腺病毒携带的MDA-7/IL-24基因对肝癌细胞生物学作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝细胞癌(hepatocellularcarcinoma; HCC)是一种全球高发的恶性肿瘤之一,是我国及某些亚洲地区常见的恶性肿瘤。根据2009年WHO的统计,全世界男性恶性肿瘤发生率中,HCC发病率居于第4位。女性发生率略低于男性发生率,而为第7位。大约每年有近50万男女患者死于本病。在过去短短的20年中,我国HCC从恶性肿瘤死亡原因的第3位升至第2位。临床上肝癌患者的临床特点是:早期无特殊腹部症状,病情较为隐匿,不易被发现及诊断。大约70%-80%患者确诊时己属临床晚期(Ⅲ或Ⅳ期),无法手术治疗。肝癌浸润性生长并早期转移,是导致肝癌术后复发、疗效差最重要的原因之一,这也是导致癌症患者治疗效果不佳、死亡的最常见、最重要的原因。尽管近年来临床上应用许多新的治疗手段,但HCC的整体生存时间并未得到明显改善。肿瘤的基因治疗是近年来临床治疗研究的热点之一,尽管发现了许多与肝癌侵袭及转移相关的靶点分子,如p53、PTEN等,但是相关研究说明,它们只能在部分肝癌中起着抑制肿瘤细胞生长的作用且缺乏一定的特异性。因此,从生物学机制出发,研究和寻觅参与绝大多数肝癌发生及发展过程的关键性的特异的分子靶是现阶段国内外分子肿瘤学研究的热点。
     MDA-7/IL-24 (Melanoma Differentiation Associated gene-7)是本项目组成员Pual.B.Fisher教授利用亚减法技术于1993年从黑色素瘤细胞中经人IFN-p和MEZ(mezerin, PKC激活剂)诱生而获得的。最初的研究发现该基因在黑色素细胞中高表达而表达量与黑色素瘤细胞恶性度呈负相关,将该基因转染入恶性的黑色素瘤细胞后,发现它具有强烈的生长阻滞、促进分化和促凋亡作用,甚至可以逆转黑色素瘤的异型性,因此被命名为MDA-7,后来根据其生物学特性及染色体部位被命名为IL-24。随后的研究表明MDA-7基因不仅能引起黑色素瘤细胞生长抑制,而且能抑制其它多种肿瘤细胞的生长并促进其凋亡,包括黑色素瘤,肺癌,乳腺癌,胰腺癌,胶质瘤,卵巢癌和前列腺癌等。体外研究中发现,该基因具有强烈的旁路效应。更特别的是,即该基因在杀死肿瘤细胞的同时对正常分化的各种细胞均没有任何毒性作用,也就是说该基因具有强烈的特异选择性杀死肿瘤的特性。
     本文拟对MDA-7/IL-24对肝癌细胞的生物学作用机制入手,分析MDA-7/IL-24在缺氧及化疗药物作用下,对肝癌细胞侵袭及转移能力作用的变化。首先,我们成功构建携带MDA-7/IL-24基因的腺病毒真核表达载体。在缺氧条件下,观察肝癌细胞及正常肝细胞的变化,使用Ad.mda-7转染缺氧细胞以后分析相关因子在肝癌细胞缺氧情况下的调节机制。使用阿霉素作用肝癌细胞株HepG2后,肝癌细胞对阿霉素的细胞毒作用逐渐耐受,Ad.mda-7作用HepG2后可以明显增加阿霉素对肝癌细胞杀伤作用,并逆转肝癌细胞对阿霉素的多药耐药性。论文分为以下4个部分
     目的:本文通过构建携带MDA-7/IL-24基因的腺病毒真核表达载体,在正常肝细胞及肝癌细胞中异位表达MDA-7/IL-24基因,探讨MDA-7/IL-24对肝癌细胞的生物学作用。方法:将293细胞培养于6孔板中,使用穿梭质粒pSGCMV MDA-7/pSGCMV-GFP及腺病毒骨架质粒,以Polyfect介导转染293细胞,出现空斑后挑取2个空斑,分别转入500ul 5%DMEM培养液中。结果:阳性空斑可见293细胞呈CPE反应,细胞变大、变圆、漂浮,呈葡萄串聚集。取克隆1和克隆2的病毒DNA各1此为模板,通过PCR扩增出约630bp的特异性片段,其大小与阳性对照相符,而阴性对照腺病毒pSGCMV-GFP的病毒液无片段扩增。结论:成功构建携带DA-7/IL-24基因的腺病毒真核表达载体(Ad.mda-7)。该真核表达载体能转染MDA-7/IL-24基因,使其在正常肝细胞株LO2和肝癌细胞株HepG2细胞中高表达。
     目的:在缺氧条件下培养肝癌细胞,。比较正常及缺氧条件下,肝癌细胞迁移及转移能力的变化。方法:建立肝癌细胞MHCC-97H体外缺氧模型,将肝癌细胞分组培养正常培养对照组、低氧浓度培养48小时组、72小时组。采用光镜观察缺氧条件下,肝癌细胞的变化。MTT法、Transwell法研究缺氧条件下肝癌细胞生长及肿瘤细胞侵袭及转移能力的变化。荧光定量PCR、Western-blot法分析缺氧环境下肝癌细胞E-cadherin、Twist、Vimentin、FAK的mRNA及蛋白的表达。结论:肝癌细胞在缺氧状态下,细胞生长没有明显被抑制,细胞由间质细胞形态向上皮细胞形态过度,产生EMT,转移及侵袭能力增加。肿瘤细胞的E-cadherin表达进一步降低,而Twist、Vimentin、FAK却明显升高,促进肿瘤细胞侵袭及转移的能力增加。
