昂丹司琼的代谢和立体选择性药物动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昂丹司琼结构中含有一手性碳原子,临床现以消旋体给药;昂丹司琼与5-羟色胺有相似的母核,是强效、高选择性的5-羟色胺-3受体(5-HT_3)拮抗剂,有强镇吐作用。化疗药物和放射治疗可造成小肠释放5-羟色胺(5-HT),经由5-HT_3受体激活迷走神经的传入支,触发呕吐反射。昂丹司琼能阻断这一反射的触发,临床主要用于治疗因放疗及化疗诱发的恶心、呕吐。前期对昂丹司琼的代谢和动力学的研究表明,昂丹司琼在肝脏的细胞色素P450酶催化下广泛代谢,代谢途径包括苯环羟基化、N-去甲基化、羟基化后的代谢产物与葡萄糖醛酸或硫酸结合。进一步深入研究昂丹司琼的代谢、立体选择性药物动力学及其产生的机理,对指导昂丹司琼单一光学活性药物的研究开发具有重要意义。
     一、目的
     分离并鉴定昂丹司琼的代谢产物,系统研究昂丹司琼在哺乳动物体内的代谢;建立测定生物样品中昂丹司琼及其代谢产物含量和手性固定相拆分昂丹司琼对映体的方法,研究昂丹司琼的立体选择性药物动力学,并阐明其产生的机理;研究左昂丹司琼临床前药物动力学,为手性药物的研究开发提供依据。
     二、方法
     分离纯化昂丹司琼的卷枝毛霉AS 3.3421转化液和大鼠多剂量灌胃给予昂丹司琼后累积的尿样、粪样和胆汁中的昂丹司琼代谢产物,并通过核磁共振光谱和电喷雾离子化质谱确定其结构。采用液相色谱-多级质谱联用(LC/MS~n)的分析方法,结合分离得到昂丹司琼代谢产物的色谱行为和多级质谱特征,研究了昂丹司琼在微生物模型中和哺乳动物体内的代谢。
     建立测定生物样品中昂丹司琼的LC/MS/MS法,研究了大鼠单剂量静脉给予昂丹司琼单一对映体后的药物动力学,和左昂丹司琼的临床前药物动力学,并结合手性固定相拆分昂丹司琼对映体的方法,研究了昂丹司琼在大鼠体内构型的稳定性和立体选择性药物动力学。建立测定生物样品中昂丹司琼代谢产物的LC/MS/MS法,研究了昂丹司琼的立体选择性药物动力学机理。
     三、结果
     共分离纯化并鉴定了11种昂丹司琼的代谢产物,分别为8种Ⅰ相代谢产物、3种Ⅱ相代谢产物(2种葡萄糖醛酸结合物、1种硫酸结合物),为昂丹司琼代谢和立体选择性药物动力学研究提供对照品。采用LC/MS~n法对昂丹司琼及其代谢产物进行多级质谱分析,总结其质谱特点为:Ⅱ相代谢产物(葡萄糖醛酸结合物、硫酸结合物)在进行二级全扫描分析时,首先丢失结合基团而得相应的母核部分;母核部分进行三级全扫描分析时所得的碎片与相对应的羟基化代谢物的二级全扫描碎片相同。
     采用LC/MS~n分析方法研究了昂丹司琼在微生物模型中和在哺乳动物(大鼠、和人)体内的代谢情况,共发现26种代谢产物。综合分析每种代谢产物的准分子离子、多级碎片离子和色谱保留时间,并与昂丹司琼及制备的11种代谢产物对照品进行比较,鉴定代谢产物的化学结构分别为昂丹司琼原形(M0)的1-羟基化代谢产物(M1、M2),1-羟基化后与葡萄糖醛酸结合代谢产物(M20);2-羟基化代谢产物(M13);5-羟基化代谢产物(M12),5-羟基化后与葡萄糖醛酸结合代谢产物(M19);6-羟基化代谢产物(M6),6-羟基化后与葡萄糖醛酸结合代谢产物(M18)、与硫酸结合代谢产物(M24);7-羟基化代谢产物(M5),7-羟基化后与葡萄糖醛酸结合代谢产物(M10)、与硫酸结合代谢产物(M23);8-羟基化代谢产物(M7),8-羟基化后与葡萄糖醛酸结合代谢产物(M17)、与硫酸结合代谢产物(M11);N-去甲基代谢产物(M8),同时发生1-羟基化和N-去甲基代谢产物(M15、M16):同时发生6-羟基化和N-去甲基代谢产物(M14),而后与葡萄糖醛酸结合代谢产物(M22);同时发生7-羟基化和N-去甲基代谢产物(M3),而后与葡萄糖醛酸结合代谢产物(M9)、与硫酸结合代谢产物(M25);同时发生8-羟基化和N-去甲基代谢产物(M4),而后与葡萄糖醛酸结合代谢产物(M21)、与硫酸结合代谢产物(M26)。观察到昂丹司琼有10种代谢途径,其包括:1-羟基化、2-羟基化、5-羟基化、6-羟基化、7-羟基化、8-羟基化、N-去甲基、羟基化同时N-去甲基、羟基化后与葡萄糖醛酸结合和硫酸结合。其中昂丹司琼的1-位的羟基化为首次发现的代谢途径,并且证明此代谢途径是由CYP1A2催化的。
     大鼠静注昂丹司琼单一对映体后在体内不发生构型转化。昂丹司琼对映体在大鼠体内的药物动力学具有立体选择性,左旋昂丹司琼代谢速度比右旋昂丹司琼代谢慢;左昂丹司琼的大鼠血浆蛋白结合率比右昂丹司琼略低:大鼠肝微粒体、人肝微粒体和重组酶孵化实验证实昂丹司琼对映体经酶催化为N-去甲基昂丹司琼、7-羟基昂丹司琼和8-羟基昂丹司琼的代谢途径存在立体选择性。
     大鼠静注左昂丹司琼后,3个剂量组AUC_(0-∞)与给药剂量线性相关;大鼠静注左昂丹司琼后,在各组织中广泛分布,肺组织中含量最高:左昂丹司琼在大鼠体内消除较快,3.0 h时各组织中浓度不足0.5 h时的20%,表明它不易在各组织中蓄积;左昂丹司琼在脑组织中含量较低,表明它不易透过血脑屏障。
     四、讨论
     昂丹司琼在微生物模型中和哺乳动物体内代谢的差异一方面表现在Ⅰ相代谢产物的数量上,微生物模型中Ⅰ相代谢产物种类少而且比较专一(M1、M2、M7和M8),而在哺乳动物体内,代谢产物种类多而广泛,多达13种;另一方面在微生物模型中未检测到Ⅱ相代谢产物,而在哺乳动物体内,有13种Ⅱ相代谢产物,分别为8种葡萄糖醛酸结合物和5种硫酸结合物。
