肾移植急性排斥反应IL-15、穿孔素及颗粒酶B mRNA表达的实验与临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管近年来免疫抑制剂种类不断增加,但移植后急性排斥反应(acute rejection, AR)仍然是导致移植肾失功的重要原因。急性排斥反应的早期诊断及干预,对移植肾功能的恢复至关重要。虽然移植肾穿刺活检仍然是诊断的金标准,但大部分临床医生以及患者更愿意接受非侵袭性的诊断方法。随着对急性排斥反应分子生物学的深入研究,细胞因子在器官移植急性排斥反应的发生和发展中的作用受到广泛重视。移植术后对某些细胞因子的表达进行检测并干预以防治急性排斥反应是当前器官移植领域的研究热点。
     已知白细胞介素2(IL-2)在肾移植AR中起重要作用,通过抑制IL-2受体(IL-2R)能有效的预防AR。但是即使如此,动物实验和临床移植中阻断IL-2/IL-2R仍不可能完全控制AR的发生,说明机体内存在有独立于IL-2/IL-2R系统之外的其他的T细胞激活途径。白细胞介素15(IL-15)是由单核细胞、树突状细胞等非T淋巴细胞分泌的细胞因子,最近的研究表明,它是CD8记忆T细胞增殖和活化的重要因子,在肝脏移植的急性排斥反应早期,可以检测到IL-15的表达高表达。穿孔素和颗粒酶B是细胞毒性T细胞分泌的因子,在急性排斥反应发生时被释放并攻击移植物。虽然对肾移植早期急性排斥反应时穿孔素(PFP)和颗粒酶B(GraB)的检测已有研究报道,但对于IL-15在肾移植AR发生时的作用以及它与PFP和GraB表达的关联性尚未见报道。本研究在动物实验和临床试验中探讨了IL-15、PFP和GraB在肾移植AR发生时的表达变化,以及IL-15在其中的作用。研究分三个部分:
     第一部分建立大鼠同种异体肾移植模型
     目的:建立稳定的同种异体大鼠肾移植模型,为开展大鼠肾移植相关研究奠定良好的实验基础。
     方法:分别采用WISTAR大鼠和SD大鼠作为供受体,将供肾动脉带有的腹主动脉瓣与受体腹主动脉作端侧二定点外翻连续缝合;供体肾静脉带有的下腔静脉瓣与受体下腔静脉作端侧两定点外翻连续缝合。尿路重建采用供体输尿管膀胱瓣与受体膀胱吻合。
     结果:手术总时间平均为(90±10)min。手术成功率为86%。
     结论:此模型有较高的成功率和AR发生率,符合大鼠肾移植实验研究的需要。
     第二部分阻断IL-15对大鼠肾脏移植急性排斥反应细胞毒性作用的研究
     目的研究阻断IL-15对大鼠肾脏移植急性排斥反应细胞毒性作用的影响。
     方法分别以WISTAR大鼠和SD大鼠作为供受体,建立大鼠同种异体肾移植模型。实验分四组(n≥15/组):(1)同基因移植组(对照组,Ctrl);(2)急性排斥反应(AR)组,术后无药物处理;(3)环孢素A(CsA)治疗组,术后经腹腔注射CsA针剂6mg.kg-1.d-1;(4)IL-15抗体(AB)治疗组,术后经腹腔注射IL-15抗体0.5mg/kg。以real-time PCR方法分别检测受体外周血和移植肾组织中IL-15、PFP和GraB的mRNA表达,并作移植肾AR病理学分析研究。
     结果(1)AR、CsA及AB组术后移植肾组织及外周血中均出现IL-15、PFP和GraB mRNA表达水平上调,第3~5天达到高峰,第7天逐渐下降,与Ctrl组相比差异有统计学意义;(2)AR组与AB和CsA组比较,移植肾组织及外周血中IL-15、PFP和GraB mRNA表达均明显上调,差异有统计学意义(P<0.01),其中PFP和GraB mRNA表达上调较IL-15 mRNA更为明显(P<0.05);(3)AB组与AR组及CsA组比较,移植肾组织及外周血中IL-15 mRNA表达均明显降低,差异有统计学意义(P<0.05);(4)移植肾病理组织检查,Ctrl组和CsA组未见明显AR征象,AR组呈现重度AR反应,AB组AR征象较轻微。(5)三个细胞因子的表达变化在移植肾组织和外周血中差异无显著意义。
     结论(1)AR发生早期IL-15、PFP和GraB在移植肾组织及外周血中均出现表达上调,IL-15可能是存在与IL-2之外的参与AR发生的另一途径;(2)AR发生时IL-15 mRNA的高表达与GraB和PFP的mRNA表达上调之间存在密切关联;(3)AR早期阻断受体内IL-15的表达,可降低GraB和PFP mRNA的表达,并抑制它们引起的细胞毒杀伤作用,从而保护移植物,减轻AR程度。(4)GraB、PFP和IL-15 mRNA的高表达可以作为诊断同种异体肾移植AR早期的重要指标。检测受体外周血中IL-15、PFP和GraB的mRNA表达水平,可以作为早期诊断AR的一种非侵袭性的检测方法。并且对判断AR的程度、治疗效果及预后均有一定的指导价值。
     第三部分肾移植急性排斥反应患者血清白细胞介素15、穿孔素及颗粒酶B mRNA的表达
     目的探讨IL-15、PFP和GraB mRNA检测在肾移植术后早期AR诊断及其与感染鉴别诊断中的价值。
     方法采用SYBR Green I实时荧光定量逆转录聚合酶链反应(FQ-PCR)方法动态检测45例肾移植患者外周血淋巴细胞(PBL)中IL-15、PFP及GraB mRNA表达的变化。
     结果:(1)AR组IL-15、PFP及GraB mRNA的表达均高于术前及肾功能稳定组(P<0.05),较临床症状出现早2~3天,经激素冲击治疗后,AR均得到逆转,同时PFP、GraB和IL-15 mRNA的表达减弱(P<0.05)。(2)与术前及肾功能稳定组比较,细菌感染组PFP和GraB mRNA的表达水平亦上升(P<0.05),抗感染治疗后表达水平下调。但IL-15 mRNA的表达水平均未见明显升高(P>0.05)。(3)CsA中毒组三项指标在监测过程中均未见明显变化。
     结论
     1. FQ-PCR动态测定PBL中IL-15、PFP及GraB mRNA表达是一种无创、较敏感的早期检测AR的方法,并可以预测抗AR的治疗效果。
     2. IL-15作为CD8记忆T细胞生长和活化必须的细胞因子,可能是介导AR发生的重要因子。
     3. IL-15 mRNA的表达水平在细菌感染发生时并不升高,而PFP和GraB却在患者发生AR和细菌感染时均有表达上调,因此同时检测这三个细胞因子,才能对AR和细菌感染作出鉴别诊断有价值。
The immunosuppression therapy has been improved greatly nowadays, but acute rejection is still a major cause for renal allograft loss. Early diagnosis and treatment are crucial to the restoration of allograft function after renal transplantation. Though fine-needle biopsy is the golden standard for accurate diagnosis, noninvasive methods are still preferred by many clinicians and patients. With the development of molecular biology, the role of cytokines in rejection is now paid much more attention. Now it’s hot to study the cytokine and cytotoxic molecule gene expressions and to intervene them during acute rejection.
