dahl M. L., Bernal Ruiz M. L., et al.10-Hydroxylation of nortriptyline in white persons with 0,1,2,3, and 13 functional CYP2D6 genes[J]. Clin Pharmacol Ther,1998,63(4):444-452.
    [44]Yue Q. Y, Zhong Z. H., Tybring G., et al. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes[J]. Clin Pharmacol Ther,1998, 64(4):384-390.
    [45]Morita S., Shimoda K., Someya T., et al. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients:impact of CYP2D6 genotype on the hydroxylation of nortriptyline[J]. J Clin Psychopharmacol,2000,20(2):141-149.
    [46]Hamelin B. A., Turgeon J., Vallee F., et al. The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin[J]. Clin Pharmacol Ther,1996,60(5):512-521.
    [47]Fjordside L., Jeppesen U., Eap C. B., et al. The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine[J]. Pharmacogenetics,1999,9(1):55-60.
    [48]Jordan V. C. Metabolites of tamoxifen in animals and man:identification, pharmacology, and significance[J]. Breast Cancer Res Treat,1982,2(2):123-138.
    [49]Jordan V. C., Collins M. M., Rowsby L., et al. A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity[J]. J Endocrinol,1977,75(2):305-316.
    [50]Crewe H. K., Ellis S. W., Lennard M. S., et al. Variable contribution of cytochromes P450 2D6,2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes[J]. Biochem Pharmacol,1997, 53(2):171-178.
    [51]Dehal S. S., Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver[J]. Cancer Res, 1997,57(16):3402-3406.
    [52]Crewe H. K., Notley L. M., Wunsch R. M., et al. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes:formation of the 4-hydroxy,4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen[J]. Drug Metab Dispos,2002,30(8):869-874.
    [53]Stearns V., Johnson M. D., Rae J. M., et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine[J]. J Natl Cancer Inst,2003,95(23):1758-1764.
    [54]Beverage J. N., Sissung T. M., Sion A. M., et al. CYP2D6 polymorphisms and the impact on tamoxifen therapy[J]. J Pharm Sci,2007,96(9):2224-2231.
    [55]Goetz M. P., Rae J. M., Suman V. J., et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes[J]. J Clin Oncol,2005,23(36):9312-9318.
    [56]Jin Y., Desta Z., Stearns V., et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment[J]. J Natl Cancer Inst,2005,97(1):30-39.
    [57]Bonanni B., Macis D., Maisonneuve P., et al. Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes:data from the Italian Tamoxifen Trial[J]. J Clin Oncol, 2006,24(22):3708-3709; author reply 3709.
    [58]Borges S., Desta Z., Li L., et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism:implication for optimization of breast cancer treatment[J]. Clin Pharmacol Ther,2006, 80(1):61-74.
    [59]Schroth W., Antoniadou L., Fritz P., et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes[J]. J Clin Oncol,2007,25(33):5187-5193.
    [60]Goetz M. P., Knox S. K., Surnan V. J., et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen[J]. Breast Cancer Res Treat,2007,101(1):113-121.
    [61]Xu Y., Sun Y., Yao L., et al. Association between CYP2D6*10 genotype and survival of breast cancer patients receiving tamoxifen treatment[J]. Ann Oncol,2008,19(8):1423-1429.
    [62]Gage B. F., Lesko L. J. Pharmacogenetics of warfarin:regulatory, scientific, and clinical issues[J]. J Thromb Thrombolysis,2008,25(1):45-51.
    [63]Takahashi H., Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications[J]. Clin Pharmacokinet,2001,40(8):587-603.
    [64]Kamali F., Pirmohamed M. The future prospects of pharmacogenetics in oral anticoagulation therapy[J]. Br J Clin Pharmacol,2006,61(6):746-751.
    [65]Bussey H. I., Wittkowsky A. K., Hylek E. M., et al. Genetic testing for warfarin dosing? Not yet ready for prime time[J]. Pharmacotherapy,2008,28(2):141-143.