     目的:使用Ad.mda-7作用于缺氧条件下的肝癌细胞MHCCC-97H,研究MDA-7逆转肝癌细胞EMT的作用机制。方法:以高转移潜能人肝癌细胞系MHCC-97H和肝正常细胞L02为实验对象,采用缺氧培养诱导肝癌细胞HepG2及MHCCC-97H细胞发生EMT,使用Transwell及MTT观察Ad.mda-7对缺氧肝癌细胞侵袭、转移及生长的作用。使用Real-timePCR及Western-blot观察MDA-7对EMT相关基因E-cadherin, Twist、Vimentin、FAK激酶的变化,阐明MDA-7基因对肝癌细胞上皮细胞间质转化(Epithelial-mesenchymal transition, EMT)的作用的影响。结果:MDA-7基因可以明显逆转肝癌细胞MHCCC-97H EMT的发生。Transwall表明MDA-7明显抑制抑制MHCC-97H侵袭及转移能力。Ad.mda-7明显增加细胞间质蛋白E-cadherinmRNA及蛋白的表达,Real-timePCR及Western-blot分析显示MDA-7能降低肝癌细胞Twist、Vimentin、FAK的mRNA及蛋白的表达(P<0.05)。结论Ad.mda-7通过增加E-cadherin蛋白的活性并抑制EMT相关因子的Twist、Vimentin、FAK的活性,抑制肝癌细胞MHCC-97H转移及侵袭的能力。
     目的:探讨黑色素瘤分化相关基因-7/白介素-24(mda-7/IL-24)基因联合阿霉素杀伤肝癌细胞HepG2及MHCC-97L并逆转肝癌细胞多药耐药的机制。方法以人肝癌细胞系HepG2及MHCC-97L为实验对象,使用MTT法和流式细胞仪比较Ad.mda-7联合阿霉素处理组与阿霉素组、Ad.mda-7组对肝癌细胞的作用差异。阐明MDA-7/IL-24对多药耐药的逆转作用的机制。实时定量PCR检测MDR-1,STAT-3、BCL-2、BAXmRNA的变化。Westernblot检测gp-170、stat3、P-stat-3、PKB、bcl-2、bax蛋白的表达的变化。结果低浓度的Ad.mda-7联合正常肝细胞的IC50浓度的阿霉素(1.5mg/L)使得细胞抑制率从阿霉素组的17.46%上升到79.5%,生长抑制逆转4.55倍(P<0.05)。联合化疗组MDR-1mRNA相对表达量从16.49±0.11下降至5.48±0.05。STAT-3 mRNA相对表达量从13.17±0.08上升至21.57±0.11。BCL-2及BAX表达与其他实验组相比较均有统计学意义(P<0.05)。联合实验组P-170蛋白的表达量较其他组明显降低,PKB蛋白表达量明显降低,磷酸化stat-3蛋白的表达量亦增加。结论Ad.mda-7具有逆转肝癌细胞HepG2多要耐药的作用,其下调MDR-1mRNA的表达的同时,通过抑制PKB蛋白和活化STAT-3信号通路的表达降低肝癌细胞HepG2对促进肝癌细胞凋亡。
     综上所述,MDA-7/IL-24基因可以明显逆转EMT,继而抑制肝癌细胞侵袭及转移能力的变化。在多药耐药中机制中,MDA-7也可以通过抑制内质网应激蛋白的作用及相关耐药蛋白的表达增加化疗药物对肿瘤细胞的杀伤作用。这也提示我们MDA-7不仅仅将是治疗肝癌的一个有效的分子靶标,而且是探索肝癌生物学机制的一个有效工具。
Primary hepatocellular carcinoma (Hepatocellularcarcinoma; HCC) is a high incidence of malignant tumors in the world and also the common malignant tumors in China and some Asia era. According to WHO 2009 statistics, the incidence of HCC in male in the world, HCC incidence of living in the first four. Female incidence rate was slightly lower than male, but for the first seven. About 50 million men and women each year die from the disease patients. During the last 20 years, Chinese HCC patients causes of death from cancer No.3 to No.2. The liver cancer patients features in clinical are early non-specific abdominal symptoms, the condition is quite more hidden, difficult to detect and diagnose. About 70% to 80% patients had a clinical diagnosis they were late to do the surgery(III orⅣ).