     It is well known that IL-2/IL-2R plays an important role during acute renal allograft rejection. In both human and animal experiments, anti-IL-2R antibody remarkably reduces the acute rejection rate, but there is still a portion of subjects who developed acute rejection. The facts implied there are other pathways which independent of IL-2/IL-2R system participated in acute rejection. IL-15 is produced by nonlymphoid cells including monocytes, dendritic cells and bone marrow stromal cells; it is a growth factor and an activator of CD8 memory T cells and was observed up-regulation during early liver acute rejection. Perforin and granzyme B are produced by CTL during acute rejection to attack the allograft. Although there are some reports about the perforin and granzyme B up-regulation during acute rejection of organ transplantation, the relationship between IL-15 and these two cytotoxic molecules are still unknown. In this study, we investigated the role of IL-15 in renal allograft rejection and the expressions of IL-15, perforin and granzyme B mRNA during renal acute rejection in both human and rats. The thesis is divided into three parts:
     Part I: Establishment of a modified model of renal transplantation in the rat
     0bjective : To establish a simple and reliable model of heterotopic renal allograft transplantation in rats.Providing a more practical and high acute rejection rate model for experimental studies of renal transplantation.
     Methods:Using healthy adult WISTAR rats as donor and SD rats as recipient, Donor’s vena cava and a patch of aorta attached to renal artery was anastomosis end-side to the recipient’s vena cava and abdominal aorta. Ureter with bladder’s vane was suture to the recipient’s bladder.
     Results:The average total time of operation was (90±10) min and the successful rate was 86%.
     Conclusions:This is a feasible and reliable renal transplantation model with high acute rejection rate which is suitable for the study of organ transplantation mechanism in rats.
     Part II: The study of the efficacy of blockading IL-15 to reduce the cytotoxic lymphocyte activity of acute renal allograft rejection in the rat
     Objective To study the role of IL-15 in the process of acute rejection(AR) and investigate the efficacy of blockading IL-15 on the recipients to reduce the expressions of cytotoxic attack molecules granzyme B (GraB) and perforin (PFP) during acute renal allograft rejection in rats.
     Methods Male Wistar rats and SD rats were used as donors and recipients, heterotopic renal transplantation model was established and four groups (n≥15/group) were involved in this study: (1). isograft group was used as the control group (Ctrl); (2). acute rejection group (AR) (received no treatment); (3). CsA treatment group (CsA) (received CsA 6mg.kg-1.d-1, i.p. posttransplant); (4) antibody treatment group (AB) (received anti IL-15 antibody 0.5mg/kg, i.p. on day 0, 2, 4 and 6 posttransplant). Animals were sacrificed on day 1, 3, 5 and 7 after transplantation. Allograft specimens and blood were collected. Allograft tissues were analyzed by pathologic assay and the expressions of IL-15, PFP and GraB mRNA in serum as well as renal tissues were detected by real-time polymerase chain reaction (real-time PCR).
     Results (1). The expressions of IL-15, PFP and GraB mRNA were increased in groups AR, AB and CsA in both serum and tissue, respectively; compared to the Crtl group. The expressions reached highest points on day 3 or 5 and decreased on day 7, respectively; (2). In AR group, the expressions of IL-15, PFP and GraB mRNA were significantly higher in both serum and tissue than that of the other groups (P<0.01), and increased distinctly 3 days after transplantation, which about 2-3 days earlier than the appearance of clinical symptoms. (3). The expression of IL-15 mRNA in AB group was significantly lower compared to AR group and CsA group (P<0.05 ) . (4). The pathological results showed that the severe AR occurred on the 7th day after transplantation in group AR, respectively; whereas the rejection level were much mild in AB group. Ctrl group and CsA group showed no sign of AR.
     Conclusions These data demonstrate that (1). The expressions of IL-15, PFP and GraB up-regulated early in the serum as well as tissue in rat renal AR model; IL-15 participated in the early stage of AR and the pathway maybe different from IL-2; (2). The up-regulation of PFP and GraB is related to the up-regulation of IL-15 in the early stage of AR; (3). Blocking IL-15 in the early stage of AR can down-regulate the expressions of PFP and GraB thus would have a promising results in control the progression of cytotoxic lymphocyte activity of acute renal allograft rejection in the rat; (4). Using real-time PCR to evaluate expressions of PFP、GraB and IL-15 may be a non-invasive as well as sensitive method to make an early diagnosis of acute allograft rejection and monitor the efficacy of anti-rejection therapy. Our findings might refine existing anti-rejection strategies.
