用户名: 密码: 验证码:
外源性Wnt5a激活K562细胞Wnt5a/Ca~(2+)信号传导途径及其生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     Wnt5a是Wnt蛋白家族重要成员之一,不仅与个体发育、细胞粘附、迁移、增殖、分化、极性和死亡等相关,甚至与肿瘤发生关系密切。目前研究发现,Wnt5a在肿瘤中既有增高表达又有下调表达,它既可能激活Wnt/β-catenin信号传导途径,又可能激活非经典Wnt5a/Ca~(2+)信号传导途径,故Wnt5a既可能是癌基因,又可能是抑癌基因。关于Wnt5a在血液病中表达及其作用的研究鲜见报道,更罕见外源性Wnt5a对白血病细胞有何生物学效应的研究报道。为此,本研究首先检测了Wnt5a及β-catenin在一些血液病病例及白血病细胞株中的表达情况,在此基础上,以K562细胞为细胞模型,观察外源性Wnt5a是否激活非经典Wnt5a/Ca~(2+)信号传导途径,并观察其生物学效应,以探讨Wnt5a在白血病发生中的作用和机制,为白血病的治疗寻求新的治疗靶点。
     研究方法
     1.应用RT-PCR方法检测31例各类血液病病例样本和3种白血病细胞株Wnt5a表达,并检测11例髓细胞白血病病例样本和3种白血病细胞株β-catenin的表达。
     2.应用HEK293细胞扩增带有标记基因GFP的重组腺病毒AdWnt5a和AdGFP,以AdWnt5a和AdGFP分别感染CHO细胞,制备Wnt5a和GFP条件培养液,以western blot鉴定条件培养液Wnt5a蛋白的表达。
     3.以荧光染料Fluo-3/AM预染K562细胞,以激光共聚焦显微镜分别观察Wnt5a和GFP条件培养液对K562细胞Ca~(2+)内流的影响,观察外源性Wnt5a是否激活K562细胞非经典Wnt5a/Ca~(2+)信号传导途径。
     4.分别以Wnt5a和GFP条件培养液培养K562细胞1~5 d,以RT-PCR、免疫细胞化学和western blot等方法观察K562细胞β-catenin和cyclin D1的表达变化,观察外源性Wnt5a与Wnt/β-catenin信号传导途径的作用关系。
     5.分别以Wnt5a和GFP条件培养液培养K562细胞1~5 d,观察外源性Wnt5a对K562细胞的生物学效应:每天计数细胞数量,绘制生长曲线,观察外源性Wnt5a对细胞增殖的影响;以流式细胞仪分析细胞周期分布,观察外源性Wnt5a对细胞周期分布的影响;以DNA Ladder电泳和AO/EB染色法,观察外源性Wnt5a对细胞凋亡的影响;细胞以瑞氏染液染色,光镜下观察细胞形态学改变,并利用免疫细胞化学染色检测细胞表面分化抗原CD13、CD41、CD68和GlyA的表达变化,观察外源性Wnt5a对细胞分化的影响。
     实验结果
     1.Wnt5a在髓细胞白血病病例样本及K562、HL-60细胞中表达缺失,而β-catenin在多数髓细胞白血病病例样本及K562细胞和Jurkat细胞呈高表达。
     2.分别利用重组腺病毒AdWnt5a、AdGFP感染CHO细胞,成功制备Wnt5a及GFP条件培养液,经western blot鉴定Wnt5a条件培养液含Wnt5a蛋白,而GFP条件培养液无表达。
     3.GFP条件培养液不能促进K562细胞Ca~(2+)内流,而Wnt5a条件培养液可促进K562细胞Ca~(2+)内流,且这种作用可被Wnt5a抗体抑制。
     4.Wnt5a条件培养液培养不能下调K562细胞β-catenin mRNA的表达,但能下调K562细胞β-catenin及cyclin D1蛋白的表达。
     5.Wnt5a条件培养液对K562细胞的生物学效应有:细胞增殖明显受抑制;细胞周期分布G1期细胞比例增多,S期及G2期细胞比例减少;细胞形态出现了向成熟细胞分化的特征,细胞表面分化抗原CD13、CD41及GlyA表达变化不明显,CD68表达阳性率显著升高;细胞DNA Ladder电泳未出现明显梯形条带,激光共聚焦显微镜观察细胞凋亡率无明显变化。
     研究结论
     1.Wnt5a表达缺失和β-catenin高表达可能是髓细胞白血病的发生相关因素。
     2.外源性Wnt5a可激活K562细胞非经典Wnt5a/Ca~(2+)信号传导途径,并在蛋白水平下调K562细胞β-catenin及cyclin D1表达,提示在K562细胞中,外源性Wnt5a可抑制Wnt/β-catenin信号传导途径。
     3.外源性Wnt5a可使K562细胞发生G1期阻滞,抑制K562细胞的增殖,诱导K562细胞向单核细胞分化,但无诱导K562细胞凋亡作用。
Objective
     Wnt5a, a family member of the Wnt proteins, plays important roles in body development, cell adhesion, motility, proliferation, differentiation, polarity and death, even was proposed to be close relative to tumorigenesis. Nowadays, studies indicates Wnt5a, which can activate the Wnt/β-catenin signaling pathway or noncanonical Wnt5a/Ca~(2+) signaling pathway, is overexpressed in some tumors and also suppressed in other ones. So, Wnt5a maybe is both oncogene and antioncogene. We found rare studies on Wnt5a’s expression and it’s function in hematopoietic disease, and haven’t found report about what effect exogenous Wnt5a would contribute to leukemic cells. Therefor, we detected the expression of Wnt5a andβ-catenin in hematopoietic disease samples and leukemic cell lines, and choiced K562 cell lines as research model to observe whether exogenous Wnt5a could activate noncanonical Wnt5a/Ca~(2+) signaling pathway and it’s biologic effects. Through these studies, we try to uncover the function and mechanism of Wnt5a in leukemiagenesis and to seek new target for leukemia therapy.
