Ad-HO-1腺病毒载体的构建及其对大鼠移植肝的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     缺血再灌注损伤目前在肝移植中是不可避免地发生,并且可能导致移植肝出现原发性无功能,这也是临床中需要再移植的重要原因之一,因此重视对缺血再灌注损伤的研究有助于解决目前临床中供体紧缺的矛盾。而基因治疗是近年来迅速开展的临床治疗方法之一,利用基因转染技术来减缓移植肝的缺血再灌注损伤有着良好的临床应用前景。
     第一部分:大鼠原位肝移植模型的建立
     目的:用改良二袖套法建立稳定的大鼠原位肝脏移植模型。
     方法:在Kamada二袖套法的的基础上,对大鼠原位肝移植术在取肝、灌注、修肝和植肝等手术操作以及围手术期的处理进行改良,复制120例次大鼠原位肝移植模型。观察供、受手术时间、无肝期、手术成功率、术后并发症和一周存活率。
     结果:与训练初期相比较,训练的后期在手术时间、无肝期、手术成功率、术后并发症和移植后大鼠一周存活率均存在显著差异。
     结论:通过在Kamada二袖套法的基础上进行技术改进和一定数量的模型训练能够建立理想的大鼠原位肝移植模型。
     第二部分:携带hHO-1基因的重组腺病毒载体的构建
     目的:构建含有血红素氧合酶-1基因的重组腺病毒载体
     方法:(1)用限制性内切酶EcoRI+Bg1II从克隆载体pOTB7-hHO-1中切取基因hHO-1片段。(2)将线性化的pSGCMV质粒和经酶切的hHO-1基因进行连接转化,对其产物进行质粒鉴定,酶切鉴定和DNA测序鉴定。(3)采用Cre/Loxp系统将质粒pSGCMV-hHO-1和含5型腺病毒右臂的质粒pBGHLoxP△E1E3共转染至293细胞包装成重组腺病毒Ad-HO-1。(4)用VT001/VT002鉴定重组腺病毒Ad-HO-1的安全性,并用Ad-HO-1感染体外培养的细胞,观察其感染效率。
     结果:(1)利用连接酶将pSGCMV质粒和hHO-1连接转化可获得阳性质粒pSGCMV-hHO-1,并经鉴定目的基因hHO-1能准确完整地导入质粒pSGCMV中(。2)采用Cre/LoxP腺病毒重组系统能获得高滴度的重组腺病毒Ad-HO-1。(滴度为2.0×1010pfu/ml)。(3)重组腺病毒Ad-HO-1经VT001/VT002鉴定无野生型腺病毒,并能有效感染体外培养细胞使之表达hHO-1基因的产物。
     结论:采用Cre/LoxP腺病毒重组系统能有效地构建有良好安全性的携带hHO-1基因的腺病毒载体。
     第三部分Ad-HO-1对大鼠移植肝缺血再灌注损伤的保护作用
     目的:利用携带hHO-1基因的腺病毒载体研究其对大鼠移植肝缺血再灌损伤的保护作用。
     方法:SD大鼠32只配对成16对,随机分两组(n=8)行ROLT。对照组供体用空载体进行腹腔注射,实验组供体用Ad-HO-1进行腹腔注射。36小时后取肝行ROLT。缺血再灌注6小时后处死模型,采血送检肝功能;流式细胞仪测肝细胞凋亡率;Western-blot检测肝组织中的HO-1、Bcl-2、Bcl-xl和caspase-3,并进行灰度比较;TUNEL法检测肝组织的细胞凋亡;免疫组化检测HO-1、TNF-α、巨噬细胞和caspase-3;电镜观察肝细胞的超微病理变化。
     结果:(1)实验组的肝功能指标ALT、AST、LDH显著低于对照组;细胞凋亡率显著低于对照组,且凋亡细胞主要出现在汇管区附近。(2)Western-blot检测发现实验组肝组织中HO-1、Bcl-2和Bcl-xl显著高于对照组,而caspase -3则显著低于对照组。(3)免疫组化发现HO-1在实验组中大量表达且主要在血管区,而对照组中TNF-α在肝实质细胞大量表达,且血管壁附近可见大量巨噬细胞浸润,caspase -3阳性细胞出现于肝间质细胞。(4)电镜观察对照组可见典型细胞凋亡,而实验组肝细胞超微结构基本正常。
     结论:(1)构建携带hHO-1基因的腺病毒载体通过热转染能成功地转入供肝中并高效表达,且主要表达在血管区域。(2)HO-1在供肝的缺血再灌注损伤中对肝脏有显著的抗凋亡和抗炎的保护作用。并且抗凋亡作用与上调Bcl-2、Bcl-xl和下调caspase-3有关,而抗炎作用则可能与抑制巨噬细胞浸润和减少TNF-α的表达有关。
Background:
     IRI (ischemia-reperfusion injury) is inescapable to liver transplantation, and may bring grafts on primary nonfunction which is one of the most important factors of retransplantation. So the study on alleviating IRI conduces to shrink the gap between organs available for transplantation and the number of patients awaiting an organ. Meanwhile, the gene therapy is one of the clinic ways to be practiced rapidly at recent years. It is an alluring therapeutic approach to utilize the technique of transforming functional genes into organ grafts to alleviate IRI.