     Liver cancer and the invasive growth and early metastasis were leaded to tumor recurrence and poor efficacy of one of the most important reason, which is leading to poor treatment of cancer patients, the death of the most common and most important reason. Although the clinical application in recent years, many new treatments, but the overall survival time of HCC has not been significantly improved. Cancer gene therapy clinical research in recent years one of the hot, Although found in many liver cancer invasion and metastasis-related target molecules, such as p53, PTEN, etc., but research shows that they are only part of the liver plays a role in inhibiting the growth of tumor cells and a certain lack of specificity. Therefore, starting from the biological mechanisms, research, and seeking participation in the development of vast majority of liver cancer and the critical molecular target specific molecular oncology at home and abroad at the present stage of research
     Paper is divided into the following four parts.
     Objective:MDA-7 gene consists of seven exons and six introns, and IL-10, IL-19, IL-20 co-located on the 1st chromosome, also known as IL-24. We constructed the adenovirus vector carrying MDA-7/IL-24 gene. Using denovirus vector transfected the normal liver cells and liver cancer cells which were ectopic expression of MDA-7/IL-24 gene, studied on the biological effects of MDA-7/IL-24 on liver cancer cells. Methods: cultured the 293 cells in 6 well plate, using the PSGCMV MDA-7/pSGCMV-GFP shuttle plasmid and adenovirus backbone plasmid to Polyfect mediated transfection of 293 cells. appear plaque after plaque picked two were transferred to 500ul 5%DMEM culture medium. Results:the Plaque visible CPE in 6 well plate. the cells become large, rounded, floating, grapes were gathered. Clone 1 and clone 2 get a virus DNA in 1 of this as a template, PCR amplification of specific fragments of about 630bp, its size in line with the positive control, while the negative control adenovirus pSGCMV-GFP virus solution without PCR amplification.
     Objective:Under hypoxia environment, cultured the hepatoma cells.Comparison the ability of cells migration and metastasis changing in the different condition. Methods: established the hypoxia model of hepatoma cell line MHCC-97H in vitro. cultured the hepatoma cell in the normal and hypoxia group, each groups were cultured for 48 h,72 h. MTT and Transwell found the cell growth of MHCC-97H under the hypoxia and the change of tumor cell invasion and metastasis. The expression of E-cadherin, Twist, Vimentin, FAK of mRNA and protein were analysised by quantitative PCR and Western-blot. Results:the Hepatoma cells cultured in the hypoxia that no significant differentance the tumor cell growth was inhibited. The hepatric cells were change from the stromal cells form over to the epithelial cells, finally resulting in EMT. The cellls metastasis and invasion ability were increased. Tumor cells were further reduced the expression of E-cadherin but the Twist, Vimentin, FAK were significantly increased and then it promoted tumor cells to invasion and metastasis.
     Objective To explore the mechanism of the Melanoma differentiation associated gene-7(MDA-7/IL-24) inhibit hepatocellular carcinoma cell line MHCC-97H invasion and metastasis. Methods Based on the human hepatoma carcinoma cell(MHCC-97L) and hepatic cell line LO2, Using FCM and Transwall to observe the ability of invasion and metastasis after Ad.mda-7 treated MHCC-97H and LO2. Using immunofluorescence staining to indicate the expressing of E-cadherin in the heptaic cell lines. The expression levels of TWIST、Vimentin and E-cadherin was using Real-time PCR. Western blot perform to observe the change of protein twist, Vimentin,E-cadherin and FAK among teams. Result After transfection with 1000VP/cell Ad.mda-7, the growth of MHCC-97H had been arrested but no to LO2. After Ad.mda.7 transfected MHCC-97H, the EMT was reversed in the tumor cells. MHCC-97H marked CFSE and then FCM showed that MDA-7 selectively arrested MHCC-97H cell proliferation (P<0.05). Then, transwall showed that MDA-7 could inhibited the tumor cell invasion and metastasis (P<0.05) Finally, Real-timePCR and Western-blot showed that mda-7 could block the expressing of Twist, Vimentin and FAK were decreased.
     Objective To explore the mechanism of the Melanoma differentiation associated gene-7(HepG2) enhance adriamycin(ADM) kill the hepatoma carcinoma cell and reverses multidrug resistance(MDR). Methods Based on the human hepatoma carcinoma cell(HepG2), Using MTT assay and FCM to determine the difference among the 100VP/cell Ad.mda-7 add ADM, ADM, Ad.mda-7.To interpret the MDA-7/IL-24 reverses multidrug resistance. The expression levels of MDR-1,STAT-3,BCL-2,BAXmRNA was using real-time PCR. Westernblot was perform to observe the change of protein gp-170, stat-3, P-stat3, PKB, bcl-2, bax among those teams. Result After transfection with 100VP/cell Ad.mda-7, the growth suppression rate of HepG2 which was treated by ADM(1.5mg/L) rising from 17.46% to 79.5%.According to the change, killed cell of HepG2 was increase 4.55 time. It is important that real-time PCR showed MDR-1 mRNA was decreased from(16.49±0.11) to (5.48±0.05) and STAT-3 mRNA increased from (13.17±0.08) to (21.57±0.11) (P<0.05).WB analyses also showed that P-170 and PKB was decreased after and the phosphorylation-stat-3 was increased. Conclusion Ad.mda-7 can reverse the multidrug resistance of ADM to HepG2. It inhibit the expression of MDR-1 mRNA, then arrest PKB protein active the signing of stat-3 to induce hepatoma carcinoma cell apoptosis.