     Methods
     1. The expression of Wnt5a in 31 hematopoietic disease samples and 3 kinds of leukemic cell lines, and that ofβ-catenin in 11 myeloid leukemic samples and 3 kinds of leukemic cell lines, were detected by RT-PCR.
     2. Amplification of AdWnt5a and AdGFP (both labelled with GFP tag gene) were prepared by infecting HEK293 cells respectively. The Wnt5a and GFP condition medium were separately prepared by collecting the culture supernatants medium of CHO cells infected with AdWnt5a and AdGFP. The expression of Wnt5a protein in condition medium were identified by western blot.
     3. To observe whether exogenous Wnt5a could activate noncanonical Wnt5a/Ca~(2+) signaling pathway, K562 cells were previously stained with fluorescence dyestuff Fluo-3/AM, then the influence on Ca~(2+) inflow in K562 cells treated with Wnt5a and GFP condition medium were checked with laser confocal scanning microscope.
     4. To observe the relationship between exogenous Wnt5a and Wnt/β-catenin signaling pathway, K562 cells were separately treated with Wnt5a and GFP condition medium for 1 to 5 days, then the expression ofβ-catenin and cyclin D1 in K562 cells were detected by RT-PCR, immunochemistical staining and western blot respectively.
     5. Separately treated with Wnt5a and GFP condition medium for 1 to 5 days after, the biologic effects of exogenous Wnt5a on K562 cells were observed as follow: counting cells number each day and figuring out proliferation curve to observe the influence of exogenous Wnt5a on cell proliferation; detecting the cell cycle distribution of cells by flow cytometry to observe the influence of exogenous Wnt5a on cell cycle; observing the influence of exogenous Wnt5a on cell apoptosis by DNA Ladder electrophoresis and with laser confocal scanning microscope after AO/EB staining; observing cellular morphologic changes with light microscope after Wright’s staining and detecting the expression changes of CD13, CD41, CD68 and GlyA by immunochemistical staining to observe the influence of exogenous Wnt5a on cell differentiation.
     Results
     1. Wnt5a expression was lost in myeloid leukemic samples and K562, HL-60 cells, butβ-catenin were overexpressed in most myeloid leukemic samples, K562 cells and Jurkat cells.
     2. The Wnt5a and GFP condition medium were successfully prepared with AdWnt5a, AdGFP to infect CHO cells separately. Identified by western blot, Wnt5a protein was found expressed in Wnt5a condition medium but not in GFP condition medium.
     3. GFP condition medium couldn’t stimulate K562 cells Ca~(2+) inflow but Wnt5a condition medium could, and the Ca~(2+) inflow could be blocked with Wnt5a antibody.
     4. Wnt5a condition medium did not down-regulate the expression ofβ-catenin mRNA, but suppressed the expression ofβ-catenin and cyclin D1 protein in K562 cells.
     5. The biologic effects of Wnt5a condition medium on K562 cells: cell proliferation was significantly inhibit; the cells number of G1 phase increased and that of S phase and G2 phase decreased; mature morphologic differentiational features was detected and the positive rate of CD68 significantly increased, but that of CD13, CD41 and GlyA had no obvious changes; no obvious trapeziform band was detected in DNA Ladder electrophoresis and apoptosis rate didn’t obviously rise observed with laser confocal scanning microscope.
     Conclusions
     1. The loss of Wnt5a expression and overexpression ofβ-catenin may be is relative to leukemiagenesis.
     2. Exogenous Wnt5a can activate the noncanonical Wnt5a/Ca~(2+) signaling pathway and downregulated the expression ofβ-catenin and cyclin D1 proteins in K562 cells. It indicate that exogenous Wnt5a can inhibit Wnt/β-catenin signaling pathway in K562 cells.
     3. Exogenous Wnt5a can induce K562 cells arise G1 phase arrest, inhibit K562 cells proliferation, and induce K562 cells differentiate to monocyte, but can’t induce K562 cells apoptosis.