     昂丹司琼在大鼠体内立体选择性药物动力学主要产生于立体选择性的代谢,酶促动力学差异是昂丹司琼对映体立体选择性物动力学的主要原因。昂丹司琼对映体在人肝微粒体中的动力学也存在差异,推断昂丹司琼对映体在人体内的动力学也存在立体选择性。
Ondansetron, 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methy-1H-imidazol-1-yl)methyl] -4H-carbazol-4-one, is a 5-hydroxytryptamine type 3 (5-HT_3) receptor antagonist used in the treatment of chemotherapy- and radiotherapy-induced nausea and emesios. In previous studies on the metabolism and pharmacokinetics of ondansetron, it is extensively metabolized in the liver through the cytochrome P450 system. Ondansetron undergoes metabolic pathways including hydroxylation of benzene ring followed by glucuronide or sulphate conjugation and N-demethylation.1. ObjectiveThe thesis aimed to isolate and identify metabolites of ondansetron, to investigate ondansetron metabolism in microbial model and in mammals, to study the stereoselective pharmacokinetics of ondansetron, and to gain further understanding stereoselective pharmacokinetics mechanism of ondansetron.2. MethodMetabolites of ondansetron were isolated from the biotransformed culture sample of ondansetron by Mucor circinelloides AS 3.3421 and urine, feces and bile sample of rat after multi-dose oral administration of ondansetron and identified by NMR and ESI-MS. Metabolites of ondansetron in the microbial model and in mammals were investigated by LC/MS~n method. The stereoselective pharmacokinetics of ondansetron was studied by assays for determination of ondansetron, its metabolites by LC/MS/MS, the stereoselective pharmacokinetics mechanism was studied by ondansetron enantiomers chiral separated and determination of ondansetron metabolites by LC/MS/MS.3. ResultsA total of 11 metabolites of ondansetron were isolated from the biotransformed culture sample of ondansetron by Mucor circinelloides AS 3.3421 and urine, feces and bile sample of rat. They were 8 phase I metabolites, 3 phase II (2 glucuronides, 1 sulphate conjugations) metabolites, which could be used as reference substances in the studies on metabolism and stereoselective pharmacokinetics of ondansetron. Using multi-stage ion trap mass spectrometric analysis, the characteristic fragment ions of ondansetron and its metabolites were obtained.