    [66]Desta Z., Zhao X., Shin J. G., et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism[J]. Clin Pharmacokinet,2002,41(12):913-958.
    [67]Varenhorst C., James S., Erlinge D., et al. Genetic variation of CYP2C19 affects both pharmacokinetic and pharmacodynamic responses to clopidogrel but not prasugrel in aspirin-treated patients with coronary artery disease[J]. Eur Heart J,2009,30(14):1744-1752.
    [68]Brandt J. T., Close S. L., Iturria S. J., et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel[J]. J Thromb Haemost,2007,5(12):2429-2436.
    [69]Dai D., Zeldin D. C., Blaisdell J. A., et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid[J]. Pharmacogenetics,2001,11:597-607.
    [70]Bahadur N., Leathart J. B., Mutch E., et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6alpha-hydroxylase activity in human liver microsomes[J]. Biochem Pharmacol,2002,64(11):1579-1589.
    [71]Nakajima M., Fujiki Y., Kyo S., et al. Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1[J]. J Clin Pharmacol,2005,45(6):674-682.
    [72]Henningsson A., Marsh S., Loos W. J., et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel[J]. Clin Cancer Res,2005,11 (22):8097-8104.
    [73]Jiko M., Yano I., Sato E., et al. Pharmacokinetics and pharmacodynamics of paclitaxel with carboplatin or gemcitabine, and effects of CYP3A5 and MDR1 polymorphisms in patients with urogenital cancers[J]. Int J Clin Oncol,2007,12(4):284-290.
    [74]Theken K. N., Lee C. R. Genetic variation in the cytochrome P450 epoxygenase pathway and cardiovascular disease risk[J]. Pharmacogenomics,2007,8(10):1369-1383.
    [75]Lundblad M. S., Stark K., Eliasson E., et al. Biosynthesis of epoxyeicosatrienoic acids varies between polymorphic CYP2C enzymes[J]. Biochem Biophys Res Commun,2005,327(4):1052-1057.
    [76]Yasar U., Bennet A. M., Eliasson E., et al. Allelic variants of cytochromes P450 2C modify the risk for acute myocardial infarction[J]. Pharmacogenetics,2003,13(12):715-720.
    [77]Hanatani T., Fukuda T., Ikeda M., et al. CYP2C9*3 influences the metabolism and the drug-interaction of candesartan in vitro[J]. Pharmacogenomics J,2001,1:288-292.
    [78]Hummel M. A., Locuson C. W., Gannett P. M., et al. CYP2C9 genotype-dependent effects on in vitro drug-drug interactions:switching of benzbromarone effect from inhibition to activation in the CYP2C9.3 variant[J]. Mol Pharmacol,2005,68:644-651.
    [79]Kumar V., Wahlstrom J. L., Rock D. A., et al. CYP2C9 inhibition:impact of probe selection and pharmacogenetics on in vitro inhibition profiles[J]. Drug Metab Dispos,2006,34:1966-1975.
    [80]Kumar V., Brundage R. C., Oetting W. S., et al. Differential genotype dependent inhibition of CYP2C9 in humans [J]. Drug Metab Dispos,2008,36:1242-1248.
    [81]Kuypers D. R., de Jonge H., Naesens M., et al. Effects of CYP3A5 and MDR1 single nucleotide polymorphisms on drug interactions between tacrolimus and fluconazole in renal allograft recipients[J]. Pharmacogenet Genomics,2008,18(10):861-868.
    [82]US Food and Drug Administration. Guidance for Industry:pharmacogenomic data submissions.[EB/OL].2005. http://www.fda.gov/OHRMS/DOCKETS/98fr/2003d-0497-gd10002.pdf. Accessed 2010-3-13.
    [83]Masimirembwa C. M., Otter C., Berg M., et al. Heterologous expression and kinetic characterization of human cytochromes P-450:validation of a pharmaceutical tool for drug metabolism research[J]. Drug Metab Dispos,1999,27:1117-1122.
    [84]McGinnity D. F., Griffin S. J., Moody G. C., et al. Rapid characterization of the major drug-metabolizing human hepatic cytochrome P-450 enzymes expressed in Escherichia coli[J]. Drug Metab Dispos,1999,27:1017-1023.