引文
1. Pennisi E. How a growth control path takes a wrong turn to cancer. Cell Biology, 1998, 281(5382):1438-1439,1441
    2. Clark CC, Cohen IR, Eichstetter I, et al. Molecular cloning of the human proto-oncogene Wnt5a and mapping of the gene to chromosome 3p14-p21. Genomics, 1993, 18(2):249-260
    3. Danielson KG, Pillarisetti J, Cohen IR, et al. Characterization of the complete genomic structure of the human WNT-5A Gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. J. Biol. Chem., 1995,270(52):31225-31234
    4. Adamson MC, Dennis C, Delaney S, et al. Isolation and genetic mapping of two novel members of the murine Wnt gene family, Wnt11 and Wnt12, and the mapping of Wnt5a and Wnt7a. Genomics, 1994,24(1):9-13
    5. Nusse R. Wnt signaling in disease and in development. Cell research, 2005,15(1): 28-32
    6. Moon RT, Brown JD, Torres M, et al. Wnts modulate cell fate and behavior during vertebrate development. Trends in Genetics,1997,13(4):157-162
    7. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 1998,14 (1):59-88
    8. Yamanaka H, Moriguchi T, Masuyama N, et al. JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMPO Reports, 2002,3(1):69-75
    9. Gong Y, Mo CH, Fraser SE. Planar cell polarity signalling controls cell division orientation during zebrafish gastrμlation. Nature, 2004,430(2796):689-693
    10. Staal FJT, Clevers HC. Wnt signalling and hematopoiesis: A Wnt-Wnt situation. Nature Reviews Immunology, 2005, 5(1):21-30
    11. David J, Van DB, Arun KS, et al. Role of members of the Wnt gene family in human hematopoiesis. Blood, 1998, 92(9):3189-3202
    12. Liang HL, Chen Q, Coles AH, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 2003, 4(11):349-360
    13. Ishitani T, Kishida S, Junko HM, et al. The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt5a/Ca~(2+) Pathway To Antagonize Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003, 23(1):131-139
    14. Simon M, Victoria LG, David CL, et al. Constitutive activation of the Wnt/β-catenin signalling pathway in acute myeloid leukaemia. Oncogene, 2005, 24(2):2410-2420
    15. Cho M, Park S, Gwok J, et al. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellularβ-catenin protein. Biochemical and Biophysical Research Communications, 2008, 367(1):195-200
    16. Steffen B, Carsten MT, Schwable J, et al. The molecular pathogenesis of acute myeloid leukemia. Critical Reviews in Oncology/Hematology, 2005, 56 (2):195-221
    17. Ikeda A, Shankar DB, Watanabe M, et al. Molecular targets and the treatment of myeloid leukemia. Molecular Genetics and Metabolism,2006, 88 (3):216-224
    18.韩姝,师伟,裴雪涛. Wnt基因对造血干细胞增殖、分化调控的研究进展.中华血液学杂志, 2005, 26(6):379-381
    19. Brandon C, Eisenberg LM, Eisenberg CA. WNT signaling modulates the diversification of hematopoietic cells. Blood, 2000,96(13):4132-4141
    20. Taki M, Kamata N, Yokoyama K, et al. Down-regulation of Wnt-4 and up-regulation ofWnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer-Sci, 2003 , 94(7): 593-597
    21. Blanc E, David G. Wnt-5a gene expression in malignant human neuroblasts. Cancer Letters, 2005, 228(1):117-123
    22. Saitoh T, Mine T, Katoh M. Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int-J-Mol-Med, 2002, 9(5): 515-519
    23. Jonsson M, Dejmek J, Bendahl PO, et al. Loss of Wnt5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res, 2002,62(2):409-416
    24. Bachmann IM, Straume O, Puntervoll HE, et al. Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res, 2005,11(24 Pt 1):8606-8614
    25. Blanc E, Roux GL, Benard J, et al. Low expression of Wnt5a gene is associated with high risk neuroblastoma . Oncogene, 2005,24(7):1277-1283
    26. Chung EJ, Hwang SG, Nguyen PM, et al. Regulation of leukemic cell adhesion, proliferation, and survival byβ-catenin. Blood, 2002,100(3):982-990
    27. Lu DS, Zhao YD, Tawatao R, et al. Activation of the Wnt sigaling pathway in chronic lymphocytic leukemia. PNAS, 2004,101(9):3118-3123
    28. Ress A, Moelling K. Bcr is a negative regulator of the Wnt signalling pathway. EMBO, 2005,6(11):1095-1100
    29.李增军,邱录贵,李新,等.β-catenin在慢性粒细胞白血病中的表达及与bcr/abl的关系.中国实验血液学杂志, 2007,15(5):931-935
    30. Topol L, Jiang X, Choi H, et al. Wnt5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol, 2003,162(5):899-908
    31. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibitsβ-Catenin–TCF signaling depending on receptor context. PloS. Biol., 2006,4(4):570-582
    32. Murdoch B, Chadwick K, Martin M, et a1. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Nail Acad Sci, 2003,100(6):3422-3427
    33. Brandon C, Eisenberg LM, Eisenberg CA. WNT signaling modulates the diversification of hematopoietic cells. Blood, 2000,96(13):4132-4141
    34. Topol L, Jiang X, Choi H, et al. Wnt5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol, 2003,162(5):899-908
    1. Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003, 423(6938):448-452
    2. Verras M, Brown J, Li X, et al. Wnt3a growth factor induces androgen receptor-mediated transcription and enhanced cell growth in human prostate cancer cells. Cancer Res, 2004,64(24):8860-8866
    3. Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood, 1975, 45(3):321-334
    4. Whalen AM, Galasinski SC, Shapiro PS, et al. Megakaryocytic differentiation induced by constitutive activation of mitogenactivated protein kinase. Molecular Cell Biology, 1997,17(4):1947-1955
    5. Fisher KJ, Choi H, Burda J, et al. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology, 1996,217(1):11-22