     Metabolites of ondansetron in the microbial model of and in mammals (rat and human) were investigated. A total of 26 metabolites were found and identified by comparisons of their chromatographic behaviors and multi-stage mass spectra to those of ondansetron and 11 isolated standards. These metabolites included 1-hydroxy-ondansetron (M1, M2), conjugated metabolite of M1 with glucuronic acid (M20); 2-hydroxy-ondansetron (M13); 5-hydroxy-ondansetron (M12), conjugated metabolite of M12 with glucuronic acid (M19); 6-hydroxy-ondansetron (M6), conjugated metabolites of M6 with glucuronic acid (M18) and with sulphuric acid (M24); 7-hydroxy-ondansetron (M5), conjugated metabolites of M5 with glueuronic acid (M10) and with sulphurie acid (M23); 8-hydroxy-ondansetron (M7), conjugated metabolites of M7 with glucuronic acid (M17) and with sulphuric acid (M11); N-demethyl-ondansetron (MS); M1 and M2 N-demethylation (M15, M16); M6 N-demethylation (M14), conjugated metabolite of M14 with glucuronic acid (M22); M5 N-demethylation (M3), conjugated metabolites of M3 with glucuronie acid (M9) and with sulphuric acid (M25); M7 N-demethylation (M4), conjugated metabolites of M4 with glucuronic acid (M21) and with sulphuric acid (M26). The metabolic pathways of ondansetron in the microbial model and in mammals were oxidation of N-demethylation, 1-hydroxylation, 5-hydroxylation, 6-hydroxylation, 7-hydroxylation, 8-hydroxylation, combination of N-demethylation and hydroxylation, hydroxylation followed by glucuronide or sulpate conjugation. One new metabolic pathway (hydroxylation on 1-position) was found in this study, and the new pathway was mediated by CYP1A2.
     The stereoselective pharmacokinetics showed that R-ondansetron cleared slower than S-ondansetron in rat. The stereoselective pharmacokinetics of ondansetron enantiomer was caused by stereoselecive metabolism of cytochrome P450 enzymes: CYP1A2, 2C9, 2C19, 2D6 and 3A4.
     4. Discussion
     More metabolites of ondansetron in mammals were detected than microbial model, and no metabolites of phaseⅡwas detected in microbial model. There should be stereoselective pharmacokinetics of ondansetron enantiomers in human, because the stereoselecive metabolism was found in human liver microsomes.
引文
1. Indra KR, Reza M. Chirality in drug design and development. Marcel Dekker Inc., Now York, USA, 2004, 1.
    2.尤启冬,林国强主编.手性药物—研究与应用.北京:化学工业出版社,2004,3—4.
    3.林国强,陈耀全,陈新滋,李月明主编.手性药物—不对称反应及其应用.北京:科学出版社,2003,1-2.
    4.钟大放主编.药物代谢.北京:中国医药科技出版社,1996,1-3.
    5. Stinson SC. Chem & Eng News. Oct. 11. 1999, 101, May 14. 2001, 45.
    6. FDA's policy statement for the development of new stereoisomeric drugs. FDA, May 1, 1992.
    7.《化学药物非临床药代动力学研究技术指导原则》课题研究组.化学药物非临床药代动力学研究技术指导原则.第三稿,2004,9,1-20.
    8.章立姚,彤炜,曾苏.手性药物对跌体的药物代谢动力学.中国现代应用药学.1999,16:47.
    9.华维一,许国友,药物手性药理作用与新药开发现代.应用药学.1993,10:10.