     Part III: Expressions of IL-15, perforin and granzyme B in peripheral blood during acute rejection of kidney transplantation
     Objective To evaluate the value of IL-15, PFP and GraB in the early diagnosis and differential diagnosis of acute rejection(AR) after kidney transplantation. Methods Forty-five recipients of renal allograft were included in the study. The expressions of PFP, GraB and IL-15 mRNA were detected by SYBR Green I real time quantitative polymerase chain reaction (FQ-PCR).
     Results The expressions of IL-15, PFP and GraB mRNA were increased significantly more in patients with AR (n=9) than those with stable renal function (n=23) and were about 2 to 3 days earlier than the appearances of clinical AR symptoms. After steroid therapy, all the AR was reversed and the expressions of PFP, GraB and IL-15 mRNA were decreasing at the same time. The expressions of PFP and GraB mRNA were also increased in cases of bacteria infection(n=8)but IL-15 mRNA remained unchanged. After the treatment of the infections, the expressions of PFP and GraB mRNA were down-regulated. The expressions of PFP, GraB and IL-15 mRNA had no significant difference in CsA-induced nephrotoxicity (n=5) during the study.
     Conclusions Sequential monitoring the expressions of PFP, GraB mRNA combined with IL-15 mRNA in serum of renal allograft recipients can be as useful markers for the early diagnosis of AR and differential diagnosis from bacterial infection and it is valuable to observe the therapeutic effectiveness of AR after kidney transplantation. FQ-PCR had high sensitivity and reproducibility, it is suitable for clinical practice.
引文
1. Lopez-neblina Fernando, Toledo-Pereyra Luis H, Suzuki Shohachi. Ultrarapid orthotopic technique for renal transplantation in the rat. Micrisurgery,1994,15:274-278.
    2. Kamada N. A description of cuff technique for renal transplantation in the rat. Use in studies of tolerance induction during combined liver grafting. Transplantation. 1985,39:93.
    3. Engelbrecht G, Delawir K, Francosis D. et al. New rapid technique for renal transplantation in the rat. Microsurgery,1992,13:340.
    4. Fabre J, Lim SH, Mortis P. Renal transplantation in the rat, details of the technique. Aut N Z J Sury, 1971,41:69-75.
    5. Racusen LC, Solez K, Colvin BR, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int, 1999; 55(2): 713-723.
    6. Fisher B, Lee S. Microvascular surgery techniques in research with special reference to renal transplantation in the rat. Surgery, 1965,58:904.
    7.刘小友,于立新。大鼠同种异体肾移植模型研究进展。广东医学,2004,25(5):605
    8. Lee S M.D. An improved technique of renal transplantation in the rat. Surgery,1967,61(5):771
    9.赵鸿,王翔,丁强,张元芳。显微外科技术在大鼠肾移植模型中的应用。复旦大学学报(医学版) 2003,30(4): 402
    10. Harad H, Ishikura H, Nakagawa I, et al. Abortive alloantigen presension by donor dendritic cells leads to donor-specific tolerance: a study with a preoperative CTLA4Ig incolation. Urol Res, 2000, 28(1):69-74.
    11. Engelbrecht G, Delawir K, Francosis D, et al. New rapid technique for renal transplantation in the rat. Microsurgery, 1992,13:340.
    12. Magee CC, Azuma H, Knoflach A, et al. In vitro and in vivo immunomodulatory effects of RDP1258, a novel synthetic peptide. J AM Soc Nephrol,1999,10(9):1997-2005.
    13. Chandraker A, Azuma H, Nadeau K, et al. Late Blockade of T cell costimulation interrupts progression of experimental chronic allograft rejection. J Clin Invest, 1998,10(11):2309-2318.
    1. Hariharan S, Johnson CP, Bresnahan BA, et al. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 2000 Mar 2; 342(9):605-612.
    2. Sijpkens YW, Doxiadis II, Mallat MJ, et al. Early versus late acute rejection episodes in renal transplantation. Transplantation. 2003 Jan 27;75(2):204-208.
    3. Le Moine A, Goldman M, Abramowicz D. Multiple pathways to allograft rejection. Transplantation. 2002 ,73(9):1373-1381.
    4. Clarkson MR, Sayegh MH. T-cell costimulatory pathways in allograft rejection and tolerance. Transplantation. 2005 ,80(5):555-563.
    5. Game DS, Warrens AN, Lechler RI. Rejection mechanisms in transplantation. Wien Klin Wochenschr. 2001,113(20-21):832-838.
    6. Nicholson ML, Wheatley TJ, Doughman TM, et al. A prospective randomized trial of three different sizes of core-cutting needle for renal transplant biopsy. Kidney Int. 2000 Jul;58(1):390-395.
    7. Rene J, Duquesnoy,李幼平.移植免疫生物学.科技出版社. 2000年,第一版。
    8. Zelenika D, Adams E, Humm S, et al. The role of CD4+ T-cell subsets in determining transplantation rejection or tolerance. : Immunol Rev. 2001 ,182:164-179.
    9.黎磊石.中国肾移植手册(M).第一版,香港:EMD Life Science Holding Ltd. 2005:169.
    10. Liu CC, Walsh CM, Young JD. Perforin:structure and function. Immunol Today,1995,16:194-201.
    11. Stenger S, Rosat JP, Bloom BR. et al. Granulysin: a lethal weapon of cytolytic T cells. Immunol Today,1999,20:390-394.
    12. Bueno V, Pestana JO. The role of CD8+ T cells during allograft rejection. Braz J Med Biol Res. 2002 Nov;35(11):1247-1258.
    13. Soulillou P. Immune monitoring for rejection of kidney transplants. (Editorials) N Engl J Med, 2001, 344(13):1006-1007.
    14. Sabek O, Dorak MT, Kotb M, et al. Quantitative detection of t-cell activation markers by real-time PCR in renal transplant rejection and correlation with histopathologic evaluation. Transplantation. 2002 Sep 15;74(5):701-707.