     Part one:
     An Animal Model of ROLT by Modifying Kamada’s Method
     Objective: to establish an animal model of ROLT by modifying Kamada’s method.
     Methods: 120 cases of ROLT were performed by ameliorating the surgical technique based on Kamada’s method and improving the treatment at around-operation period, and were investigated the operation time of donors and recipients, anhepatic period and survival time.
     Results: In contrast with the initial stage, there were significant differences from the operation time, the livability of 24 hours and one week and the incidence of the operation complication.
     Conclusion: It can establish an ideal animal model of ROLT via improving the surgical technique based on Kamada’s method and performing a certain amount of cases.
     Part two:
     Construction of Recombinant Adenovirus of Human Heme Oxygenase-1 Gene
     Objective: To construct the recombinant adenovirus of human heme oxygenase-1 gene.
     Methods: (1) The segment of hHO-1 gene was liberated from the cloning vector of pOTB7-hHO-1 by restriction endomuclease EcoRI and Bg1II; (2) the segment of hHO-1 gene was ligated into adenovirus shuttle vector pSGCMV after digested with EcoRI and Bg1II by standard procedure, and the production pSGCMV- hHO-1 was identified and selected. (3) pSGCMV- hHO-1 and backbone vector pBHGloxP△E1E3 were cotransformed into the adenoviral packaging 293 cells by the Cre-mediated sit-specific recombination method, and it was named Ad-HO-1. (4) After the security of Ad-HO-1 was evaluated by VT001/VT002, his infectional efficiency in vitro was also tested.
     Results: (1) the positive recombination pSGCMV- hHO-1 was obtained after hHO-1 gene was ligated into pSGCMV, and the hHO-1 gene of the verified pSGCMV- hHO-1 was correct. (2) Ad-HO-1 which was obtained by the pathway of the Cre-mediated sit-specific recombination method was in high titer which reached 2.0×1010pfu. (3) The obtained Ad-HO-1 did not contain wide-type adenovirus, and could be transformed effectively in vitro.
     Conclusion: Ad-HO-1 which can express effectively and safely in vitro can be obtained by the Cre-mediated sit-specific recombination method.
     Part three:
     hHO-1 gene transfer protects rat grafts from IRI followed OLT
     Objective: To investigate how recombinant adenovirus carrying HO-1 which was constructed by ourselves alleviate hepatic IRI after transplantation.