    10.蒋兆健,吴笑春.手性药物的对映体选择性与临床应用.中国药房.2001,12:162-164.
    11. Eriksson T, Bjorkman S, Roth B, Fyge A, Hoglund P. Enantiomers of thalidomide: blood distribution and the influence of serum albumin on chiral inversion and hydrolysis. Chirality. 1998, 10: 223-228.
    12. Corsini A, Bonfatti M, Quarato P, Accomazzo MR, Raiteri M, Sartani A, Testa R. Effect of the new calcium antagonist lercanidipine and its enantiomers on the migration and proliferation of arterial myocytes. J Cardiovase Pharmacol. 1996, 28: 687-694.
    13. Pauwels PJ, Colpaert FC. Stereoselectivity of 8-OH-DPAT enantiomers at cloned human 5-HT1D receptor sites. Eur J Pharmacol. 1996, 30: 137-139.
    14.张立,姚丹炜,曾苏.手性药物的立体选择性药物动力学研究.中国现代药学杂志.1994,16:4-7.
    15. Day RO, Williams KM, Graham GG, Lee EJ, Knihinicki RD. Stereoselective disposition of ibuprofen enantiomers in synovial fluid. Ciln Phmarcol Ther. 1988, 43: 480-487.
    16. Tajana A. In: New trends in pharmacokinetics. Rescigno A, Thakur AK, ed. Plenu Press, New York, 1991: 277
    17.李端,殷明.药理学,第5版.人民卫生出版社.2003,260-261.
    18.王立峰,王素云.5-羟色胺拮抗剂类止吐药物的市场竞争态势.医药产业资讯.2005,4:42-43.
    19. Blackwell CP, Harding SM. The clinical pharmacology of ondansetron. Eur J Cancer Clin Oncol. 1989, 25 Suppl 1: S21-24.
    20. Butler A, Hill JM, Ireland SJ, Jordan CC, Tyers MB. Pharmacological properties of GR38032F, a novel antagonist at 5-HT3 receptors. Br J Pharmacol. 1988, 94: 397-412.
    21. Jones BJ, Costall B, Domeney AM, Kelly ME, Naylor RJ, Oakley NR, Tyers MB. The potential anxiolytic activity of GR38032F, a 5-HT3-receptor antagonist. Br J Pharmacol. 1988, 93: 985-993.
    22. Baber N, Palmer JL, Frazer NM, Pritchard JF. Clinical pharmacology of ondansetron in postoperative nausea and vomiting. Eur J Anaesthesiol Suppl. 1992, 6: 11-18.
    23. Colthup PV, Felgate CC, Palmer JL, Scully NL. Determination of ondansetron in plasma and its pharmacokinetics in the young and elderly. J Pharm Sci. 1991, 80: 868-871.
    24. Colthup PV, Palmer JL. The determination in plasma and pharmacokinetics of ondansetron. Eur J Cancer Clin Oncol. 1989, 25: S71-74.
    25. Saynor DA, Dixon CM. The metabolism of ondansetron. Eur J Cancer Clin Oncol. 1989, 25: S75-77.
    26. Frazer NM, Palmer JL. Tolerability and pharmacokinetics of intramuscular ondansetron 4 mg. Anesthesiology. 1992, 77: A439.
    27. Pritchard JF. Ondansetron metabolism and pharmacokinetics. Semin Oncol. 1992, 19: S9-15.
    28. Fischer V, Vickers AE, Heitz F, Mahadevan S, Baldeck JP, Minery P, Tynes R. The polymorphic cytochrome P-4502D6 is involved in the metabolism of both 5-hydroxytryptamine antagonists, tropisetron and ondansetron. Drug Metab Dispos. 1994, 22: 269-274.
    29. Dixon CM, Colthup PV, Serabjit-Singh CJ, Kerr BM, Boehlert CC, Park GR, Tarbit MH. Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos. 1995, 23: 1225-1230.
    30. Sanwald P, David M, Dow J. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron. Comparison with other indole-containing 5-HT3 antagonists. Drug Metab Dispos. 1996, 24: 602-609.
    31. Kelly JW, He L, Stewart JT. High-performance liquid chromatographic separation of ondansetron enantiomers in serum using a cellulose-derivatized stationary phase and solid-phase extraction. J Chromatogr B. 1993, 622: 291-295.