    [85]Kusama M., Maeda K., Chiba K., et al. Prediction of the effects of genetic polymorphism on the pharmacokinetics of CYP2C9 substrates from in vitro data[J]. Pharm Res,2009,26:822-835.
    [86]Friedberg T., Wolf C. R. Recombinant DNA technology as an investigative tool in drug metabolism research[J]. Adv Drug Deliv Rev 1996,22(1-2):187-213.
    [87]Gillam E. M., Baba T., Kim B. R., et al. Expression of modified human cytochrome P450 3A4 in Escherichia coli and purification and reconstitution of the enzyme[J]. Arch Biochem Biophys,1993, 305(1):123-131.
    [88]Pritchard M. P., Ossetian R., Li D. N., et al. A general strategy for the expression of recombinant human cytochrome P450s in Escherichia coli using bacterial signal peptides:expression of CYP3A4, CYP2A6, and CYP2E1[J]. Arch Biochem Biophys,1997,345(2):342-354.
    [89]Guengerich F. P., Martin M. V. Purification of cytochromes P450:products of bacterial recombinant expression systems[J]. Methods Mol Biol,2006,320:31-37.
    [90]Voice M. W., Zhang Y., Wolf C. R., et al. Effects of human cytochrome b5 on CYP3A4 activity and stability in vivo[J]. Arch Biochem Biophys,1999,366(1):116-124.
    [91]Pritchard M. P., Glancey M. J., Blake J. A., et al. Functional co-expression of CYP2D6 and human NADPH-cytochrome P450 reductase in Escherichia coli[J]. Pharmacogenetics,1998,8(1):33-42.
    [92]Inoue E., Takahashi Y., Imai Y., et al. Development of bacterial expression system with high yield of CYP3A7, a human fetus-specific form of cytochrome P450[J]. Biochem Biophys Res Commun,2000, 269(2):623-627.
    [93]McLean K. J., Girvan H. M., Munro A. W. Cytochrome P450/redox partner fusion enzymes: biotechnological and toxicological prospects[J]. Expert Opin Drug Metab Toxicol,2007,3(6):847-863.
    [94]Munro A. W., Girvan H. M., McLean K. J. Cytochrome P450-redox partner fusion enzymes[J]. Biochim Biophys Acta,2007,1770(3):345-359.
    [95]Hayashi K., Sakaki T., Kominami S., et al. Coexpression of genetically engineered fused enzyme between yeast NADPH-P450 reductase and human cytochrome P450 3A4 and human cytochrome b5 in yeast[J]. Arch Biochem Biophys,2000,381(1):164-170.
    [96]Cheng J., Wan D. F., Gu J. R., et al. Establishment of a yeast system that stably expresses human cytochrome P450 reductase:application for the study of drug metabolism of cytochrome P450s in vitro[J]. Protein Expr Purif,2006,47(2):467-476.
    [97]Chen L., Buters J. T., Hardwick J. P., et al. Coexpression of cytochrome P4502A6 and human NADPH-P450 oxidoreductase in the baculovirus system[J]. Drug Metab Dispos,1997,25(4):399-405.
    [98]Ohgiya S., Goda T., Hoshino T., et al. Establishment of a novel host, high-red yeast that stably expresses hamster NADPH-cytochrome P450 oxidoreductase:usefulness for examination of the function of mammalian cytochrome P450[J]. Arch Biochem Biophys,1997,343(2):215-224.
    [99]Peyronneau M. A., Renaud J. P., Truan G., et al. Optimization of yeast-expressed human liver cytochrome P450 3A4 catalytic activities by coexpressing NADPH-cytochrome P450 reductase and cytochrome b5[J].Eur J Biochem,1992,207(1):109-116.
    [100]Jones E. W. Tackling the protease problem in Saccharomyces cerevisiae[J]. Methods Enzymol,1991, 194:428-453.
    [101]Ho S. N., Hunt H. D., Horton R. M., et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction[J]. Gene,1989,77(1):51-59.