     After all, MDA-7/IL-24 gene can significantly reverse the EMT, the inhibition of liver cancer cell invasion and metastasis of change. In the multi-drug resistance mechanisms, MDA-7 can also inhibit the endoplasmic reticulum stress the role of proteins and related proteins increase resistance of chemotherapeutic drugs on tumor cells in vitro. It also suggested that not only will we MDA-7 is an effective treatment of liver cancer molecular target, but also to explore the biological mechanisms of liver cancer is an effective tool.
引文
1. Fisher PB. Is mda-7/IL-24 a "Magic Bullet" for Cancer? [J]. Cancer Res. 2005;65(22):10128-38
    2. Jiang H, Lin JJ, Su ZZ, et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression[J]. Oncogene.1995; 11(12),2477-2486
    3. Lebedeva IV, Sauane M, et al. Mda-7/IL-24:Exploiting Cancer's Achilles'Heel[J]. Mol Ther.2005; 11(1):4-18
    4.4 Chang C, Magracheva E, et al. Crystal structure of interleukin-19 defines a new subfamily of helical cytokines[J]. J. Biol. Chem.2003; 278 (5),3308-3313.
    5. Dumoutier L and Renauld JC. Viral and cellular interleukin-10 (IL-10)-related cytokines:from structures to functions[J]. Eur. Cytokine Netw.2002; 13 (1):5-15.
    6.6 Nagalakshmi ML, Murphy E, et al. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization[J]. Int Immunopharmacol. 2004; 4(5):577-92.
    7. Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties[J]. Oncogene.2001; 20(48):7051-63
    8. Gopalkrishnan RV, Sauane M, Fisher PB. Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24[J]. Int Immunopharmacol.2004; 4(5):635-47
    9. Allen M, Pratscher B, Roka F, et al. Loss of Novel mda-7 Splice Variant (mda-7s) Expression is Associated with Metastatic Melanoma[J]. J Invest Dermatol 2004;123(3):583-588.
    10. Sarkar D, Su ZZ, Lebedeva IV, et al. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK[J]. Proc. Natl. Acad. Sci.2002; 99 (15):10054-10059.
    11. Kawabe S, Nishikawa T, Munshi A, et al. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanisms[J]. Mol. Ther; 2002;6(5):637-644.
    12. Ramesh R, Ito I, Gopalan B, et al. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells[J]. Mol Ther.2004; 9(4):510-518.
    13. McKenzie T, Liu Y, Fanale M, et al. Combination therapy of Ad-mda7 and trastuzumab increases cell death in Her-2/neu-overexpressing breast cancer cells[J]. Surgery; 2004; 136(2):437-442.
    14. Lebedeva IV, Su ZZ, Sarkar D, et al. Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis[J]. Oncogene; 2005; 24(4):585-596
    15. Su ZZ, Lebedeva IV, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53 independent manner[J]. Oncogene; 2003;22 (8): 1164-1180.
    16. Yacoub A, Mitchell C, Hong Y, et al. MDA-7 Regulates Cell Growth and Radiosensitivity In Vitro of Primary (Non-Established) Human Glioma Cells[J]. Cancer Biol Ther.2004;3(8):739-751
    17. Lebedeva IV, Su ZZ, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species[J]. Cancer Res.2003; 63(23):8138-8144.
    18. Venook, AP. Treatment of hepatocellular carcinoma:too many options? [J]. J. Clin. Oncol.,1994;12(6):1323-1334
    19. Lebedeva IV, Su ZZ, Sarkar D,et al.Restoring apoptosis as a strategy for cancer gene therapy:focus on p53 and mda-7[J]. Semin Cancer Biol.2003;13(2):169-178.
    1. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involued in genesis of many tumor types. Science,1994,246(5157):436-440.
    2. Funauchi M, Kishimoto K, Kinoshita K.Early diagnosis of connective tissue disease-related pulmonary hypertension.Nihon Rinsho Meneki Gakkai Kaishi.2009 Dec;32(6):457-65.
    3. kinase inhibitory proteins and the cell cycle.Cell,1994,79(2):181-184.
    4. Zhu L, Harlow E, et al. p107 uses a p21CIPl-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev,1995,9(14):1740-1752.
    5. Serrano M, Hannon GL, Bench D. A new regulatory motify in cell-cycle control causing specific inhibition of cyclin D/CDK4.Nature,1993,366:704-707.
    6. Shapiro GI, Edwards CD, Kobzik L, et al. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res,,55(3):505-509.
    7. Merlo A, Herman J G, et al. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest[J]. Nature,1994,371(6494):257-261,371:257-261.
    8. Chen J, Jackson PK, Kirschner MW, et al. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA.Nature,1995,374:386-388.