    15. Zadrazil J, Krejci K, Al Jabry S, et al. Protocol biopsy and subclinical rejection in patients after kidney transplantation treated by tacrolimus (Prograf). Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003 Dec;147(2):193-196.
    16. Ter Meulen CG, Goertz JH, Klasen IS, et al. Decreased renal excretion of soluble interleukin-2 receptor alpha after treatment with daclizumab. Kidney Int. 2003 Aug;64(2):697-703.
    17. Vincenti F, Kirkman R, Light S, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med. 1998, 338(3):161-165.
    18. Nashan B, Moore R, Amlot P,et al. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet. 1997 ,350(9086):1193-1198.
    19. Garin MI and Lechler RI. Regulatory T cells. Curr Opin Organ Transpl 2003;8:7-12.
    20. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001 Jan 1;97(1):14-32.
    21. Conti F, Frappier J, Dharancy S, et al. Interleukin-15 production during liver allograft rejection in humans. Transplantation. 2003,76(1):210-216.
    22. Baan CC, Knoop CJ, Holweg CT, et al. The macrophage-derived T-cell growth factor interleukin-15 is present in interleukin-2-independent rejection after clinical heart and liver transplantation. Transplant Proc. 1999,31(7):2726-2728.
    23. Baan CC, Knoop CJ, van Gelder T, et al. Anti-CD25 therapy reveals the redundancy of the intragraft cytokine network after clinical heart transplantation. Transplantation. 1999,27;67(6):870-876.
    24. Weng NP, Liu K, Catalfamo M, et al. IL-15 is a growth factor and an activator of CD8 memory T cells. Ann. N.Y. Acad. Sci. 2002, 975: 46-56.
    25. Jones DL, Sacks SH, Wong W. Controlling the generation and function of human CD8+ memory T cells in vitro with immunosuppressants. Transplantation. 2006, 82 (10):1352-1361.
    26. Koyama I, Nadazdin O, Boskovic S, et al. Depletion of CD8 Memory T Cells for Induction of Tolerance of a Previously Transplanted Kidney Allograft. Am J Transplant. 2007 Feb 7.
    27. Chalasani G, Dai Z, Konieczny BT, Baddoura, et al. Recall and propagation ofalloapecific memory T cells independent of secondary lymphoid organs. Proc Natl Acad Sci U S A 2002,99:6175-6180.
    28. Marks-Konczalik J, Dubois S, Losi JM, et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11,445-450.
    29.俞亚红,叶启发. IL-15 mRNA测定在肝移植后早期急性排斥反应诊断与鉴别诊断中的应用.中华器官移植杂志,2006,27:428-430.
    30.丁小明,刘小东,田普训,等.穿孔素和颗粒酶B的表达与肾移植术后急性排斥反应的关系.中华器官移植杂志. 2005,26:344-346.
    31.王伯纭.病理学技术.第一版.北京.人民卫生出版社. 2000.
    32. Racusen LC, Solez K, Colvin BR, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int, 1999; 55(2): 713-723.
    33.夏穗生.临床移植医学.第一版,杭州:浙江科学技术出版社.1999.
    34. Galante NZ, Tedesco HS, Machado PG, et al. Acute rejection is a risk factor for long-term survival in a single-center analysis of 1544 renal transplants. Transplant Proc. 2002;34(2):508-513.
    35. Clarkson MR, Sayegh MH. T-cell costimulatory pathways in allograft rejection and tolerance. Transplantation. 2005 ,80(5):555-563.
    36. Mandelbrot DA, Sayegh MH. Novel costimulation pathways. Curr Opin Organ Transplant. 2003;8:25-33.
    37. Mauiyyedi S, Colvin RB. Hummoral rejection in kidney transplantation: new concepts in diagnosis and treatment. Curr Opin Nepgrol Hypertens 2002;11:609-618.
    38. Rukavina D, Balen-Marunic S, Rubesa G, et al. Perforin expression in peripheral blood lymphocytes in rejecting and tolerant kidney transplant recipients. Transplantation. 1996,27;61(2):285-291.
    39. Strehlau J, Pavlakis M, Lipman M, et al. Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc Natl Acad Sci U S A. 1997, 21;94(2):695-700.
    40. Andrade F, Casciola-Rosen L, Rosen A. Granzyme B-induced cell death. Acta Haematol 2004;111:28-41.
    41. Catalfamo M and Henkart P. Perforin and the granule exocytosis cytotoxicity pathway. Current Opinion in Immunology. 2003,15:522-527.
    42.王国富,吴利先.穿孔素和颗粒酶的基础和临床研究进展. (综述)医学综述1998, 4:133-134.
    43. Schulz M, Schuurman HJ, Joergensen J, et al. Acute rejection of vascular heart allografts by perforin-deficient mice. Eur J Immunol. 1995, 25(2):474-480.
    44. Heusel JW, Wesselschmidt RL, Shresta S, et al. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell. 1994,25;76(6):977-987.
    45. Carson WE, Giri JG, Lindemann MJ, et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994,1;180(4):1395-1403.
    46. Burton JD, Bamford RN, Peters C, et al. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci U S A. 1994,24;91(11):4935-4939.
    47. Wilkinson PC, Liew FY. Chemoattraction of human blood T lymphocytes by interleukin-15. J Exp Med. 1995,1;181(3):1255-1259.
    48. Ma A, Boone DL, Lodolce JP. The pleiotropic functions of interleukin 15: not so interleukin 2-like after all. J Exp Med. 2000,6;191(5):753-756.
    49.杜肖娜综述王润田审校. IL-15研究的最新进展.国外医学免疫学分册1999年22(5):
    50. Doherty TM, Seder RA, Sher A. Induction and regulation of IL-15 expression in murine macrophages. J Immunol. 1996 Jan 15;156(2):735-741.