    [102]Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.
    [103]Omura T., Sato R. The Carbon Monoxide-Binding Pigment of Liver Microsomes. I. Evidence for Its Hemoprotein Nature[J]. J Biol Chem,1964,239:2370-2378.
    [104]Phillips I. R., Shephard E. A., eds. Cytochrome P450 Protocols[M].2nd ed. Totowa, New Jersey: Humana Press; 2006. Walker JM, ed. Methods in Molecular Biology.
    [105]Lee S. J., Bell D. A., Coulter S. J., et al. Recombinant CYP3A4*17 is defective in metabolizing the hypertensive drug nifedipine, and the CYP3A4*17 allele may occur on the same chromosome as CYP3A5*3, representing a new putative defective CYP3A haplotype[J]. J Pharmacol Exp Ther,2005, 313(1):302-309.
    [106]Westlind A., Lofberg L., Tindberg N., et al. Interindividual differences in hepatic expression of CYP3A4:relationship to genetic polymorphism in the 5'-upstream regulatory region[J]. Biochem Biophys Res Commun,1999,259(1):201-205.
    [107]Dai D., Tang J., Rose R., et al. Identification of Variants of CYP3A4 and Characterization of Their Abilities to Metabolize Testosterone and Chlorpyrifos[J]. J Pharmacol Exp Ther,2001,299(3):825-831.
    [108]Murayama N., Nakamura T., Saeki M., et al. CYP3A4 gene polymorphisms influence testosterone 6beta-hydroxylation[J]. Drug Metab Pharmacokinet,2002,17:150-156.
    [109]Miyazaki M., Nakamura K., Fujita Y., et al. Defective activity of recombinant cytochromes P450 3A4.2 and 3A4.16 in oxidation of midazolam, nifedipine, and testosterone[J]. Drug Metab Dispos,2008, 36:2287-2291.
    [110]Kang Y. S., Park S. Y., Yim C. H., et al. The CYP3A4*18 genotype in the cytochrome P450 3A4 gene, a rapid metabolizer of sex steroids, is associated with low bone mineral density[J]. Clin Pharmacol Ther, 2009,85(3):312-318.
    [111]Zlokarnik G., Grootenhuis P. D., Watson J. B. High throughput P450 inhibition screens in early drug discovery[J]. Drug Discov Today,2005,10:1443-1450.
    [112]Crespi C. L., Miller V. P., Penman B. W. Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450[J]. Anal Biochem,1997,248:188-190.
    [113]Crespi C. L., Stresser D. M. Fluorometric screening for metabolism-based drug-drug interactions[J]. J Pharmacol Toxicol Methods,2000,44:325-331.
    [114]Bapiro T. E., Egnell A. C., Hasler J. A., et al. Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s[J]. Drug Metab Dispos,2001,29:30-35.
    [115]Yamamoto T., Suzuki A., Kohno Y. Application of microtiter plate assay to evaluate inhibitory effects of
    various compounds on nine cytochrome P450 isoforms and to estimate their inhibition patterns[J]. Drug Metab Pharmacokinet,2002,17:437-448.
    [116]Cohen L. H., Remley M. J., Raunig D., et al. In vitro drug interactions of cytochrome p450:an evaluation of fluorogenic to conventional substrates[J]. Drug Metab Dispos,2003,31:1005-1015.
    [117]Turpeinen M., Korhonen L. E., Tolonen A., et al. Cytochrome P450 (CYP) inhibition screening: comparison of three tests[J]. Eur J Pharm Sci,2006,29:130-138.
    [118]Sata F., Sapone A., Elizondo G., et al. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12:evidence for an allelic variant with altered catalytic activity[J]. Clin Pharmacol Ther,2000, 67:48-56.
    [119]Hsieh K. P., Lin Y. Y., Cheng C. L., et al. Novel mutations of CYP3A4 in Chinese[J]. Drug Metab Dispos,2001,29:268-273.
    [120]Lamba J. K., Lin Y. S., Thummel K., et al. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations[J]. Pharmacogenetics,2002,12(2):121-132.