    6. Robbins PD, Tahara H, Ghivizzani SC. Viral vector for gene therapy. Trends Biotechnol, 1998,16(1):35-45
    7. Hemminki A, Alvarez RD. Adenoviruses in Oncology:A Viable Option?. Bio Drugs, 2002,16(2): 77-87
    8. Mizuguchi H, Kay MA. Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Human Gene Therapy, 1998,9(17):2577-2583
    9. He TC, Zhou S, Costa L, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci, 1998, 95(5):2509-2514
    10. Luo JY, Deng ZL, Luo XJ, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nature Protocols, 2007,2(5):1236-1247
    11.王德利.腺病毒载体的研究进展.海军总医院学报, 2004, 17(4):227-230
    12. Nakamura T, Sato K, Hamada H. Effective gene transfer to human melanomas via integrin-targeted adenoviral vectors. Human Gene Therapy, 2002,13(4):613-626
    13. Takayama K, Reynolds PN, Short JJ, et al. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism. Virology, 2003,309 (2):282-293
    14. Shayakhmetov DM , Papayannopoulou T , Stamatoyannopoulos G,et al . Efficient gene transfer into human CD34+ cells by a retargeted adenovirus vector. Virology,2000,74(11): 2567-2583
    15.陈彦祥,乔卫红,刘栋良,等.阳离子脂质体的转染机制及转染效率影响因素.生物工程学报, 2007,23(5):776-780
    16.朱元贵,卓光生,陈志哲.阳离子脂质体介导转染核酸的研究.国外医学生物化学与检验学分册, 2000, 21(5):237-238
    17.张宝,霍霞,徐锡金,等. Lipofectamine2000与Fugene6转染细胞的效率比较.生物技术通讯, 2007,18(4):638-640
    18.沈慧玲,陈子兴,王玮,等.电穿孔法基因转染悬浮细胞条件的优化.苏州大学学报(医学版), 2004,24(1):40-43
    19.梁爱斌, Karsten Stahnke,薄兰君,等.滋养层细胞与原代白血病细胞共培养体系的建立及其意义.临床血液学杂志, 2006,19(2):103-106
    20.申烨华,耿信笃. CHO细胞表达系统研究新进展.生物工程进展, 2000, 20(4):23-25
    21. Cho HH, Kim YJ, Kim SJ, et al. Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. Tissue Eng JT-Tissue engineering, 2006,12(1):111-121
    22. Murdoch B, Chadwick K, Martin M, et al. Wnt-5A augments repopulating capacity and primitive hematopietic development of human blood stem cells in vivo. Proc Natl Acad Sci, 2003,100(6):3422-3427
    1. Nusse R. Wnt signaling in disease and in development. Cell research, 2005,15(1): 28-32
    2. Johan HE, Baker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Current Opinion in Genetics & Development, 2003,13(1):28-33
    3. Schulte G, Bryja V. The Frizzled family of unconventional G-protein-coupled receptors. Trends in Pharmacological Sciences, 2007,28(10): 518-525
    4. Behrens J, Von Kries JP, Kuhl M, et al. Functional of beta-catenin with the transcription factor LEF-1. Nature, 1996,382(6592):638-642
    5. Toyofuku T, Hong Z, Kuzuya T, et al. Wnt/frizzled-2 signalling induces aggregation and adhesion among cardiac myocytes by increased cadherin-beta-catenin complex. Cell Biology, 2000,150(1):225-241
    6. Tamai K, Semenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction .Nature, 2000,407(6803):530-535
    7. Brennan KR, Brown AM. Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia, 2004, 9(2):119-131
    8. Lejeune S, Huguet EL, Hamby A, et al. Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res, 1995,1(2):215-222
    9. Lowy AM, Fenoglio-Preiser C, Kim OJ, et al. Dysregulation of beta-catenin expressioncorrelates with tumor differentiation in pancreatic duct adenocarcinoma. Ann Surg Oncol, 2003, 10(3): 284-290
    10. Weeraratna AT, Jiang Y, Hostetter G, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 2002,1(3):279-288
    11. Huang CL, Liu D, Nakano J, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor, an expression in non-small-cell lung cancer. J Clin Oncol, 2005,23(34):8765-8773
    12. Teulière J, Faraldo MM, Deugnier MA, et al. Targeted activation ofβ-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development, 2005,132 (2): 267- 277
    13. Simon M, Victoria LG, David CL, et al. Constitutive activation of the Wnt/β-catenin signalling pathway in acute myeloid leukaemia. Oncogene, 2005, 24(2):2410-2420
    14. Muller TC, Steffen B, Cauvet T, et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol-Cell-Biol, 2004, 24(7):2890-2904
    15. De-Vos J, Couderc G, Tarte K, et al. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood, 2001, 98(3):771-780
    16. Cho M, Park S, Gwok J, et al. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellularβ-catenin protein. Biochemical and Biophysical Research Communications, 2008, 367(1):195-200
    17. Staal FJT, Clevers HC. Wnt signalling and hematopoiesis: A Wnt-Wnt situation. Nature Reviews Immunology, 2005, 5(1):21-30
    18. Lu DS, Zhao YD, Tawatao R, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. PNAS, 2004,101(9):3118-3123
    19. Semenov MV, Habas R, MacDonald BT, et al. SnapShot: Noncanonical Wnt Signaling Pathways. Cell, 2007, 131(7):1378.e1-1378.e2
    20. Struewing IT, Barnett CD, Zhang W, et al. Frizzled-7 turnover at the plasma membrane is regulated by cell density and the Ca~(2+)–dependent protease calpain-1. Experimental Cell Research, 2007,313(7):3526-3541
    21. Ishitani T, Kishida S, Hyodo-Miura J, et al. The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt5a/Ca~(2+) Pathway To Antagonize Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003,23(1): 131–139
    22. Sheldahl LC, Park M, Malbon CC, et al. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Current Biology, 1999,9(13):695-698
    23. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibitsβ-Catenin–TCF signaling depending on receptor context. PloS. Biol., 2006,4(4): 570-582
    24. Kohn AD, Moon RT. Wnt and calcium signaling:β-Catenin-independent pathways. Cell Calcium, 2005,38,(3-4):439-446