     Methods: Two groups of SD rats (n=8) were studied. Control donors were intraperitoneally pretreated with Ad-EGFP (2.5×109pfu) 36 hours before their livers were harvested; and experimental donors were intraperitoneally pretreated with Ad-HO-1(2.5×109pfu) 36 hours before their livers were harvested. 6 hours after reperfusion, serum ALT, AST and LDH were measured, and apoptotic cells by TUNEL and the apoptotic ratio by Flow Cytometer were analyzed; and the expression of HO-1 and antiapoptotic(Bcl-2 and Bcl-xl) and proapototic(caspase-3) gene products were determined by Western-blot. The positive cells of HO-1, TNF-α, caspase-3 and macrophage were stained by immunohistochemistry. The ultrastructure of grafts was observed by electronic microscope.
     Results: (1) The expression level of HO-1 in the experimental group was significantly higher than one in the control. Whereas the liver function indicator ALT, AST and LDH and the apoptotic ratio of hepatic cell decreased significantly. (2) By Western-blot,the expression of antiapoptotic(Bcl-2 and Bcl-xl) gene product in the experimental group was increased significantly, and the expression of proapoptotic(casepase-3) gene product was weakened obviously. (3)By immunohistochemistry ,as compared with the control group,in the experimental group a lot of the positive cells of HO-1 were expressed and mainly lay at the vascular area,and there were neither massive macrophages infiltration nor caspase-3 and TNF-αoverexpression. And there were more apoptotic cells around the Disse space in the control group than in the experimental group by TUNEL(.4)By electronic microscope,there were a few classic apoptotic cells to be observed in the control group,but the ultrastructure of the experimental group was almost normal.
     Conclusion: (1)The recombinant Ad-HO-1 can be intraperitoneally transfered into donor liver and be expressed obviously in vascular area of grafts. (2) HO-1 can alleviate ischemia-reperfusion injury in rat liver by suppressing apoptosis and inflammation which relates to significantly modulating proapoptotic (caspase-3) and antiapoptotic (Bcl-2 and Bcl-xl) pathways and depressing macrophage infiltration and TNF-αexpression.
引文
1. Lee S,Charters C,Chandler J,Orloff M A Technique for orthotopic liver transplantation in the rat.Transplantation 1973;16:664-669
    2. Lee S,Chaners C,Orloff M Simplified technique fbr Orthotopic liver transplantation in the rat. Am J Surg 1975;130:38-40
    3. Kamada N,Calne R, Orthotopic liver transplantation in the rat. Transplantation 1979;28:47-50
    4. Kamada N , Calne R , A surgical experience With five hundred thirty liver transplantation in the rat. Surgery l983;93:64
    5. Zimmerman FA,Butcher GW, Davies HS,et al Techniques for orthotopic liver transplantation in the rat and some studies Of the immunologic responses to fully allogenetic liver grafts.Transplant Proc 1979;11:571-574
    6. Miyata M,Fisher J,Fuhs M,et al A simple method for orthotopic liver transplantation in the rat.Transplantation 1980;30:335-338
    7. Engemann R,Thiede A,et al. The value of a physiological liver transplant model in the rat.Transplantation 1982;33:566
    8. Schemmer P,Schoonhoven R,Swenberg JA,et al Gental in situ liver manipulation during organ harvest decreases survival after rat liver transplantation .Role Of Kupffer cells.Transplantation 1998;65:1015