    32. Liu J, Stewart JT. High-performance liquid chromatographic analysis of ondansetron enantiomers in human serum using a reversed-phase cellulose-based chiral stationary phase and solid-phase extraction, J Chromatogr B. 1997, 694: 179-184.
    33. Siluveru M, Stewart JT. Enantioselective determination of S-(+)- and R-(-)-ondansetron in human serum using derivatized cyclodextrin-modified capillary electrophoresis and solid-phase extraction. J Chromatogr B. 1997, 691: 217-222.
    34.孙璐.维拉帕米代谢的微生物模型研究.沈阳药科大学博士学位论文,2003,9.
    35. Glaxo Group LTD. European Patent. 1987, 219193.
    36. Kim MY, Lim GJ, Lim JI, Kim SK, Kim IY, Yang JS. An efficient process of ondansetron synthesis. Heterocycles, 1997, 45: 2041-2043.
    37. Duan MY, Huang HH, Li XN, Chen XY, Zhong DF. Assignments of ~1H and ~(13)C NMR spectral data for ondansetron and its two novel metabolites, 1-hydroxy-ondansetron diastereoisomers. Magn Reson Chem. 2006, in press.
    38. Campos FR, Barison A, Daolio C, Ferreira AG, Rodrigues-Fo E. Complete ~1H and ~(13)C NMR assignments of aurasperone A and fonsecinone A, two bis-naphthopyrones produced by Aspergillus aculeatus. Magn Reson Chem. 2005, 43: 962-965.
    39. Wu J, Xiao ZH, Song Y, Zhang S, Xiao Q, Ma C, Ding HX, Li QX. Complete assignments of ~1H and ~(13)C NMR data for two 3β, 8β-epoxymexicanolides from the fruit of a Chinese mangrove Xylocarpus granatum Magn. Reson. Chem. 2006, 44: 87-89.
    40. Neuhaus D, Wiiliamson MP. The nuclear Overhauser effect in structural and conformational analysis, John Wiley & Sons, Inc., 2000, Second Edition: 456.
    41. Silva R, Pedersoli S, Junior VL, Donate PM, Albuquerque S, Bastes JK, Matos Araujo ALS, Silva MLA. Complete assignments of ~1H and ~(13)C NMR spectral data for benzylidenebenzyl butyrolactone lignans. Magn. Reson. Chem. 2005, 43: 966-969.
    42. Xu XH, Bartlett MG, Stewart JT. Determination of ondansetron and its hydroxy metabolites in human serum using solid-phase extraction and liquid chromatography/positive ion electrospray tandem mass spectrometry. J Mass Spectrom. 2000, 35: 1329-1334.
    43. Zhong DF, Chen XY, Gu JK, Li XQ, Guo JF. Applications of liquid chromatography-tandem mass spectrometry in drug and biomedical analyses. Clinica Chimica Acta. 2001, 313: 147-150.
    44. Sun L, Huang HH, Liu L, Zhong DF. Transformation of Verapamil by Cunninghamella blakesleeana. Applied and Environmental Microbiology. 2004, 70: 2722-2727.
    45. Xie ZY, Huang HH, Zhong DF. 2005. Biotransformation of pantoprazole by the fungus Cunninghamella blakesleeana. Xenobiotica. 2005, 35: 467-477.
    46. Zhong DF, Sun L, Liu L, Huang HH. Microbial transformation of naproxen by Cunninghamella species. Acta Pharmacologica Sinica. 2003, 24: 442-447.
    47. Delvaux M, Wingate D. Trimebutine: mechanism of action, effects on gastrointestinal function and clinical results. J Int Med Res. 1997, 25: 225-246.
    48. Ingelse, B. A., F. M. Everaerts, J. Sevcik, Z. Stransky und S. Fanali. A further study on the chiral separation power of a soluble neutral β-cyclodextrin polymer. J. High Resol. Chromatogr. 1997, 18: 348-352.
    49. Tanaka M, Banba M, Joko A, Moriyama Y. Pharmacological and therapeutic properties of lafutidine (stogar and proteeadin), a novel histamine H_2 receptor antagonist with gastroprotective activity. Nippon Yakurigaku Zasshi. 2001, 117: 377-386.