    51. Van Buskirk AM, Pidwell DJ, Adams PW, et al. Transplantation immunology. JAMA. 1997 Dec 10;278(22):1993-1999.
    52. Tinubu SA, Hakimi J, Kondas JA, et al. Humanized antibody directed to the IL-2 receptor beta-chain prolongs primate cardiac allograft survival. J Immunol. 1994 Nov 1;153(9):4330-4338.
    1.Zadrazil J, Krejci K, Al Jabry S, et al. Protocol biopsy and subclinical rejection in patients after kidney transplantation treated by tacrolimus (Prograf). Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003 Dec;147(2):193-196.
    2.Game DS, Warrens AN, Lechler RI. Rejection mechanisms in transplantation. Wien Klin Wochenschr. 2001,113(20-21):832-838.
    3.Sabek O, Dorak MT, Kotb M, et al. Quantitative detection of t-cell activation markers by real-time PCR in renal transplant rejection and correlation with histopathologic evaluation. Transplantation. 2002 Sep 15;74(5):701-707.
    4.Li B, Hartono C, Ding R, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med, 2001,344(13):947-952.
    5.俞亚红,叶启发. IL-15 mRNA测定在肝移植后早期急性排斥反应诊断与鉴别诊断中的应用.中华器官移植杂志,2006,27:428-430.
    6.Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001 Jan 1;97(1):14-32.
    7.黎磊石.中国肾移植手册.香港:EMD Life Science Holding Ltd, 2005:169.
    8.Racusen LC, Solez K, Colvin BR, et al. The banff 97 working classification of renal allograft pathology[J]. Kidney Int, 1999, 55(2): 713-723.
    9.Suthanthiran M. Acute rejection of renal allograft: mechanistic insights and therapeutic options. Kidney Int 1997; 51: 1289.
    10.Gaber LW, Moore LW, Gaber AO, et al. Correlation of histology to clinical rejection reversal: a thymoglobulin multicenter trial report. Kidney Int 1999;55(6):2415.
    11.Kolb LG, Velosa JA, Bergstralh EJ, Offord KP: Percutaneous renal allograft biopsy. A comparison of two needle types and analysis of risk factors. Transplantation 1994,57: 1742–1746.
    12.Benfield MR, Herrin J, Feld L, Rose S, et al. Safety of kidney biopsy in pediatric transplantation: a report of the Controlled Clinical Trials in Pediatric TransplantationTrial of Induction Therapy Study Group. Transplantation. 1999 Feb 27;67(4):544-547.
    13.卢一平.移植免疫.第十七届国际器官移植会议纪要(二).中华器官移植杂志. 1999; 20(2):112.
    14.Sayegh M, Watschinger B, Carpenter C. Mechanisms of T cell recognition of alloantigen : the role of peptides. Transplantation. 1994; 57: 1295.
    15.D’Elios MM, Josien R, Manghetti M, et al. Predominent Th1 cell infiltration in acute episodes of human kidney grafts. Kidney Int 1997; 51: 1876.
    16.Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res, 1996; 6(10): 995一1001.
    17.Heid CA, Stevens J, Livak KJ, et al. Real time quantitative PCR. Genome Res, 1996; 6(10): 986-994.
    18.Rene J, Duquesnoy,李幼平.移植免疫生物学.科技出版社. 2000年,第一版。
    19.Rubeiro DD, David NE, Castro MC et al. Contribution of the expression of ICAM-1 ,HLA-DR and IL-2R to the diagnosis of acute rejection in renal allograft aspirative cytology. Transplant Int ,1998 ,11 suppl 1 :S19
    20.Li XC, Schachter AD, Zand MS et al. Differential expression of T-cell growth factors in rejecting murine islet and human renal allografts : conspicuous absence of interleukin( IL)29 despite expression of IL-2, IL-4, IL-7 and IL-15. Transplantation, 1998 Jul 27, 66(2):265.
    21.Wee S, Pascual M, Eason JD et al. Biological effects and fate of a soluble, dimeric, 80-kDa tumor necrosis factor receptor in renal transplant recipients who receive OKT3 therapy. Transplantation,1997 Feb 27 ,63(4) :570
    22.Van Riemsdijk,Van Overbeeke IC, Baan CC et al. The TNF-alpha system after successful living-related kidney transplantation. Transplant Int ,1998, 11 Suppl 1 :S46
    23 . Barrett AJ, Rezvani K, Solomon S,et al. New developments in allotransplant immunology. Hematology Am Soc Hematol Educ Program. 2003;:350-71. Review.
    24.Li XC, Roy-Chaudhury P, Hancock WW, et al. IL-2 and IL-4 double knockout mice reject islet allografts: a role for novel T cell growth factors in allograft rejection[J]. J Immunol, 1998 ,161(2):890-896.
    25.Ter Meulen CG, Goertz JH, Klasen IS, et al. Decreased renal excretion of soluble interleukin-2 receptor alpha after treatment with daclizumab. Kidney Int. 2003Aug;64(2):697-703.
    26 . Vincenti F, Kirkman R, Light S, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med. 1998, 338(3):161-165.
    27 . Sandrini S. Use of IL-2 receptor antagonists to reduce delayed graft function following renal transplantation: a review. Clin Transplant. 2005 Dec;19(6):705-10. Review.
    28.Rukavina D,Balen-Marvnic S, Rubesa G, et al. Perforin expression in peripheral blood lymphocytes in rejecting and tolerant kidney transplantation recipients. Transplantation, 1996, 61:285-291.
    29.丁小明,刘小东,田普训,等.穿孔素和颗粒酶B的表达与肾移植术后急性排斥反应的关系.中华器官移植杂志. 2005,26:344-346.
    30.Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001 Jan 1;97(1):14-32.
    31.Conti F, Frappier J, Dharancy S, et al. Interleukin-15 production during liver allograft rejection in humans. Transplantation. 2003,76(1):210-216.
    32.Marks-Konczalik J, Dubois S, Losi JM, et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Immunology, 2000, 21:11445-11450.