    25. Topol L, Jiang X, Choi H, et al. Wnt5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol, 2003,162(5):899-908
    26. Liang HL, Chen Q, Coles AH, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 2003,4(5): 349-360
    27. Cheng CW, Yeh JC, Fan TP, et al. Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochemical and Biophysical Research Communications, 2008, 365(2):285-290
    28. Merle P, Kim M, Herrmann M, et al. Oncogenic role of the frizzled-7/β-catenin pathway in hepatocellular carcinoma. Journal of Hepatology, 2005, 43(5):854-862
    29. Kajiguchi T, Lee S, Lee MJ, et al. KIT regulates tyrosine phosphorylation and nuclear localization ofβ-catenin in mast cell leukemia. Leukemia Research, 2008, 32(5):761-770
    30. Dufour JF, Huber O, Kozma SC, et al. Tumour suppressors in liver carcinogenesis. Journal of Hepatology, 2007, 47(6):860-867
    31. Zhao C, Blum J, Chen A, et al. Loss ofβ-Catenin Impairs the Renewal of Normal and CML Stem Cells In Vivo. Cancer Cell, 2007, 12(6):528-541
    32. Neufeld KL, Zhang F, Cullen BR, et al. APC-mediated downregulation ofβ-catenin activity involves nuclear sequestration and nuclear export. EMBO Reports, 2000,1(6): 519-523
    33. Doble BW, Patel S,Wood GA, et al. Functional Redundancy of GSK-3αand GSK-3βin Wnt/β-Catenin Signaling Shown by Using an Allelic Series of Embryonic Stem Cell Lines. Developmental Cell, 2007,12(6):957-971
    34. Reinhardt, Ferandin Y, Meijer. Purification of CK1 by affinity chromatography on immobilised axin. Protein Expression and Purification, 2007, 54(1):101-109
    35.苟文. p16、cyclin D1与肿瘤.实用肿瘤学杂志, 2007, 21(1):75-77
    36.戴文斌,任占平,陈蔚麟,等.癌症, 2007, 26(9):963-966
    1. Steffen B, Carsten MT, Schwable J, et al. The molecular pathogenesis of acute myeloid leukemia. Critical Reviews in Oncology/Hematology, 2005, 56 (2):195-221
    2.何渝军,蒋纪恺。癌基因、抑癌基因与白血病发生。国外医学输血与血液学分册,1998,22(3):179-182
    3.李利,孟凡义。成人白血病发生的环境危险因素。环境与职业医学,2006,23(4):349-351
    4. Ikeda A, Shankar DB, Watanabe M, et al. Molecular targets and the treatment of myeloid leukemia. Molecular Genetics and Metabolism, 2006, 88(3):216-224
    5.金洁。急性髓系白血病的治疗策略。国际输血与血液学杂志,2007,30(3):198-204
    6. David J, Van DB, Arun K, et al. Role of members of the Wnt gene family in human hematopoiesis. Blood, 1998,92(9):3189-3202
    7. Austin TW, Solar GP, Ziegler FC, et a1. A role for theWnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood, 1997,89(10): 3624-3635
    8. Cheng CW, Yeh JC, Fan TP, et al. Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochemical and Biophysical Research Communications, 2008,365(2):285-290
    9. Yu JM, Jun ES, Jung JS, et al. Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Letters, 2007,257(2):172-181
    10. Liang HL, Chen Q, Coles AH, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 2003,4(5): 349-360
    11. Behari J, Zeng G, Otruba W, et al. R-Etodolac decreasesβ-catenin levels along with survival and proliferation of hepatoma cells. Journal of Hepatology, 2007, 46(5):849-857
    12. Chhipa RR, Kumari R, Upadhyay AK, et al. Abrogation of p53 by its antisense in MCF-7 breast carcinoma cells increases cyclin D1 via activation of Akt and promotion of cell proliferation. Experimental Cell Research, 2007, 313(19):3945-3958
    13.宋今丹主编。《医学细胞分子生物学》,人民卫生出版社,北京,2003年1月。
    14. Potin S, Bertoglio J, Bréard J. Involvement of a Rho-ROCK-JNK pathway in arsenic trioxide-induced apoptosis in chronic myelogenous leukemia cells. FEBS Letters, 2007, 581(1):118-124
    15. Sercan HO, Pehlivan M, Simsek O, et al. Induction of apoptosis increases expression of non-canonical WNT genes in myeloid leukemia cell lines. Oncol Rep, 2007, 18(6):1563-1569
    16. Biagioli M, Pifferi S, Ragghianti M, et al. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis Cell Calcium, 2008, 43(2):184-195
    17. Izzo V, Asaro MR, Forte GI, et al. Use of voltage gradient gel electrophoresis in apoptotic DNA analysis. Journal of Chromatography A, 2000, 890(2):371-374
    18. Xiao JX, Huang GQ, Zhu CP, et al. Morphological study on apoptosis Hela cells induced by soyasaponins. Toxicology in Vitro, 2007, 21(5):820-826
    19. Tsiftsoglou AS, Pappas IS, Vizirianakis IS. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacology & Therapeutics, 2003, 100():257-290
    20. Alitalo R. The bcr-c-abl tyrosine kinase activity is extinguished by TPA in K562 leukemia cells. FEBS Letters, 1987, 222(2):293-298
    21.周霞,侯健。2-甲氧基雌二醇诱导HL-60、K562细胞分化作用初探。中华血液学杂志,2006,27(1):58-59
    22.张永清,黄高昇,刘红娟,等。苦参碱诱导K562细胞分化方向的研究。肿瘤学杂志,2004,10(1):25-27
    23. Singh SM, Trivedi AK, Behre G. C/EBPαS248A mutation reduces granulocytic differentiation in human leukemic K562 cells. Biochemical and Biophysical Research Communications, 2008, 369(2):692-694
    24. Traina F, Favaro PMB, Medina SS, et al. ANKHD1, ankyrin repeat and KH domain containing 1, is overexpressed in acute leukemias and is associated with SHP2 in K562 cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2006, 1762(9): 828-834
    25. Hao J, Li TG, Qi XX, et al. WNT/β-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Developmental Biology, 2006,290(1):81-91
    26. Brandon C, Eisenberg LM, Eisenberg CA. WNT signaling modulates the diversification of hematopoietic cells. Blood, 2000,96(13):4132-4141
    27. Simon M, Victoria LG, David CL, et al. Constitutive activation of the Wnt/β-cateninsignalling pathway in acute myeloid leukaemia. Oncogene, 2005, 24(2):2410-2420