    50.钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志.1996,16:343-346.
    51. Almeida AM, Castel-Branco MM, Falcao AC. Linear regression for calibration lines revisited: weighting schemes for bioanalytieal method. J Chromatogr B. 2002, 774: 215-222.
    52. Shah VP, Midha KK, Dighe S. Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. J Pharm Sci. 1992, 81: 309-312.
    53. Shah VP, Midha KK, Findlay JWA, Hill HM, Hulse JD, Me Gilveray IJ, MeKay G, Miller KJ, Patnaik RN, Powell ML, Tonelli A, Viswanathan CT, Yacobi A. Bioanalytical method validation-a revisit with a decade of progress. Pharm Res. 2000, 17: 1551-1557.
    54. Karnes HT, March C. Precision, accuracy and data acceptance criteria in biopharmaceutical analysis. Pharm Res. 1993, 10: 1420-1422.
    55.何煦昌.手性药物的进展.中国医药工业杂志.1997,28:519-524.
    56.林炳承.手性分子的色谱分离.色谱.1990,8:363-367.
    57.曾苏.高效液相色谱手性试剂衍生化法及其应用.色谱.1994,12:406-410.
    58.吕湘林,杨宪桂.光学异构体的手性HPLC拆分法及其药学应用研究的进展.药学学报.1987,22:790-794.
    59.彭清涛,胡文祥,谭生键.药物对映体HPLC分离测定研究新进展.药学学报.1998,33:793-800.
    60. Martens J, Bhushan R. Resolution of enantiomers with a chiral phase chromatography. J Liq Chromatogr. 1992, 15: 1-10.
    61. Martin SB, Synthesis of N-pentafluorobenzoyl-(S)-(-)prolyl-imidazolide, a new electron-capture sensitive reagent for determination of enantiomeric composition. J Pharm Sci. 1973, 62: 821-825.
    62.曾苏.高效液相色谱手性流动相添加法分离药物对映体.色谱.1995,13:21-25.
    63.李新,曾苏.手性配位体交换手性流动相添加剂法拆分对映体.色谱.1996,14:354-359.
    64.吕湘林,杨宪桂.光学异构体的手性HPLC拆分法及其药学应用研究的进展.药学学报.1987,22:929-935.
    65. Caldwell J. Importance of stereospecific bioanalytical monitoring in drug development. J Chromatogr A, 1996, 719: 3-13.
    66. Szynura-oleksiak J, Bojarski J, Aboul-Enein H. Recent applications of stereoselective chromatography. Chirality. 2002, 14: 417-435.
    67. Millot MC. Separation of drug enantiomers by liquid chromatography and capillary electrophoresis, using immobilized proteins as chiral selectors. J Chromatogr B. 2003, 797: 131-159.
    68. Hermasson J. Enantiomeric separation of drugs and related compounds basded on their interaction with α_1-acid glycoprotein. Trends anal Chem, 1989, 8: 251.
    69. Bonato PS, de Abreu LR, de Gaitani CM, Lanchote VL, Bertucci C. Enantioselective HPLC analysis of propafenone and of its main metabolites using polysaccharide and protein-based chiral stationary phases. Biomed Chromatogr. 2000, 14: 227-233.
    70. Eriksson BM, Wallin A. Evaluation of the liquid-chromatographic resolution of indenoindolic racemic compounds on three protein-based chiral stationary phases. J Pharm Biomed Anal. 1995, 13: 551-561.
    71. Terhechte A, Blaschke G. Investigation of the stereoselective metabolism of the chiral H_1-antihistaminic drug terfenadine by high-performance liquid chromatography. J Chromatogr A. 1995, 694: 219-225.
    72. Chan KY, Dusterhoft DA, Chen TM. Determination of MDL 74,405, a synthetic analogue of alpha-tocopherol, in dog plasma and heart tissue by high-performance liquid chromatography with electrochemical detection. J Chromatogr B Biomed Appl. 1994, 656: 359-365.
    73. Rosell G, Camacho A, Parra P. Direct enantiomeric separation of cis-(+/-)diltiazem in plasma by high-performance liquid chromatography with ovomucoid column. J Chromatogr. 1993, 619: 87-92.