    9. Kwon TK, Nagel J E, et al. The cdk2 binding dominance of p27Kipl crrelates with the inhibition of the kinase activity of cdk2/cyclin complexes[J]. Gene,1996,180:113-116.
    10. Zerfass-Thome K, Zwerschke W, Mannhardt B, et al. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein[J]. Oncogene,1996, 13(11):2323-2330.
    11. Ewen ME, Sluss HK, Sherr CJ, Matsushime H, et al. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell.1993 May 7;73(3):487-497.
    12. Nourse J, Firpo E, Flanagan WM, et al. Interleukin-2-mediated elimination of the p27Kip cyclin-dependent kinase inhibitor prevented by rapamycin. Nature,1994, 372:570-573.
    13. Huss R, Firpo E, Deeg HJ. Stem cell factor-induced expression of p27kip-1 during hematopoietic differentiation [J]. Exp Mol Pathol,1995,63(2):129-134.
    14. Sherr CJ, G1 phase progression:cycling on cue.Cell,1994;79:551,79:551-555. 14. Grana X, Reddy EP. Cell cycle control in mammalian cell. Role of cyclins, cyclin
    15. dependent kinase, growth suppressor gene and cyclin dependent kidnase inhibitors. Oncogene,1995; 11:201-217.
    16. Dulic V, kaufmann WK, Wilson SJ,et al. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res,1994;211;90-98.
    17. Pietenpol J A, Bohlander SK, et al. Assignment of the human p27 kipl gene to 12p13 and its analysis in leukemias. Caner Res,1995,55(6):1206-1210.
    18. WHO technical report series No 878,1998, Annex I:Requirements for the used of animal cell as in vitro substrated for the production of biologicals. FDA. Points to consider in the characterization of cell lines used to produce biologicals.1993.
    19. krutowkikh V, mazzolni G, mironov N, et al. altered homologous and heterologus gap-junction intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin32. int j cancer,1994,56:87.
    20. Hong S, Troyanovsky RB, Troyanovsky SM. Spontaneous assembly and active disassembly balance adherens junction homeostasis. Proc Natl Acad Sci U S A.2010, 23;107(8):3528-33.
    21. Weise A, Bruser K, Elfert S, Wallmen B, et al. Alternative splicing of Tcf712 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucleic Acids Res.2010, 1;38(6):1964-81.
    1. Venook, A. P. Treatment of hepatocellular carcinoma:too many options? J. Clin. Oncol.,12:1323-1334,1994.
    2. 2. H. Jiang, J.J. Lin, Z.Z. Su, N.I. Goldstein and P.B. Fisher, Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11 (1995), pp. 2477-2486.
    3. Irina V. Lebedeva,Moira Sauane,Rahul V. Gopalkrishnan,Devanand Sarkar, Zhao-zhong Su, Pankaj Gupta,John Nemunaitis, Casey Cunningham, Adly Yacoub, Paul Dent, and Paul B. Fisher.mda-7/IL-24:Exploiting Cancer's Achilles'Heel. Mol Ther.2005 Jan;11(1):4-18
    4. Matthew Allen, Barbara Pratscher, Florian Roka, Clemens Krepler, Volker Wacheck, ChristianSchofer, Hubert Pehamberger, Markus Muller, and Trevor Lucas. Loss of Novel mda-7 Splice Variant (mda-7s) Expression is Associated with Metastatic Melanoma. J Invest Dermatol 2004;123:583-588.
    5. D. Sarkar, Z.Z. Su, I.V. Lebedeva, M. Sauane, R.V. Gopalkrishnan et al., mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc. Natl. Acad. Sci. U. S. A.99 (2002), pp.10054-10059.
    6. S. Kawabe, T. Nishikawa, A. Munshi, J.A. Roth, S. Chada and R.E. Meyn, Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanisms. Mol. Ther.6 (2002), pp.637-644.
    7. Ramesh R, Ito I, Gopalan B, Saito Y, Mhashilkar AM, Chada S. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther. 2004 Apr;9(4):510-8.
    8. McKenzie T, Liu Y, Fanale M, Swisher SG, Chada S, Hunt KK. Combination therapy of Ad-mda7 and trastuzumab increases cell death in Her-2/neu-overexpressing breast cancer cells. Surgery.2004 Aug;136(2):437-42.
    9. Fisher PB. Is mda-7/IL-24 a "Magic Bullet" for Cancer? [J]. Cancer Res.2005;65(22): 10128-38
    10. Jiang H, Lin JJ, Su ZZ, et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression [J]. Oncogene.1995; 11(12),2477-2486
    11.Lebedeva, Sauane M, Gopalkrishnan, et al. Mda-7/IL-24:Exploiting Cancer's Achilles'Heel[J]. Mol Ther.2005; 11(1):4-18
    12.12 Chang C, Magracheva E, Kozlov S, et al. Crystal structure of interleukin-19 defines a new subfamily of helical cytokines[J]. J. Biol. Chem.2003; 278 (5),3308-3313.
    13. Dumoutier L and Renauld JC. Viral and cellular interleukin-10 (IL-10)-related cytokines:from structures to functions[J]. Eur. Cytokine Netw.2002; 13 (1):5-15.