    9. Goto M,Takei Y, Kawano S,et al Tumor necrosis factor and endotoxin in thepathogenesis of liver and pulmonary injuries after orthotopic liver transplantation in rat. Hepatology 1992;16:487
    10.丁义涛,居春光,谢敏大鼠无肝期阻断下腔静脉对机体的影响1998年全国肾外大器官移植学术会议论文摘要汇编p66
    11. Meyer K,Brown MF Zibari G,et al ICAM-l upregulation in distant tissue after hepatic is chemia/reperfusion:a clue to the mechanism of mutiple organ failure.J Pediatr Surg,1998;33:350
    12. A Cuschierl,P R Baker,Laboratory animals &Basic techniques in animal experimentation In:A Cuschieri,P R Baker Introduction to research in medical sciences.Oxford,1985:p14-25,p128-13l
    13. Kamada N Technique in the rat. In Calne RY ,ed.Lver Transplantation.The Cambridge-King’s Hospital Experience. London,Grune&Stratton,1983;p25
    14. Hasuike Y, Monden M,Valdivia LA,et al A simple method for orthotopic liver transplantation with arterial reconstruction in rats.Transplantation 1988;45:830-832
    15. Steffen R , Ferguson DM , Krom RAF A new method orthotopic rat liver transplantation with arterial cuff anastomosis to the recipient common hepatic artery.Transplantation 1989;48:166一168
    16. Howden B,Jabronski P ,Grossman H,et al The importance of the hepatic artery in rat liver transplantation.Transplantation 1989;47:428-431
    17. Chaland P.Braillon A,Gaudin C,et al Orthotopic liver transplantation with hepatic artery Transplantation 1990;49:675-679
    18. Liu L, Freise CE,Ferell L,et al A modified vascular“sleeve”anastomoses for rearterialization in orthotopic liver transplantation in the rats Transplantation 1992;54:179-180
    19. Knoop M,Bachmann S,Keck H,et al Experience with cuff rearterialization in 600 Orthotopic liver grafts in the rat. Am J Surg 1994;167:360-363
    20. Gao W, Lemaster J, Thurman R, Development of a new method for hepatic rearterialization in rat orthotopic liver transplantation.Transplantation 1993;56:19-24
    1. Tenhunen R, Marver HS, Schmid R. The enzymatic catabolism of hemoglobin: stimulation of microso-mal heme oxygenase by hemin. J Lab Clin Med 1970; 75: 410-421
    2. Otterbein LE, Mantell LL, Choi AM. Carbon mono-xide provides protection against hyperoxic lung injury. Am J Physiol 1999; 276: L688-L694
    3. Sarady JK, Otterbein SL, Liu F, Otterbein LE, Choi AM. Carbon monoxide modulates endotoxin-induc-ed production of granulocyte macrophage colony-stimulating factor in macrophages. Am J Respir Cell Mol Biol 2002; 27: 739- 745
    4. Yamashita K, McDaid J, Ollinger R, Tsui TY, Berberat PO, Usheva A, Csizmadia E, Smith RN, Soares MP, Bach FH. Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts. FASEB J 2004; 18: 765-767
    5. Tsui TY, Wu X, Lau CK, Ho DW, Xu T, Siu YT, Fan ST. Prevention of chronic deterioration of heart allograft by recombinant adeno-associated virus-mediated heme oxygenase-1 gene transfer. Circulation 2003; 107: 2623-2629
    6. Bouche D, Chauveau C, Roussel JC, Mathieu P, Braudeau C, Tesson L, Soulillou JP, Iyer S, Buelow R, Anegon I. Inhibition of graft arteriosclerosis deve-lopment in rat aortas following heme oxygenase-1 gene transfer. Transpl Immunol 2002; 9: 235-238
    7. Chen D, Sung R, Bromberg JS. Gene therapy in transplantation. Transplant Immunology. 2002; (9): 301-314.
    8. McNeish I A. Bell S J, Lemoine N R. Gene therapy progress and prospeets: cancer gene therapy using tumour suppressor genes. Gene Ther. 2004, 11(6):497-503.