    74. Chirobiotic handbook. 5th ed. Whippany, USA. Advanced Separation Technologies. 2004, 1.
    75. Xiao TL, Tesarova E, Anderson JL, Egger M, Armstrong DW. Evaluation and comparison of a methylated teicoplanin aglycone to teicoplanin aglycone and natural teicoplanin chiral stationary phases. J Sep Sci. 2006, 29: 429-445.
    76. Boesten JM, Berkheij M, Schoemaker HE, Hiemstra H, Duchateau AL. Enantioselective high-performance liquid chromatographic separation of N-methyloxyearbonyl unsaturated amino acids on macrocyclic glycopeptide stationary phases. J Chromatogr A. 2006, 1108: 26-30.
    77. Hrobonova K, Lehotay J, Cizmarikova R. HPLC separation of enantiomers of some potential beta-blockers of the aryloxyaminopropanol type using macrocyclic antibiotic chiral stationary phases. Studies of the mechanism of enantioseparation, Part Ⅺ. Pharmazie. 2005, 60: 888-891.
    78. Torok R, Bor A, Orosz G, Lukacs F, Armstrong DW, Peter A. High-performance liquid chromatographic enantioseparation of bicalutamide and its related compounds. J Chromatogr A. 2005, 1098: 75-81.
    79. Lu X, Liu P, Chen H, Qin F, Li F. Enantioselective pharmacokinetics of mabuterol in rats studied using sequential aehiral and chiral HPLC. Biomed Chromatogr. 2005, 19: 703-708.
    80. Bosakova Z, Curinova E, Tesarova E. Comparison of vancomycin-based stationary phases with different chiral selector coverage for enantioselective separation of selected drugs in high-performance liquid chromatography. J Chromatogr A. 2005, 1088: 94-103.
    81. el-Hady DA, el-Maali NA, Gotti R, Bertucci C, Mancini F, Andrisano V. Methotrexate determination in pharmaceuticals by enantioselective HPLC. J Pharm Biomed Anal, 2005, 37: 919-925.
    82. Peter A, Arki A, Forro E, Fulop F, Armstrong DW. Direct high-performance liquid chromatographic enantioseparation of beta-lactam stereoisomers. Chirality, 2005, 17: 193-200.
    83. Cieri UR. Identification and estimation of the levo isomer in raw materials and finished products containing atropine and/or hyoscyarnine. J AOAC Int. 2005, 88: 1-4.
    84. Bartolincic A, Druskovic V, Sporec A, Vinkovie V. Development and validation of HPLC methods for the enantioselective analysis of bambuterol and albuterol. J Pharm Biomed Anal. 2005, 36: 1003-1010.
    85.汪海林,邹汉法,吕美玲,李瑞江,张玉奎.人血清白蛋白柱上药物的手性拆分.分析化学.1998,26:68-72.
    86. Mutlib AE, Shockcor J, Espina R, Graciani N, Du A, Gan LS. Disposition of glutathione conjugates in rats by a novel glutamic acid pathway: characterization of unique peptide conjugates by liquid chromatography/mass spectrometry and liquid chromatography/NMR. J Pharmacol Exp Ther. 2000, 294: 735-745.
    87. Sai Y, Dai R, Yang T J, Krausz KW, Gonzalez FJ, Gelboin HV, Shou M. Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450. Xenobiotica. 2000, 30: 327-343.
    88. Ha-Duong NT, Dijols S, Marques-Soares C, Minoletti C, Dansette PM, Mansuy D. Synthesis of sulfaphenazole derivatives and their use as inhibitors and tools for comparing the active sites of human liver cytochromes P450 of the 2C subfamily. J Med Chem. 2001, 44: 3622-3631.
    89. Newton DJ, Wang RW, Lu AYH. Cytochrome P450 inhibitors: Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab Dispos, 1995, 23: 154-158.
    90. Rodrigues AD. Integrated cytochrome P450 reaction phenotyping: Attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol. 1999, 57: 465-480.
    91. Ernster L, Siekevitz P, Palada GE. Enzyme-structure relationships in the endoplasmic reticulum of rat liver. J Cell Biol. 1962, 15: 541-562.
    92. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951, 193: 265-275.
    93. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes Ⅰ: evidence for its hemoprotein nature, J Biol Chem. I964, 239: 2370-2378.