    14. Nagalakshmi ML, Murphy E, McClanahan T, et al. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization[J]. Int Immunopharmacol.2004; 4(5):577-92.
    15. Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties [J]. Oncogene.2001; 20(48):7051-63
    16. Gopalkrishnan RV, Sauane M, Fisher PB. Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24[J]. Int Immunopharmacol.2004; 4(5):635-47
    17. Allen M, Pratscher B, Roka F, et al. Loss of Novel mda-7 Splice Variant (mda-7s) Expression is Associated with Metastatic Melanoma[J]. J Invest Dermatol 2004;123(3):583-588.
    18. Sarkar D, Su ZZ, Lebedeva IV, et al. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK[J]. Proc. Natl. Acad. Sci.2002; 99 (15):10054-10059.
    19. Kawabe S, Nishikawa T, Munshi A, et al. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanisms[J]. Mol. Ther; 2002;6(5):637-644.
    20. Ramesh R, Ito I, Gopalan B, et al. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells[J]. Mol Ther.2004; 9(4):510-518.
    21. McKenzie T, Liu Y, Fanale M, et al. Combination therapy of Ad-mda7 and trastuzumab increases cell death in Her-2/neu-overexpressing breast cancer cells[J]. Surgery; 2004; 136(2):437-442.
    22. Lebedeva IV, Su ZZ, Sarkar D, et al. Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis[J]. Oncogene; 2005; 24(4):585-596
    23. Su ZZ, Lebedeva IV, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53 independent manner[J]. Oncogene; 2003;22 (8): 1164-1180.
    24. Yacoub A, Mitchell C, Hong Y, et al. MDA-7 Regulates Cell Growth and Radiosensitivity In Vitro of Primary (Non-Established) Human Glioma Cells[J]. Cancer Biol Ther.2004;3(8):739-751
    25. Lebedeva IV, Su ZZ, Sarkar D, et al. Melanoma differentiation associated gene-7 Lebedeva IV, Su ZZ, Sarkar D, Gopalkrishnan RV, Waxman S, Yacoub A, Dent P, Fisher PB.Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis. Oncogene.2005 Jan 20;24(4):585-96.
    1. Fisher PB. Is mda-7/IL-24 a "magic bullet" for cancer? Cancer Res 2005,(65):10128-38.
    2. Takara K, Sakaeda T, Kakumoto M, et al. Effects of alpha-adrenoceptor antagonist doxazosin on MDR1-mediated multidrug resistance and transcellular transport. Oncol Res.2009;17(11-12):527-33.
    3.汤钊猷。开展肝癌转移复发研究的意义与途径。中华普通外科杂志.2006;21(11):761。
    4. Lebedeva IV, Su ZZ, Emdad L, et al. Targeting inhibition of K-ras enhances Ad.mda-7-induced growth suppression and apoptosis in mutant K-ras colorectal cancer cells. Oncogene.2007;26(5):733-44.
    5.王从俊,彭志海,郑建伟,等。携带mda-7基因的复制缺陷型腺病毒通过促进线粒体释放促进凋亡蛋白杀伤肝癌细胞。中华肿瘤杂志。2008;30(9):649-651.
    6. Doneske B, et al. Human interleukin 24 (MDA-7/IL-24) protein kills breast cancer cells via the IL-20 receptor and is antagonized by IL-10. Cancer Immunol Immunother. 2007;56(2):205-15.
    7.薛新波,郑建伟,王从俊,等。Ad.mda-7高选择性杀伤肝肿瘤细胞与P53状态无关。中华肝脏病杂志,2006,(9):670-675。
    8.申铭,薛新波,陈堃,等。MDA-7/IL.24和阿霉素联合治疗裸鼠肝癌的研究。中华实验外科杂志,2007,(24):1325-1327。
    9. Zerbini LF, Czibere A, Wang Y, et al. A novel pathway involving melanoma differentiation associated gene-7/interleukin-24 mediates nonsteroidal anti-inflammatory drug-induced apoptosis and growth arrest of cancer cells. Cancer Res.2006;66(24):11922-31.
    10. Cravatt BF, Simon GM, Yates JR. The biological impact of mass-spectrometry-based proteomics. Nature,2007; 450:991-1000.
    11.Gopalan B, Shanker M, Scott A, et al. MDA-7/IL-24, a novel tumor suppressor/cytokine is ubiquitinated and regulated by the ubiquitin-proteasome system, and inhibition of MDA-7/IL-24 degradation enhances the antitumor activity. Cancer Gene Ther.2008;15(1):1-8.
    12. Sauane M, Gupta P, Lebedeva IV, N-glycosylation of MDA-7/IL-24 is dispensable for tumor cell-specific apoptosis and "bystander" antitumor activity. Cancer Res. 2006;66(24):11869-77.
    1. Lin J, Denmeade S, Carducci MA.HIF-1 alpha and calcium signaling as targets for treatment of prostate cancer by cardiac glycosides.Curr Cancer Drug Targets.2009 Nov;9(7):881-7.