    [121]Eiselt R., Domanski T. L., Zibat A., et al. Identification and functional characterization of eight CYP3A4 protein variants[J]. Pharmacogenetics,2001,11:447-458.
    [122]Obach R. S., Walsky R. L., Venkatakrishnan K. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions[J]. Drug Metab Dispos,2007, 35(2):246-255.
    [123]Stresser D. M., Blanchard A. P., Turner S. D., et al. Substrate-dependent modulation of CYP3A4 catalytic activity:analysis of 27 test compounds with four fluorometric substrates[J]. Drug Metab Dispos,2000,28:1440-1448.
    [124]Nomeir A. A., Ruegg C., Shoemaker M., et al. Inhibition of CYP3A4 in a rapid microtiter plate assay using recombinant enzyme and in human liver microsomes using conventional substrates[J]. Drug Metab Dispos,2001,29:748-753.
    [125]Luo X., Bi K., Zhou S., et al. Determination of Danshensu, a major active compound of Radix Salvia miltiorrhiza in dog plasma by HPLC with fluorescence detection[J]. Biomed Chromatogr,2001, 15(8):493-496.
    [126]Cao J., Wei Y. J., Qi L. W., et al. Determination of fifteen bioactive components in Radix et Rhizoma Salviae Miltiorrhizae by high-performance liquid chromatography with ultraviolet and mass spectrometric detection[J]. Biomed Chromatogr,2008,22(2):164-172.
    [127]Cao Y., Chai J. G., Chen Y C., et al. Beneficial effects of danshensu, an active component of Salvia miltiorrhiza, on homocysteine metabolism via the trans-sulphuration pathway in rats[J]. Br J Pharmacol, 2009,157(3):482-490.
    [128]Mai L. M., Lin C. Y., Chen C. Y., et al. Synergistic effect of bismuth subgallate and borneol, the major components of Sulbogin, on the healing of skin wound[J]. Biomaterials,2003,24(18):3005-3012.
    [129]Xiao Y.-Y., Ping Q.-N., Chen Z.-P. The enhancing effect of synthetical borneol on the absorption of tetramethylpyrazine phosphate in mouse[J]. Int J Pharm,2007,337(1-2):74-79.
    [130]Cai Z., Hou S., Li Y., et al. Effect of borneol on the distribution of gastrodin to the brain in mice via oral administration[J]. J Drug Target,2008,16(2):178-184.
    [131]Yang H., Xun Y., Li Z., et al. Influence of borneol on in vitro corneal permeability and on in vivo and in vitro corneal toxicity[J]. J Int Med Res,2009,37(3):791-802.
    [132]The State Pharmacopoeia Commission of China. Fufang danshen diwan[A]. Pharmacopoeia of the People's Republic of China[M]. Vol Ⅰ. Beijing:Chemical Industry Press; 2005:416-417.
    [133]Sharer J. E., Shipley L. A., Vandenbranden M. R., et al. Comparisons of phase Ⅰ and phase Ⅱ in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey [J]. Drug Metab Dispos,1995,23(11):1231-1241.
    [134]Godin S. J., Scollon E. J., Hughes M. F., et al. Species differences in the in vitro metabolism of deltamethrin and esfenvalerate:differential oxidative and hydrolytic metabolism by humans and rats[J]. Drug Metab Dispos,2006,34(10):1764-1771.
    [135]Tong Z., Chandrasekaran A., Demaio W., et al. Species Differences in the Formation of Vabicaserin Carbamoyl Glucuronide[J]. Drug Metab Dispos,2009, doi:10.1124/dmd.109.028639.
    [136]Martignoni M., Groothuis G. M. M., de Kanter R. Species differences between mouse, rat, dog, monkey and human cytochrome P450-mediated drug metabolism[A]. In:Martignoni M, ed. Species and strain differences in drug metabolism in liver and intestine[M]2006:8-44.
    [137]Obach R. S., Baxter J. G., Liston T. E., et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data[J]. J Pharmacol Exp Ther,1997,283:46-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700