    9. Rowe W P. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med. 1953.84:570-573.
    10. Stephan A, Vorburger, Kelly K, Adenoviral Gene Therapy. The Oncologist. 2002,7:46-59.
    11. Hardy S, Kitamura M, Harris ST, et al. Constraction of adenovirus vectors through Cre-lox recombination, J Viral, 1997, 71:1842-1489
    12. Ng P, Parks RJ, Cummings DT, et al. A high-efficiency Cre/loxP-based system for construction of adenoviral vectors .Hum Gene Ther, 1999,10(16):2667-2672
    13. Loehmuller H ,et al1 Emergence of early region 1 - containing replication competent adenovirus in stocks of replication defective adenovirus recombinants (delta E1 + delta E3)during multiple passages in 293 cells1 Hum1 Gene Ther1994 ,5 :1485~1491
    1.黄洁夫.中国大陆肝移植的伦理和立法.中华外科杂志,2007,45(5):289-303。
    2. Furukawa H, Todo S, Imventara O, et al. Effect of cold ischemia time on the early outcome of human hepatic allografts preserved with UW solution. Transplantation, 1991, 51(5):1000-1004.
    3. Ploeg RJ, D’Alessandro AM, Knechtle ST, et al. Risk factors for primary dysfunction after liver transplantation-amultivariate analysis. Transplantation, 1993, 55(4):807-813.
    4. Bauer I, Rensing H, Florax A, Ulrich C, Pistorius G, Redl H, Bauer M: Expression pattern of heme oxygenase-1/heat shock protein 32 in human liver cells. Shock 20:116-122, 2003.
    5. Kaizu Takashi, Nakao Atsunori, Tsung, et al. Carbon monoxide inhalation ameliorates cold ischemia- reperfusion injury after rat liver transplantation. Surgery, 2005, 138:229-235
    6. Berberat PO, Katori M, Kaczmarek E, et al. Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J. 2003 17(12):1724-1726.
    7. Fondevila C, Shen XD, Tsuchiyashi S , et al . Biliverdin t herapy protects rat livers f rom ischemia and reperfusion injury. Hepatology, 2004, 40:33321341.
    8. Oikawa K, Ohkohchi N, Sato M, et al. Kupffer cells play an important role in the cytokine production and activation of nuclear factors of liver graft from non-heart-beating donors. Transplant International, 2002,15(8): 397-405
    9. Kobayashi T, Sato Yoshinobu, Yamamoto Satoshi.,et al. Augmentation of heme oxygenase-1 expression in the graft immediately after implantation in adult living-donor liver transplantation. Transplantation, 2005,79;977-980.
    10. Farin Amersi,Roland Buelow, Hirohisa Kato, et al. Upregulation of heme oxygenase-1 fat Zucker rat livers from ischemia-reperfusion injury. Clinical Inverstigation,1999,104(11):1631-1639.
    11. Wang XH,Wang K,Zhang F, et al. Alleviation ischemia-reperfusion injury in aged rat liver by induction of heme oxygenase-1. Transplant Proc. 2004,36(10):2917-2923.
    12. Soares M P, Brouard S, Smith RN, et al. Heme oxygenase-1, a protective gene that prevents the rejection of transplanted organs. Immunol Rev, 2001, 184:275-285.
    13. Kato Y, Shimazu M, Kondo M, et al. Bilirubin rinse: a simple protectant against t he rat liver graft injury mimicking heme oxygenase-1 preconditioning. Hepatology, 2003, 38: 364-373.
    14. Ohkochi N, Shibuya H, Tsakamoto M, et al. Kupffer’s cell modulate neutrophile activity by superoxide anion and tumor necrosis factor-a in reperfusion injury of liver transplantation-mechanisms of radical generation and reperfusion injury after cold ischemia. Transplant Proc, 1999, 31(Y2)1055-1058.
    15. Kuo PC,Drachenberg CI, de la Torre A, et al. Apoptosis and hepatic allograft reperfusion injury. Clin Transplant, 1998,12(3):219
    16. Wang XH,Wang K,Zhang F,et al. Heme oxygenase-1 alleviates ischemia-reperfusion injury in aged liver. World J Gastroenterol。2005,11(5):690-694
    17. Ke B, Buelow R, Shen XD, et al. Heme oxygenase 1 gene t ransfer prevent s CD95/ Fas ligand2mediated apoptosis and im proves liver allograf t survival via carbon monoxide signaling pat hway. Hum Gene Ther, 2002, 13: 1189-1199.