    33.Weng NP, Liu K, Catalfamo M, et al. IL-15 is a growth factor and an activator of CD8 memory T cells[J]. Ann N Y Acad Sci, 2002, 975: 46-56.
    34.Ma A, Boone DL and Lodolce JP. The Pleiotropic Functions of Interleukin 15: Not So Interleukin 2–like After All. J. Exp. Med, 2000, 753-755.
    35.俞亚红,叶启发. IL-15 mRNA测定在肝移植后早期急性排斥反应诊断与鉴别诊断中的应用.中华器官移植杂志,2006,27:428-430.
    36.Tinubu SA, Hakimi J, Kondas JA, et al. Humanized antibody directed to the IL-2 receptor beta-chain prolongs primate cardiac allograft survival. J Immunol. 1994 Nov 1;153(9):4330-4338.
    1.夏穗生.临床移植医学.第一版,杭州:浙江科学技术出版社.1999.
    2.Ponticelli C, Tarantino A, Vegeto A. Renal transplantation, past, present and future. J Nephrol 1999;12(suppl 2):S105.
    3.Meier-Kriesche HU, Ojo AO, Hanson JA, et al.: Increased impact of acute rejection on chronic allograft failure in recent era. Transplantation 2000,70: 1098–1100.
    4.Malek Kamoun. Cellular and molecular parameters in human renal allograft rejection. Clinical Biochemistry 2001, 34:29-34.
    5.Cecka JM, Terasaki PI. The UNOS scientific renal transplant registry. Clin Transplant, 1993;7(1):1-18.
    6 . Tejani A, Stablein D, Alexander S, et al. Analysis of rejection outcomes and implications-a report of the north American pediatric renal transplant cooperative study. Transplantation. 1995,59(4):500-504.
    7.Djamali A, Premasathian N, Pirsch JD. Outcomes in kidney transplantation. Semin Nephrol 2003; 23: 306.
    8.Hariharan S, Johnson CP, Bresnahan BA, et al. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 2000 Mar 2; 342(9):605-612.
    9.Sijpkens YW, Doxiadis II, Mallat MJ, et al. Early versus late acute rejection episodes in renal transplantation. Transplantation. 2003 Jan 27;75(2):204-208.
    10.Soulillou JP. Immune monitoring for rejection of kidney transplants. N Engl J Med. 2001 Mar 29; 344(13):1006-1007.
    11.Nicholson ML, Wheatley TJ, Doughman TM, et al. A prospective randomized trial of three different sizes of core-cutting needle for renal transplant biopsy.Kidney Int. 2000 Jul;58(1):390-395.
    12.Benfield MR, Herrin J, Feld L, Rose S, et al. Safety of kidney biopsy in pediatric transplantation: a report of the Controlled Clinical Trials in Pediatric Transplantation Trial of Induction Therapy Study Group. Transplantation. 1999 Feb 27;67(4):544-547.
    13.Rush DN, Henry SF, Jeffery JR, et al. Histological findings in early routine biopsiesof stable renal allograft recipients. Transplantation 1994;57(2):208-211.
    14.Racusen LC, Solez K, Colvin BR, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int, 1999; 55(2): 713-723.
    15 . Suthanthiran M. Acute rejection of renal allograft: mechanistic insights and therapeutic options. Kidney Int 1997; 51: 1289.
    16.Gaber LW, Moore LW, Gaber AO, et al. Correlation of histology to clinical rejection reversal: a thymoglobulin multicenter trial report. Kidney Int 1999; 55(6):2415.
    17.Kolb LG, Velosa JA, Bergstralh EJ, Offord KP: Percutaneous renal allograft biopsy. A comparison of two needle types and analysis of risk factors. Transplantation 1994,57: 1742–1746.
    18.卢一平.移植免疫.第十七届国际器官移植会议纪要(二).中华器官移植杂志. 1999; 20(2):112.
    19.Sayegh M, Watschinger B, Carpenter C. Mechanisms of T cell recognition of alloantigen : the role of peptides. Transplantation. 1994; 57: 1295.
    20.D’Elios MM, Josien R, Manghetti M, et al. Predominent Th1 cell infiltration in acute episodes of human kidney grafts. Kidney Int 1997; 51: 1876.
    21.Lipman ML, Stevens AC, Strom TB. Heightened intragraft CTL gene expression in acutely rejecting renal allografts. J Immunol 1994; 152: 5120.
    22.Rubeiro DD, David NE, Castro MC et al. Contribution of the expression of ICAM-1 ,HLA-DR and IL-2R to the diagnosis of acute rejection in renal allograft aspirative cytology. Transplant Int ,1998 ,11 suppl 1 :S19
    23.Li XC, Schachter AD, Zand MS et al. Differential expression of T-cell growth factors in rejecting murine islet and human renal allografts : conspicuous absence of interleukin( IL)29 despite expression of IL-2, IL-4, IL-7 and IL-15. Transplantation , 1998 Jul 27 ,66(2) :265.
    24.Wee S, Pascual M, Eason JD et al. Biological effects and fate of a soluble, dimeric, 80-kDa tumor necrosis factor receptor in renal transplant recipients who receive OKT3 therapy. Transplantation,1997 Feb 27 ,63(4) :570
    25.Van Riemsdijk,Van Overbeeke IC, Baan CC et al . The TNF-alpha system after successful living-related kidney transplantation. Transplant Int ,1998, 11 Suppl 1 :S46.
    26.Sthehlau J, Pavlakis M, Lipman M, et al. Quantitative detection of immune activationtranscripts as a diagnostic tool in kidney transplantation. Proc Natl Acad Sci USA, 1997; 94(2): 695-700.
    27 . Hutchinson IV. Effector mechanisms in transplant rejection-an overview. In: Immunology of Heart and Lung Rejection. Eds Rose ML and Yacoub MH. Edward Arnold, London, Boston, Melbourne, Auckland. Chapter 1,1993, 3-21.
    28.苏泽轩,于立新,黄洁夫.现代移植医学。人民卫生出版社1998年,第一版.