    2. Lebedeva, Sauane M, Gopalkrishnan, et al. Mda-7/IL-24:Exploiting Cancer's Achilles'Heel[J]. Mol Ther.2005; 11(1):4-18
    3.3. Chang C, Magracheva E, Kozlov S, el al. Crystal structure of interleukin-19 defines a new subfamily of helical cytokines[J]. J. Biol. Chem.2003; 278 (5),3308-3313.
    4. Dumoutier L and Renauld JC. Viral and cellular interleukin-10 (IL-10)-related cytokines:from structures to functions[J]. Eur. Cytokine Netw.2002; 13 (1):5-15.
    5. Nagalakshmi ML, Murphy E, McClanahan T, et al. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization[J]. Int Immunopharmacol.2004; 4(5):577-92.
    6. Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties [J]. Oncogene.2001; 20(48):7051-63
    7. Gopalkrishnan RV, Sauane M, Fisher PB. Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24[J]. Int Immunopharmacol.2004; 4(5):635-47
    8. Allen M, Pratscher B, Roka F, et al. Loss of Novel mda-7 Splice Variant (mda-7s) Expression is Associated with Metastatic Melanoma[J]. J Invest Dermatol 2004;123(3):583-588.
    9. Sarkar D, Su ZZ, Lebedeva IV, et al. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK[J]. Proc. Natl. Acad. Sci.2002; 99 (15):10054-10059.
    10. Yacoub A, Hamed H, Fisher PB, et al. MDA-7/IL-24 plus radiation enhance survival in animals with intracranial primary human GBM tumors. Cancer Biol Ther. 2008;7(6):917-33.
    11.Zerbini LF, Czibere A, Wang Y, et al. A novel pathway involving melanoma differentiation associated gene-7/interleukin-24 mediates nonsteroidal anti-inflammatory drug-induced apoptosis and growth arrest of cancer cells. Cancer Res.2006;6(24):11922-31.
    12. Ibrahim YH, Byron SA, Cui X, Lee AV, Yee D. Progesterone receptor-B regulation of insulin-like growth factor-stimulated cell migration in breast cancer cells via insulin receptor substrate-2. Mol Cancer Res.2008;6(9):1491-8.
    13. Strijdom H, Friedrich SO, Hattingh S, Chamane N, Lochner A. Hypoxia-induced regulation of nitric oxide synthase in cardiac endothelial cells and myocytes and the role of the PI3-K/PKB pathway. Mol Cell Biochem.2009;321(1-2):23-35.
    14. Surucu B, Bozulic L, Hynx D, Parcellier A, Hemmings BA. In vivo analysis of protein kinase B (PKB)/Akt regulation in DNA-PKcs-null mice reveals a role for PKB/Akt in DNA damage response and tumorigenesis. J Biol Chem.2008;283(44):30025-33.
    15. Cravatt BF, Simon GM, Yates JR. The biological impact of mass-spectrometry-based proteomics Nature,2007; 450:991-1000.
    16. Gopalan B, Shanker M, Scott A, et al. MDA-7/IL-24, a novel tumor suppressor/cytokine is ubiquitinated and regulated by the ubiquitin-proteasome system, and inhibition of MDA-7/IL-24 degradation enhances the antitumor activity. Cancer Gene Ther.2008;15(1):1-8.
    17. Sauane M, Gupta P, Lebedeva Ⅳ, N-glycosylation of MDA-7/IL-24 is dispensable for tumor cell-specific apoptosis and "bystander" antitumor activity. Cancer Res. 2006;66(24):11869-77.
    18. Mauriz JL, Duran MC, Molpeceres V, Barrio JP, Martin-Renedo J, Culebras JM, et al.Changes in the antioxidant system by TNP-470 in an in vivo model of hepatocarcinoma.Transl Res.2007 Sep; 150(3):189-96.
    19. Kwasniewski FH, Landgraf RG, Jancar S.Antitumor effect of TNP-470, an angiogenesis inhibitor, combined with ultrasound irradiation for human uterine sarcoma xenografts evaluated using contrast color Doppler ultrasound.Cancer Sci.2007 Jun;98(6):929-35.
    20. Boysen P, Gunnes G, Pende D, Valheim M, Storset AK.Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int J Cancer.2008 Jan;51(2):17-19.
    21. Ben-David T, Sagi-Assif O, Meshel T, Lifshitz V, et al. The involvement of the sLe-a selectin ligand in the extravasation of human colorectal carcinoma cells. Immunol Lett. 2007 Dec;41 (26):421-424.
    22. Van Werkum JW, Gerritsen WB, Kelder JC, Hackeng CM. Inhibiti on of platelet function by abciximab or high-dose tirofiban in patients with STEMI undergoing primary PCI:a randomised trial. Neth Heart J.2007 Nov;15(11):375-81.
    23. Traina V, Cannas M. MMP-9 haplotypes and carotid artery atherosclerosis:An association study introducing a novel multicolour multiplex RealTime PCR protocol.Eur J Clin Invest.2008 Jan;38(1):24-33.
    24. Mahnken AH, Bruners P, Gunther RW. Local ablative therapies in HCC:percutaneous ethanol injection and radiofrequency ablation. Dig Dis.2009;27(2):148-56.