    28. Cho M, Park S, Gwok J, et al. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellularβ-catenin protein. Biochemical and Biophysical Research Communications, 2008, 367(1):195-200
    29. Chou CC, Yung BYM, Ya CH. Involvement of nPKC-MAPK pathway in the decrease of nucleophosmin/B23 during megakaryocytic differentiation of human myelogenous leukemia K562 cells. Life Sciences, 2007, 80(22):2051-2059
    30. Kim SH, Oh SM, Kim TS. Induction of human leukemia HL-60 cell differentiation via a PKC/ERK pathway by helenalin, a pseudoguainolide sesquiterpene lactone. European Journal of Pharmacology, 2005, 511(2-3):89-97
    31. Sheldahl LC, Park M, Malbon CC, et al. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Current Biology, 1999, 9(13):695-698
    1. Nusse R. Wnt signaling in disease and in development. Cell research, 2005,15(1):28-32
    2. Moon RT, Brown JD, Torres M, et al. Wnts modμlate cell fate and behavior during vertebrate development. Trends in Genetics,1997,13(4):157-162
    3. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 1998,14 (1):59-88
    4. Pennisi E. How a growth control path takes a wrong turn to cancer. Cell Biology, 1998, 281(5382):1438-1439,1441
    5. Clark CC, Cohen IR, Eichstetter I, et al. Molecular cloning of the human proto-oncogene Wnt5a and mapping of the gene to chromosome 3p14-p21. Genomics, 1993, 18(2): 249-260
    6. Danielson KG, Pillarisetti J, Cohen IR, et al. Characterization of the complete genomic structure of the human WNT-5A Gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. J. Biol. Chem., 1995,270(52): 31225-31234
    7. Adamson MC, Dennis C, Delaney S, et al. Isolation and genetic mapping of two novel members of the murine Wnt gene family, Wnt11 and Wnt12, and the mapping of Wnt5a and Wnt7a. Genomics, 1994,24(1):9-13
    8. Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003,423(6938):448-452
    9. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibitsβ-Catenin–TCF signaling depending on receptor context. PloS. Biol., 2006,4(4): 570-582
    10. Gavin BJ, Mcmahon JA, Mcmahon AP. Expression of multiple novel Wnt-1/int-1-related genes during fetal and adult mouse development. Genes Dev., 1990,4(12B):2319-2332
    11. Ang SJ, Stump RJW, Lovicu FJ, et al. Spatial and temporal expression of Wnt and Dickkopf genes during murine lens development. Gene Expression Patterns, 2004,4(3): 289-295
    12. Lickert H, Kispert A, Kutsch S, et al. Expression patterns of Wnt genes in mouse gut development. Mechanisms of Development, 2001,105(1-2):181-184
    13. Reddy S, Andi T, Bagasra A, et al. Characterization of Wnt gene expression indeveloping and postnatal hair follicles and identification of Wnt5a as a target of sonic hedgehog in hair follicle morphogenesis. Mechanisms of Development, 2001,107(1): 69-82
    14. Li CG, Xiao J, Hormi K, et al. Wnt5a Participates in Distal Lung Morphogenesis. Developmental Biology, 2002,247(1):26-46
    15. Cha KB, Douglas KR, Potok MA, et al. WNT5A signaling affects pituitary gland shape. Mechanisms of Development, 2004,121(2):183-194
    16. Li CG, Hu LY, Xiao J, et al. Wnt5a regμlates Shh and Fgf10 signaling during lung development. Developmental Biology, 2005,287(1):86-97
    17. Rawal N, Castelo G, Sousa KM, et al. Dynamic temporal and cell type-specific expression of Wnt signaling components in the developing midbrain. Experimental Cell Research, 2006,312(9):1626-1636
    18. Irene Yan CY, Rossi E, Siwiec F. Wnt5A, a marker for dorsal retinal pigmented epithelium. Developmental Biology, 2006,295(1):397-398
    19. Cervantes S, Yamaguchi TP, Hebrok M. A non-canonical Wnt pathway mediated by Wnt5a is required for midgut elongation. Developmental Biology, 2007,306(1):419-420
    20. Tai CC, Sala F, Ford H, et al. Wnt5a knockout mice exhibit anorectal malformation. Journal of the American College of Surgeons, 2007,205(3):S48
    21. He FL, Xiong W, Gu SP, et al. Molecular etiology of cleft palate formation in Wnt5a mutants. Developmental Biology, 2007,306(1):327-328
    22. Qian D, Jones C, Rzadzinska, et al. Wnt5a functions in planar cell polarity regulation in mice. Developmental Bioology, 2007,306(1):121-133
    23. Weeraratna AT, Jiang Y, Hostetter G, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 2002,1(3):279-288
    24. Fujio Y, Matsuda T, Oshima Y, et al. Signals through gp130 upregμlate Wnt5a and contribute to cell adhesion in cardiac myocytes. FEBS Letters, 2004,573(1-3):202-206
    25. Kawasaki A, Torii K, Yamashita Y, et al. Wnt5a promotes adhesion of human dermal fibroblasts by triggering a phosphatidylinositol-3 kinase/Akt signal. Cellular Signalling, 2007,19(12):2498-2506
    26. Cheng CW, Yeh JC, Fan TP, et al. Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochemical andBiophysical Research Communications, 2008,365(2):285-290
    27. Yu JM, Jun ES, Jung JS, et al. Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Letters, 2007,257(2):172-181
    28. Liang HL, Chen Q, Coles AH, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 2003,4(5): 349-360
    29. Hao J, Li TG, Qi XX, et al. WNT/β-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Developmental Biology, 2006,290(1):81-91
    30. David J, Van DB, Arun K, et al. Role of members of the Wnt gene family in human hematopoiesis. Blood, 1998,92(9):3189-3202
    31. Austin TW, Solar GP, Ziegler FC, et a1. A role for theWnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood, 1997,89(10): 3624-3635