    18. Fondevila C, Shen XD, Tsuchiyashi S, et al. Biliverdin t herapy protects rat livers f rom ischemia and reperfusion injury. Hepatology, 2004, 40:3331-3341.
    19. Berberat PO, Katori M, Kaczmarek E, et al. Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J. 2003 17(12):1724-1726.
    20. Ferris CD. Jaffrey SR. Sawa A. et al. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nature Cell Biology. 1999, 1(3):152-7.
    21. Choi BM. Pae HO. Jeong YR.et al. Overexpression of heme oxygenase (HO)-1 renders Jurkat T cells resistant to fas-mediated apoptosis: involvement of iron released by HO-1. Free Radical Biology & Medicine. 2004,36(7):858-71,
    22. Oltval Z, Milliman C, Korsmeyer S. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that acclerates programmed cell death。Cell, 1993,(74):609-619.
    1. Masamichi Katori, Ronald W , Jerzy W. Heme oxygenase-1 system in organ transplantation. Transplantation,2002, 74(7):905-912.
    2. Schuller DJ, Wilks A, Ortiz de Montellano PR, Poulos TL: Crystal structure of human heme oxygenase-1. Nat Struct Biol 6:860-867, 1999.
    3. Maines MD: The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517-554, 1997
    4. Maines MD, Ibranhim NG, Kappas A. J Biol Chem,1977;252:5900-5903
    5. Bonneu MR, Visner GA, Zander DS,et al. Heme oxygenase-1 expression correlates with severity of acute cellular rejection in lung transplantation. Am Coll Surg,2004,198(6):945-952.
    6. Lakkisto P,Palojoki E,Backlund T,et al. Expression of heme oxygenase-1 in response to myocardial infarction in rats. Mol Cell Cardiol,2002,34(10):1357-1365.
    7. Alam J, Cook JL.Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des,2003,9:2499-2511
    8. Ryter SW. Choi AM. Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. Antioxidants & Redox Signaling.2005, 7(1-2):80-91, Geuken E, Buis CL, Viser DS, et al. Expression of heme oxygenase-1 in human livers before transplantation correlates with graft injury and function after transplantation . Am J Transplant, 2005, 5: 1875-1885.
    9. Furukawa H, Todo S, Imventara O, et al. Effect of cold ischemia time on the early outcome of human hepatic allografts preserved with UW solution. Transplantation, 1991, 51(5):1000-1004.
    10. Ploeg RJ, D’Alessandro AM, Knechtle ST, et al. Risk factors for primary dysfunction after liver transplantation-amultivariate analysis. Transplantation, 1993,55(4):807-813.
    11. Caldwell-Kenkel JC, Currin RT, Tanaka Y, et al. Kupffer cell action and endothelial cell damage after storage of rat livers: effects of reperfusion. Hepatology, 1991, 13(1):83-95.
    12. Oikawa K, Ohkohchi N, Sato M, et al. Kupffer cells play an important role in the cytokine production and activation of nuclear factors of liver graft from non-heart-beating donors. Transplant International, 2002, 15(8): 397-405.
    13. Shibuya H, Ohkochi N, Sey K, et al. Modulation of mitochondrial ATP synthasesis and lipid peroxidation by Kupffer cells in liver graft. Transplant Proc, 1996, 28(1):321-323.
    14. Nishimura Y, Takei Y, Goto M, et al. Kupffer cell function. In: Wisse E. Cells of the Hepatic Sinusoid. Leiden: Netherlands, 1996. 231-238.
    15. Kobayashi T, Hirano K, Yamamoto T, et al. The protective role of Kupffer cell in the ischemia-reperfusion rat liver. Archives of Histology &Cytology, 2002, 65(3):251-261.
    16. Hijioka T, Rosenberg RL, Lemasters JJ, et al. Kupffer cells contain voltage-dependent calcium channels. Mol Pharmacol, 1992, 41(3): 435-440.