    29.Game DS, Warrens AN, Lechler RI. Rejection mechanisms in transplantation. Wien Klin Wochenschr. 2001 Oct 30;113(20-21):832-838.
    30.Marshall SE, Welsh KI. The role of cytokine polymorphisms in rejection after solid organ transplantation. Genes Immun. 2001 Oct;2(6):297-303.
    31.Zelenika D, Adams E, Humm S, et al. The role of CD4+ T-cell subsets in determining transplantation rejection or tolerance. Immunol Rev. 2001 Aug; 182:164-179.
    32.Van der Woude FJ, Hollander AA. Rejection after kidney transplantation: new concepts, new therapeutic options. Transplant Proc. 1998 Aug;30(5):2419-2424.
    33.赵勇.移植免疫耐受.中国医药科技出版社,2005年,第一版。
    34.李幼平.移植免疫学.科技出版社. 2000年,第一版。
    35.Mossmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper Tcell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348-2357.
    36.Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996 Mar;17(3):138-146. Review.
    37.Oliveira G,Xavier P, Murphy B ,et al . Cytokine analysis of human renal allograft aspiration biopsy cultures supernatants predicts acute rejection. Nephrol Dial Transplant. 1998 Feb;13(2):417-422.
    38.Saggi BH ,Fisher RA, Naar JD ,et al . Intragraft cytokine expression in tolerant rat renal allografts with rapamycin and cyclosporin immunosuppression. Clin Transplant. 1999 Feb;13 (1pt2):90-97.
    39.Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today. 1997 Jul;18(7):335-343. Review.
    40.Charlton B, Auchincloss HJ, Fathman CG, et al. Mechanisms of transplantation tolerance. Annu Rev Immunol. 1994;12:707-34. Review.
    41.Strom TB, Roy-Chaudhury P, Manfro R, et al. The Th1/Th2 paradigm and the allograft response. Curr Opin Immunol 1996; 8: 688.
    42.Fischer K, Hamza A, Eismann R, et al. Differential diagnostic use of interleukin patterns in patients being monitored after transplantation. Clin Chim Acta. 2001 Aug 1;310(1):71-80.
    43.Hsieh CS, Heimberger AB, Cold JS, et al. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc Natl Acad Sci U S A. 1992 Jul 1; 89(13):6065-9.
    44.Carter LL, Dutton RW. Type 1 and Type 2: a fundamental dichotomy for all T-cell subsets. Curr Opin Immunol,1996 ,8(3) :336-342.
    45 . Matsuoka J, Matsuno T, Nakagawa K, et al . Induction of donor-specific hyporesponsiveness and prolongation of cardiac allograft survival by jejunal administration of donor splenocytes . Ishido Transplant, 1999, 68(9) :1377-1382.
    46.Ganschow R, Broering DC, Nolkemper D , et al . Th2 cytokine profile in infants predisposes to improved graft acceptance after liver transplantation. Transplantation, 2001,72(5) :929-934.
    47.Shino zaki K, Yahata H , Sakaguchi T , et al . Allograft transduction of IL-10 prolongs sarvival following orthotopic liver transplantation.Gene Ther,1999,6 (5) :816-822.
    48.Mottram PL, Han WR, Purcell LJ , et al . Increased expression of IL-4 and IL-10 and decreased expression of IL-2 and interferon in long-surviving mouse heart allografts after brief CD4 monoclonal therapy. Transplantation, 1995, 59(4) : 559-565.
    49.Lakkis FG. Transplantation tolerance: a journey from ignorance to memory. Nephrol Dial Transplant. 2003 Oct;18(10):1979-1982. Review.
    50.Nickerson P, Zheng XX, Steele AW, et al . T. B. Strom. Prolonged islet allograft acceptance in the absence of interleukin 4 expression. Transplant Immunol,1996,4 (1) :81-85.
    51.Raisanen Sokolowski A , Mottram PL, Glysing-Jensen T , et al . Heart transplants in interferon2 , interleukin-4 and interleukin-10 knockout mice: recipient environment alters graft rejection. J Clin Invest, 1997,100 (10) :2449-2456.
    52 . David A, Chetritt J, Guillot C, et al. Interleukin-10 produced by recombinantadenovirus prolongs survival of cardiac allografts in rats. Gene Ther. 2000 Mar;7(6):505-510.
    53. Mottram PL , HanWR, Purcell LJ , et al. Increased expression of IL-4 and IL-10 and decreased expression of IL 2 and interferon-gamma in long-surviving mouse heart allografts after brief CD4-monoclonal antibody therapy. Transplantation, 1995, 59(4) : 559-565.
    54. Thai NL , Fu F, Q ian S, et al. Cytokine mRNA profiles in mouse orthotopic liver transplantation. Graft rejection is associated with augmented TH1 function. Transplantation, 1995, 59(2) : 274-281.
    55. Kita Y, Li XK, Ohba M , et al. Prolonged cardiac allograft survival in rats system ically injected adenoviral vectors containing CTLA 4 Ig-gene. Transplantation, 1999, 68 (6) : 758-766.
    56. Lang T, Kram s SM , M artinez OM. Production of IL-4 and IL-10 does not lead to immune quiescence in vascularized human organ grafts. Transplantation, 1996, 62 (6) : 776-780.
    57. Piccotti JR, Chan SY, VanBuskirk AM , et al. Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival? Transplantation, 1997, 63 (5) : 619-624.
    58. (T3)Minguela A ,Torio A ,Marin L, et al. Implication of Th1, Th2, and Th3 cytokines in liver graft acceptance. Transplant Proc. 1999 Feb-Mar;31(1-2):519-520.
    59. Cobbold S ,Waldmann H. Infectious tolerance. Curr Opin Immunol. 1998 Oct;10(5):518-524. Review.
    60. Furukawa Y, Becker G, Stinn JL, et al. Interleukin-10 (IL-10) augments allograft arterial disease: paradoxical effects of IL-10 in vivo. Am J Pathol. 1999 Dec;155(6):1929-39.