    32. Rattis FM, Voermans C, Reya T. Wnt signaling in the stem cell niche. Current Opinion in Hematology, 2004,11(2):88-94
    33. Murdoch B, Chadwick K, Martin M, et a1. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Nail Acad Sci, 2003,100(6):3422-3427
    34. Brandon C, Eisenberg LM, Eisenberg CA. WNT signaling modulates the diversification of hematopoietic cells. Blood, 2000,96(13):4132-4141
    35. Chung EJ, Hwang SG, Nguyen PM, et al. Regulation of leukemic cell adhesion, proliferation, and survival byβ-catenin. Blood, 2002,100(3):982-990
    36. Lu DS, Zhao YD, Tawatao R, et al. Activation of the Wnt sigaling pathway in chronic lymphocytic leukemia. PNAS, 2004,101(9):3118-3123
    37. Simon M, Grandage VL, Linch DC, et al. Constitutive activation of the Wnt/β-catenin signalling pathway in acute myeloid leukaemia. Oncogene, 2005,24(2): 2410-2420
    38. Ress A, Moelling K. Bcr is a negative regulator of the Wnt signalling pathway. EMBO, 2005,6(11):1095-1100
    39. Tidow CM, Steffen B, Cauvet T, et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Molecular and Cellular Biology, 2004,24(7):2890-2904
    40. Jose RG, Antonio JV, Cordeu L, et al. Wnt5a, a putative tumour suppressor of lymphoidmalignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia. European Journal of Cancer, 2007,43(5):2736-2746
    41. Olson DJ, Papkoff J. Regulated expression of Wnt family members during proliferation of C57MG mammary cells. Cell Growth Differ, 1994,5(2):197-206
    42. Lejeune S, Huguet EL, Hamby A, et al. Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res, 1995,1(2):215-222
    43. Jonsson M, Dejmek J, Bendahl PO, et al. Loss of Wnt5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res, 2002,62(2):409-416
    44. Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 2000,406(6795):536-540
    45. Bachmann IM, Straume O, Puntervoll HE, et al. Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res, 2005,11(24 Pt 1):8606-8614
    46. Howng SL, Wu CH, Cheng TS, et al. Differential expression of Wnt genes, beta-catenin and E-cadherin in human brain tumor. Cancer Letters, 2002,183(1): 95-101
    47. Blanc E, Goldschneider D, Douc-Rasy S, et al. Wnt5a gene expression in malignant human neuroblasts. Cancer Letters, 2005,228(122):117-123
    48. Blanc E, Roux GL, Benard J, et al. Low expression of Wnt5a gene is associated with high risk neuroblastoma . Oncogene, 2005,24(7):1277-1283
    49.黄英,刘国祥,章波,等. Wnt5a在肺鳞癌和腺癌中的表达及意义.重庆医学, 2007,36(21):2179-2181,2184
    50. Huang CL, Liu D, Nakano J, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor, an expression in non-small-cell lung cancer. J Clin Oncol, 2005,23(34):8765-8773
    51. Rhee CS, Sen M, Lu D, et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene, 2002,21(43): 6598-6605
    52. Tulac S, Nayak NR, Kao LC, et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. J Clin Endocrinol Metab, 2003,88(8):3860-3866
    53. Kremenevskaja N, Von Wasielewski R, Rao AS, et al. Wnt5a has tumor suppressoractivity in thyroid carcinoma. Oncogene, 2005,24(13):2144-2154
    54. Saitoh T, Mine T, Katoh M. Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int J Mol Med, 2002,9(5):515-519
    55.庄立岩,张志文,郭应禄.生长因子WNT-5A在六种泌尿肿瘤细胞中的异常表现.中华泌尿外科杂志, 1999,20(9):565
    56.刘晓红,周航波,马恒辉,等.肝细胞肝癌中Wnt5a、β-catenin和E-cadherin蛋白的表达及临床意义.临床与实验病理学杂志, 2007,23(4):400-403
    57. Yamanaka H, Moriguchi T, Masuyama N, et al. JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMPO Reports, 2002,3(1):69-75
    58. Gong Y, Mo CH, Fraser SE. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature, 2004,430(2796):689-693
    59. Johan HE, Baker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Current Opinion in Genetics & Development, 2003,13(1):28-33
    60. Schulte G, Bryja V. The Frizzled family of unconventional G-protein-coupled receptors. Trends in Pharmacological Sciences, 2007,28(10): 518-525
    61. He X, Saint-Jeannet JP, Wang Y, et al. A member of the Frizzled protein family mediating axis induction by Wnt5a. Science, 1997,275(5306):1652-1654
    62. Behrens J, Von Kries JP, Kuhl M, et al. Functional of beta-catenin with the transcription factor LEF-1. Nature, 1996,382(6592):638-642
    63. Molenaar M, Van de Wetering M, Oosterwegel M, et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell, 1996,86(3): 391-399
    64. Toyofuku T, Hong Z, Kuzuya T, et al. Wnt/frizzled-2 signalling induces aggregation and adhesion among cardiac myocytes by increased cadherin-beta-catenin complex. Cell Biology, 2000,150(1):225-241
    65. Neufeld KL, Zhang F, Cμllen BR, et al. APC-mediated downregμlation ofβ-catenin activity involves nuclear sequestration and nuclear export. EMBO Reports, 2000,1(6): 519-523
    66. Kikuchi A. Roles of Axin in the Wnt Signalling Pathway. Cellular Signalling, 1999,11(11):777-788
    67. Sontag E. Protein phosphatase 2A: the Trojan Horse of cellμlar signaling. Cellular Signalling, 2001, 13(1):7-16
    68. Doble BW, Patel S,Wood GA, et al. Functional Redundancy of GSK-3αand GSK-3βin Wnt/β-Catenin Signaling Shown by Using an Allelic Series of Embryonic Stem Cell Lines. Developmental Cell, 2007,12(6):957-971
    69. Reinhardt, Ferandin Y, Meijer. Purification of CK1 by affinity chromatography on immobilised axin. Protein Expression and Purification, 2007, 54(1):101-109
    70. Polakis P. The many ways of Wnt in cancer. Current Opinion in Genetics & Development, 2007,17(1):45-51