    17. Zwacka RM, Zhang Y, Halldorson J, et al. CD(+)T-lymphocytes mediate ischemia-reperfusion-induced inflammatory response n mouse liver. Clin Invest, 1997, 100(2):279-289.
    18. El-Wahsh M, Seifalian AM, Fuller BJ, et al. Induction of adhesion molecule expression in liver ischaemia-reperfusion injury is associated with impaired hepatic parenchymal microcirculation. Br J Surg, 2004, 91(8):1034-1039.
    19. McCuskey RS, Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver, 2000, 20(1):3-7.
    20. Okaajima K,Harada N, Kushimoto S, et al. Role of microthrombus formation in the development of ischemia-repefusion-induced liver injury in rats. Thrombosis & Haemostasis, 2002, 88(3): 473-480.
    21. Uhlmann D, Armann B, Gaebel G, et al. Endothelin A receptor blockade reduces hepatic ischemia-reperfusion injury after warm ischemia in a pig model. Journal of Gastontestinal Surgery, 2003, 7(3): 331-339.
    22. Ohkohchi N, Mechanisms of preservation and ischemia-reperfusion injury in liver transplantation. Transplantation Proceedings, 2002, 34(7):2670-2673.
    23. Sasaki K, Miyake H, Kinoshita T et al. Protective effect of FK506 and thromboxane synthase inhibitor on ischemia-reperfusion injury in non-heart-beating donor in rat orthotopic liver transplantation. J Med Invest, 2004, 51(1-2):76-83.
    24. Ohkochi N, Shibuya H, Tsakamoto M, et al. Kupffer’s cell modulate neutrophile activity by superoxide anion and tumor necrosis factor-a in reperfusion injury of liver transplantation-mechanisms of radical generation and reperfusion injury after cold ischemia. Transplant Proc, 1999, 31(Y2)1055-1058.
    25. Schauer RJ, Kalmuk S, Gerbes AL, et al. Intravenous administration of glutathione protects parenchymal and nonparenchymal liver cells against reperfusion injury following rat liver transp lantation. World J Gastroenterol, 2004, 10 (6): 864-870.
    26. Tsung A, Kaizu T, Nakao A, et al. Ethyl pyruvate ameliorates liver ischemia reperfusion injury by decreasing hepatic necrosis and apoptosis. Transplantation, 2005, 79 (2) : 196-204
    27. Abdo EE, Cunha JE,Deluca P, et al. Protective effect of N2-mercap top rop ionylglycine on rats and dogs liver during ischemia / reperfusion process. Arq Gastroenterol, 2003, 40 (3): 177-180.
    28. Currin RT, Gores GJ, Thurman RG, et al. Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. FASEB, 1991, 5(2): 207-210.
    29. Harrison DC, Lemasters JJ, Herman B, et al. A pH-dependent phospholipase A2 contributes to loss of plasma membrane intergrity during chemical hypoxia in rat hepatocytes. Biochem Biophys Res Commun, 1991, 174(2):654-659.
    30. Bronk SF, Gores GJ. pH-dependent nonlysosomal proteinolysis contributes to lethal anoxic injury of rat hepatocytes. Am J Physiol, 1993, 264(4):G744-751.
    31. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physoil, 1990, 258(5):C755-786
    32. Otterbein LE, Mantell LL, Choi AM. Carbon mono-xide provides protection against hyperoxic lung injury. Am J Physiol 1999; 276: L688-L694
    33. Sarady JK, Otterbein SL, Liu F, Otterbein LE, Choi AM. Carbon monoxide modulates endotoxin-induc-ed production of granulocyte macrophage colony-stimulating factor in macrophages. Am J Respir Cell Mol Biol 2002; 27: 739- 745
    34. Korb LC, Ahearn JM. C1q binds directly and speci-fically to surface blebs of apoptotic human keratino-cytes: complement deficiency and systemic lupus ery-thematosus revisited. J Immunol 1997; 158: 4525-4528
    35. Bombeli T, Schwartz BR, Harlan JM. Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood 1999; 93: 3831-3838
    36. Bauer I, Rensing H, Florax A, Ulrich C, Pistorius G, Redl H, Bauer M: Expression pattern of heme oxygenase-1/heat shock protein 32 in human liver cells. Shock 20:116-122, 2003.