    61. Fischer K, Hamza A, Eismann R, et al. Differential diagnostic use of interleukin patterns in patients being monitored after transplantation. Clin Chim Acta. 2001 Aug 1;310(1):71-80.
    62. Tan L, Howell WM, Smith JL, et al. Sequential monitoring of peripheral T-lymphocyte cytokine gene expression in the early post renal allograft period. Transplantation. 2001 Mar 27;71(6):751-759.
    63. Cosenza CA, Shirwan H, Cramer DV, et al. Intragraft cytokine gene expression inhuman liver allografts. Liver Transpl Surg. 1995 Jan;1(1):16-22.
    64. Oliveira JGG, Xavier P, Sampaio SM, et al. sTNFRI and sTNFRII Synthesis by Fine-Needle Aspiration Biopsy sample cultures is significantly associated with acute rejection in kidney transplantation. Transplantation, 2001, 71 (12 ) :1835-1839.
    65. Brown FG, Nikolic-Paterson DJ, Chadban SJ, et al. Urine macrophage migration inhibitory factor concentrations as a diagnostic tool in human renal allograft rejection. Transplantation. 2001 Jun 27;71(12):1777-1783.
    66. Ding R, Li B, Muthukumar T, et al. CD103 mRNA levels in urinary cells predict acute rejection of renal allografts. Transplantation. 2003 Apr 27; 75(8):1307-1312.
    67. Ter Meulen CG, Goertz JH, Klasen IS, et al. Decreased renal excretion of soluble interleukin-2 receptor alpha after treatment with daclizumab. Kidney Int. 2003 Aug;64(2):697-703.
    68. Vincenti F, Kirkman R, Light S, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med. 1998, 338(3):161-165.
    69. Nashan B, Moore R, Amlot P,et al. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet. 1997 ,350(9086):1193-1198.
    70. Andrade F, Casciola-Rosen L, Rosen A. Granzyme B-induced cell death. Acta Haematol 2004;111:28-41.
    71. Catalfamo M and Henkart P. Perforin and the granule exocytosis cytotoxicity pathway. Current Opinion in Immunology. 2003,15:522-527.
    72.王国富,吴利先.穿孔素和颗粒酶的基础和临床研究进展. (综述)医学综述1998, 4:133-134.
    73. Schulz M, Schuurman HJ, Joergensen J, et al. Acute rejection of vascular heart allografts by perforin-deficient mice. Eur J Immunol. 1995, 25(2):474-480.
    74. Heusel JW, Wesselschmidt RL, Shresta S, et al. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell. 1994,25;76(6):977-987.
    75.丁小明,刘小东,田普训,等.穿孔素和颗粒酶B的表达与肾移植术后急性排斥反应的关系.中华器官移植杂志. 2005,26:344-346.
    76. Sebek O, Dorak MT, Kotb M, et al. Quantitative detection of T-cell activation markersby real-time PCR in renal transplant rejection and correlation with histopathologic evaluation. Transplantation. 2002 Sep 15;74(5):701-707.
    77. Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994 May 13;264(5161):965-8.
    78. Baan CC, Knoop CJ, Holweg CT, et al. The macrophage-derived T-cell growth factor interleukin-15 is present in interleukin-2-independent rejection after clinical heart and liver transplantation. Transplant Proc. 1999,31(7):2726-2728.
    79. Conti F, Frappier J, Dharancy S, et al. Interleukin-15 production during liver allograft rejection in humans. Transplantation. 2003,76(1):210-216.
    80. Lee YB, Satoh J, Walker DG, Kim SU. Interleukin-15 gene expression in human astrocytes and microglia in culture. Neuroreport. 1996 Apr 10;7(5):1062-1066.
    81. Carson WE, Giri JG, Lindemann MJ, et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994,1;180(4):1395-1403.
    82. Burton JD, Bamford RN, Peters C, et al. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci U S A. 1994,24;91(11):4935-4939.
    83. Weng NP, Liu K, Catalfamo M, et al. IL-15 is a growth factor and an activator of CD8 memory T cells. Ann. N.Y. Acad. Sci. 2002, 975: 46-56.
    84. Kanegane H, Tosato G. Activation of naive and memory T cells by interleukin-15. Blood. 1996 Jul 1;88(1):230-235.
    85.窦肇华,张远强,郭顺根主编免疫细胞学与疾病中国医药科技出版社,2004年第一版。
    86.杜肖娜综述王润田审校. IL-15研究的最新进展.国外医学免疫学分册1999年22(5):
    87. Doherty TM, Seder RA, Sher A. Induction and regulation of IL-15 expression in murine macrophages. J Immunol. 1996 Jan 15;156(2):735-741.
    88. McInnes IB, al-Mughales J, Field M, et al. The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat Med. 1996 Feb;2(2):175-182.
    89. Thurkow EW, van der Heijden IM, et al. Increased expression of IL-15 in thesynovium of patients with rheumatoid arthritis compared with patients with Yersinia-induced arthritis and osteoarthritis. J Pathol. 1997 Apr;181(4):444-450.
    90. Pavlakis M, Strehlau J, Lipman M, et al. Intragraft IL-15 transcripts are increased in human renal allograft rejection. Transplantation. 1996 Aug 27;62(4):543-545.
    91. Van Buskirk AM, Pidwell DJ, Adams PW, et al. Transplantation immunology. JAMA. 1997 Dec 10;278(22):1993-1999.
    92.俞亚红,叶启发. IL-15 mRNA测定在肝移植后早期急性排斥反应诊断与鉴别诊断中的应用.中华器官移植杂志,2006,27:428-430.
    93. Tinubu SA, Hakimi J, Kondas JA, et al. Humanized antibody directed to the IL-2 receptor beta-chain prolongs primate cardiac allograft survival. J Immunol. 1994 Nov 1;153(9):4330-4338.
    94. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001 Jan 1;97(1):14-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700