    71. Slusarski DC, Yang-Snyder J, Busa WB, et al. Modupatlation of embryonic intracellular Ca~(2+) signalling by Wnt-5A. Developmental Biology, 1997, 182(1):114-120
    72. Sheldahl LC, Park M, Malbon CC, et al. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Current Biology, 1999, 9(13):695-698
    73. Kohn AD, Moon RT. Wnt and calcium signaling:β-Catenin-independent pathways. Cell Calcium, 2005,38,(3-4):439-446
    74. Ishitani T, Kishida S, Hyodo-Miura J, et al. The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt5a/Ca~(2+) Pathway To Antagonize Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003,23(1): 131–139
    75. Topol L, Jiang X, Choi H, et al. Wnt5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol, 2003,162(5):899-908
    76. Oishi I, Suzuki H, Onishi N, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells, 2003,8(7):645-654
    1. Nusse R. Wnt signaling in disease and in development. Cell research, 2005,15 (1):28-32
    2. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 1998,14 (1):59-88
    3. Clark CC, Cohen IR, Eichstetter I, et al. Molecular cloning of the human proto-oncogene Wnt5a and mapping of the gene to chromosome 3p14-p21. Genomics, 1993, 18(2):249-260
    4. David J, Van DB, Arun K, et al. Role of members of the Wnt gene family in humanhematopoiesis. Blood, 1998,92(9):3189-3202
    5. Lejeune S, Huguet EL, Hamby A, et al. Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res, 1995,1(2):215-222
    6. Jonsson M, Dejmek J, Bendahl PO, et al. Loss of Wnt5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res, 2002,62(2):409-416
    7. Liang HL, Chen Q, Coles AH, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 2003,4(5): 349-360
    8. Yamanaka H, Moriguchi T, Masuyama N, et al. JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMPO Reports, 2002, 3(1):69-75
    9. Gong Y, Mo CH, Fraser SE. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature, 2004,430(2796):689-693
    10. Slusarski DC, Yang-Snyder J, Busa WB, et al. Modupatlation of embryonic intracellular Ca~(2+) signalling by Wnt-5A. Developmental Biology, 1997, 182(1):114-120
    11. Chung EJ, Hwang SG, Nguyen PM, et al. Regulation of leukemic cell adhesion, proliferation, and survival byβ-catenin. Blood, 2002,100(3): 982-990
    12. Lu DS, Zhao YD, Tawatao R, et al. Activation of the Wnt sigaling pathway in chronic lymphocytic leukemia. PNAS, 2004,101(9): 3118-3123
    13. Li ZQ, Si WK, Pan J, et al. Expression of Wnt5a gene in hematologic diseases and leukemic cell lines. Journal of Experimental Hematology, 2007, 15(5):927-930
    14. Saitoh T, Mine T, Katoh M. Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int J Mol Med, 2002,9(5):515-519
    15. Kremenevskaja N, Von Wasielewski R, Rao AS, et al. Wnt5a has tumor suppressor activity in thyroid carcinoma. Oncogene, 2005,24(13): 2144-2154
    16. Weeraratna AT, Jiang Y, Hostetter G, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 2002,1(3):279-288
    17. Bachmann IM, Straume O, Puntervoll HE, et al. Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res, 2005,11(24 Pt 1):8606-8614
    18. Blanc E, Goldschneider D, Douc-Rasy S, et al. Wnt5a gene expression in malignant human neuroblasts. Cancer Letters, 2005,228(122): 117-123
    19. Liu XH, Zhou HB, Ma HH, et al. The expression and clinic significance of Wnt5a,β-catenin and E-cadherin in hepatic cell cancer. Journal of Clinic and Experimental Pathology, 2007,23(4):400-403
    20. He X, Saint-Jeannet JP, Wang Y, et al. A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science, 1997,275(10):1652–1654
    21. Toyofuku T, Hong Z, Kuzuya T, et al. Wnt/frizzled-2 signalling induces aggregation and adhesion among cardiac myocytes by increased cadherin-beta-catenin complex. Cell Biology, 2000,150(1):225-241
    22. Holmen SL, Salic A, Zylstra CR, et al. A novel set of wnt-frizzled fusion proteins identifies receptor components that activate beta-catenin-dependent signalling. J-Biol-Chem. 2002,277(9):34727-34735
    23. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibitsβ-Catenin–TCF signaling depending on receptor context. PloS. Biol., 2006,4(4): 570-582
    24. Kuhl M, Geis K, Sheldahl LC, et al. Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca~(2+) signalling. Mech. 2001,106(1):61-76
    25. Nemeth MJ, Topol L, Anderson SM, et al. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. PNAS, 2007, 104(39):15436-15441
    26. Ishitani T, Kishida S, Hyodo-Miura J, et al. The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt5a/Ca~(2+) Pathway To Antagonize Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003,23(1): 131-139
    27. Behrens J, Von Kries JP, Kuhl M, et al. Functional of beta-catenin with the transcription factor LEF-1. Nature, 1996,382(6592):638-642
    28. Reinhardt, Ferandin Y, Meijer. Purification of CK1 by affinity chromatography on immobilised axin. Protein Expression and Purification, 2007, 54(1):101-109
    29. Simon M, Victoria LG, David CL, et al. Constitutive activation of the Wnt/β-catenin signalling pathway in acute myeloid leukaemia. Oncogene, 2005, 24(2):2410-2420
    30. Cho M, Park S, Gwok J, et al. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellularβ-catenin protein. Biochemical and Biophysical Research Communications, 2008, 367(1):195-200
    31. Gou W. p16, Cyclin D1 and Tumor. Journal of Practical Oncology, 2007, 21(1):75-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700