    37. Navarra P, Grossman AB. The heme oxygenase-carbon monoxide pathway in the control of neuroendocrine function. Front Horm Res, 2002; 29: 108-116.
    38. Verma A, Hirsch DJ, Glatt CE, et al. Carbon monoxide: a putative neural messenger. Science, 1993; 259: 309-313.
    39. Navarra P,Grossman AB. The heme oxy0genase-catbon nono-xide pathway in the control of neuroendocrine function. Front Horm Res. 2002; 29:108-116.
    40. Morse D, Sethi J. Carbonmonoxide and human disease. Antioxid Redox Singal, 2002; 4: 331-338.
    41. Amersi F, Buelow R, Kato H, et al.: Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers for ischemia/reperfusion injury. J Clin Invest 104:1631-1639, 1999.
    42. Yang ZF, Tsui TY, Ho DW, et al. Heme oxygenase-1 potentiates the survival of small-for-size liver graft. Liver Transpl 42:335-342, 2004.
    43. Soares M P, Brouard S, Smith RN, et al. Heme oxygenase-1, a protective gene thatprevents the rejection of transplanted organs. Immunol Rev, 2001,184:275-285.
    44. Kaizu Takashi, Nakao Atsunori, Tsung, et al. Carbon monoxide inhalation ameliorates cold ischemia- reperfusion injury after rat liver transplantation. Surgery, 2005, 138:229-235
    45. Ke B, Buelow R, Shen XD, et al. Heme oxygenase 1 gene t ransfer prevent s CD95/ Fas ligand2mediated apoptosis and im proves liver allograf t survival via carbon monoxide signaling pat hway. Hum Gene Ther, 2002, 13: 1189-1199.
    46. Tsui, Tung-Yu; Obed, Aiman; Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism。Shock,2007,27(2):165-171.
    47. Kato Y, Shimazu M, Kondo M, et al. Bilirubin rinse: a simple protectant against t he rat liver graft injury mimicking heme oxygenase-1 preconditioning. Hepatology, 2003, 38: 364-373.
    48. Fondevila C, Shen XD, Tsuchiyashi S, et al. Biliverdin t herapy protects rat livers f rom ischemia and reperfusion injury. Hepatology, 2004, 40:33321341.
    49. Nakao A, Otterbein L E, Overhaus M, et al. Biliverdin protects the functional integrity of a t ransplanted syngeneic small bowel. Gastroenterology, 2004, 127: 595-606.
    50. Manzinate F;McDaid J;Devey L et al. Pretransplant bilirubin does not correlate with early reperfusion injury following liver transplantation. Transplantation,2007,83(1):103-104.
    51. Garner B, Li W, Roberg K, et al. On the cytoprotective role of ferritin in macrophages and its ability to enhance lysosomal stability. Free Radic Res, 1997, 27(5):487-500.
    52. Fang J. Akaike T. Maeda H. Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis. 2004 ,9(1):27-35,
    53. Berberat PO, Katori M, Kaczmarek E, et al. Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J. 2003 17(12):1724-1726.
    54. Ferris CD. Jaffrey SR. Sawa A. et al. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nature Cell Biology. 1999, 1(3):152-7.
    55. Choi BM. Pae HO. Jeong YR.et al. Overexpression of heme oxygenase (HO)-1 renders Jurkat T cells resistant to fas-mediated apoptosis: involvement of iron released by HO-1. Free Radical Biology & Medicine. 2004,36(7):858-71,
    56. Selzner N, Rudiger H, Graf R, Clavien PA. Protective strategies against ischemic injury of the liver. Gastroenterology 2003; 125:917–936

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700