    94. Crespi CL, Penman BW. Use of cDNA-expressed human cytochrome P450 enzymes to study potential drug-drug interactions. Adv Pharmacol. 1997, 43: 171-188.
    95. Venkatakrishnan K, Von Moltke LL and Greenblatt DJ. Relative quantities of catalytically active CYP 2C9 and 2C19 in human liver microsomes: Application of the relative activity factor approach, J Pharm Sci. 1998, 87: 845-853.
    96. Venkatakrishnan K, Von Moltke LL, Obach RS and Greenblatt DJ. Microsomal binding of amitriptyline: Effect on estimation of enzyme kinetic parameters in vitro. J Pharmacol Exp Ther. 2000, 293: 343-350.
    97. Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H and Yokoi T. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999, 27: 1381-1391.
    98. McGinnity DF, Griffin SJ, Moody GC, Voice M, Hanlon S, Friedberg T and Riley RJ. Rapid characterization of the major drug-metabolizing human hepatic cytochrome P-450 enzymes expressed in Escherichia coli. Drug Metab Dispos. 1999, 27: 1017-1023.
    99. Ghosal A, Chowdhury SK, Tong W, Hapangama N, Yuan Y, Su AD, Zbaida S. Identification of human liver cytochrome p450 enzymes responsible for the metabolism of lonafamib (sarasar). Drug Metab Dispos. 2006, 34: 628-635.
    100. Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, Toren P, Parkinson A. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions. DrugMetab Dispos. 2006, 34: 191-197.
    101. Gao W, Wu Z, Bohl CE, Yang J, Miller DD, Dalton JT. Characterization of the in vitro metabolism of selective androgen receptor modulator using human, rat, and dog liver enzyme preparations. DrugMetab Dispos. 2006, 34: 243-253.
    102. Franzen A, Carlsson C, Hermansson V, Lang M, Brittebo EB. CYP2A5-mediated activation and early ultrastructural changes in the olfactory mucosa: studies on 2,6-dichlorophenyl methylsulfone. Drug Metab Dispos. 2006,34: 61-68.
    103. Shayeganpour A, El-Kadi AO, Brooks DR. Determination of the enzyme(s) involved in the metabolism of amiodarone in liver and intestine of rat: the contribution of cytochrome P450 3A isoforms. Drug Metab Dispos. 2006, 34: 43-50.
    104. Kim H, Kang S, Kim H, Yoon YJ, Cha EY, Lee HS, Kim JH, Yea SS, Lee SS, Shin JG, Liu KH. In vitro metabolism of a new cardioprotective agent, KR-32570, in human liver microsomes. Rapid Commun Mass Spectrom. 2006, 20: 837-843.
    105. Chaudhary A, Willett KL. Inhibition of human cytochrome CYP 1 enzymes by flavonoids of St. John's wort. Toxicology. 2006, 217: 194-205.
    106. Yamamoto T, Itoga H, Kohno Y, Nagata K, Yamazoe Y. Prediction of oral clearance from in vitro metabolic data using recombinant CYPs: comparison among well-stirred, parallel-tube, distributed and dispersion models. Xenobiotica. 2005,35: 627-646.
    107. Niwa T, Shiraga T, Ishii I, Kagayama A, Takagi A. Contribution of human hepatic cytochrome p450 isoforms to the metabolism of psychotropic drugs. Biol Pharm Bull. 2005,28: 1711-1716.
    108. Ghosal A, Cbowdhury SK, Gupta S, Yuan Y, Iannucci R, Zhang H, Zbaida S, Patrick JE, Alton KB. Identification of human liver cytochrome P450 enzymes involved in the metabolism of SCH 351125, a CCR5 antagonist. Xenobiotica. 2005, 35: 405-417.
    109. 孟娟如.大白鼠颈静脉及肝门静脉持久性导管术及其应用.药学学报.1987,22:326-329.
    110. Han YH, Chung SJ, Shim CK. Canalicular membrane transport is primarily responsible for the difference in hepatobiliary excretion of triethylmethylammonium and tributylmethylammonim in rats. Drug Metab Dispos. 1999, 27: 872-879.
    111. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951, 193: 265-275.
    112. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes I: evidence for its hemoprotein nature. J Biol Chem. 1964, 239: 2370-2378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700