    25. Lim SG, Mohammed R, Yuen MF, Kao JH. Prevention of hepatocellular carcinoma in hepatitis B virus infection. J Gastroenterol Hepatol.2009 Aug; 24(8):1352-7.
    26. Cabibbo G, Craxi A. Hepatocellular cancer:optimal strategies for screening and surveillance. Dig Dis.2009; 27(2):148-56.
    27. Kalinski T, Roessner A. Hepatocellular carcinoma:pathology and liver biopsy. Dig Dis. 2009; 27(2):102-8.
    1. Herbison AE.Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent:the case for the rostral periventricular area of the third ventricle (RP3V).Brain Res Rev.2008 Mar;57(2):277-87.
    2. Koledova VV, Khalil RA.Sex hormone replacement therapy and modulation of vascular function in cardiovascular disease.Expert Rev Cardiovasc Ther.2007 Jul;5(4):777-89.
    3. Tonini G, Schiavon G, Fratto ME, Vincenzi B, Santini D.Hormono-biological therapy in metastatic breast cancer:preclinical evidence, clinical studies and future directions.Expert Opin Biol Ther.2008 Feb;8(2):221-34.
    4. Butcher DT, Alliston T, Weaver VM. A tense situation:forcing tumour progression. Nat Rev Cancer.2009;9(2):108-22.
    5. Kim I, Xu W, Reed JC.Cell death and endoplasmic reticulum stress:disease relevance and therapeutic opportunities. Nat Rev Drug Discov.2008;7(12):1013-1030.
    6. Chignard N, Shang S, Wang H, et al. Cleavage of endoplasmic reticulum proteins in hepatocellular carcinoma:detection of generated fragments in patient sera. Gastroenterology 2006;130:2010-22.
    7. Bi M, Naczki C, Koritzinsky M, et al. ER stressregulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 2005;24:3470-81.
    8.8. Corazzari M, Lovat PE, Armstrong JL, et al. Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis:the role of stress proteins ERdj5 and ERp57. Br J Cancer 2007;96:1062-71.
    9. Hetz C, Bernasconi P, Fisher J, et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IREla. Science 2006;312:572-6.
    10. Pawelek JM, Chakraborty AK. The cancer cell-leukocyte fusion theory of metastasis. Adv Cancer Res 2008; 101:397-444.
    11. Marcella Calfon, Huiqing Zeng, Fumihiko Urano, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature.2002; 415(10):92-96.
    12. Delom F, Emadali A, Cocolakis E, Lebrun JJ, Nantel A,Chevet E. Calnexin-dependent regulation of tunicamycin-induced apoptosis in breast carcinoma MCF-7 cells.Cell Death Differ 2007;14:586-96.
    13. Drogat B, Nguyen DT, Auguste P, et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res 2007,67:6700-6707.
    14. Schonthal AH.Endoplasmic reticulum stress and autophagy as targets for cancer therapy.Cancer Lett.2009 Mar 18;275(2):163-9.
    15. Gown AM.Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol. 2008 May;21 Suppl 2:S8-S15.
    16. Liu S, Mauvais-Jarvis F. Minireview:Estrogenic protection of beta-cell failure in metabolic diseases.Endocrinology.2010 Mar;151(3):859-64.
    17. Serock MR, Wells AK, Khalil RA.Modulators of vascular sex hormone receptors and their effects in estrogen-deficiency states associated with menopause.Recent Pat Cardiovasc Drug Discov.2008 Nov;3(3):165-86.
    18. Serock MR, Wells AK, Khalil RA.Modulators of vascular sex hormone receptors and their effects in estrogen-deficiency states associated with menopause.Recent Pat Cardiovasc Drug Discov.2008 Nov;3(3):165-86.
    19. Sengupta S, Jordan VC.Selective estrogen modulators as an anticancer tool: mechanisms of efficiency and resistance.Adv Exp Med Biol.2008;630:206-19.
    20. Prins GS. Endocrine disruptors and prostate cancer risk. Endocr Relat Cancer.2008 Sep;15(3):649-56.
    21. Fox EM, Davis RJ, Shupnik MA.ERbeta in breast cancer-onlooker, passive player, or active protector? Steroids.2008 Oct;73(11):1039-51.
    22. Zuloaga DG, Puts DA, Jordan CL, Breedlove SM.The role of androgen receptors in the masculinization of brain and behavior:what we've learned from the testicular feminization mutation.Horm Behav.2008 May;53(5):613-26.
    23. Bolego C, Vegeto E, Pinna C, Maggi A, Cignarella A.Selective agonists of estrogen receptor isoforms:new perspectives for cardiovascular disease.Arterioscler Thromb Vasc Biol.2006 Oct;26(10):2192-9.
    24. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations:the inhibition-timing hypothesis.Brain Res Rev.2007 Jan;53(1):63-88.
    25. Satake M, Sawai H, Go VL, Satake K, Reber HA, Hines OJ, Eibl G.Estrogen receptors in pancreatic tumors.Pancreas.2006 Aug;33(2):119-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700