育成期蓝狐脂肪消化代谢规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝狐是珍贵的毛皮动物之一,属于犬科食肉目,其以消化高蛋白、高脂肪的动物性饲料为主。本课题研究了日粮脂肪类型和水平对蓝狐的消化代谢规律的影响。通过对生产性能、营养物质利用、血清生化指标、消化道酶活、体脂沉积、组织形态学、脂肪代谢相关基因表达等指标的测定,系统的研究脂肪营养素在蓝狐体内的消化、吸收、代谢机理,为饲料的开发与利用、预防和控制脂肪营养素相关疾病提供真实、可靠地科学依据。本文包括两个部分:
     第一部分脂肪类型对育成期蓝狐消化代谢规律的影响
     选取日龄相近、体重相近的健康幼狐48只,随机分成3组,每组有8只公狐8只母狐,分别饲喂含不同脂肪类型(鱼油、猪油、牛油)脂肪水平均为12%的试验日粮。结果表明:
     ①鱼油组蓝狐日增重均显著低于猪油和牛油组(P<0.05)。在育成前期,鱼油组蓝狐料肉比和代谢能增重比显著高于其他两组。而在冬毛生长期,各处理组公狐料肉比和代谢能增重比之间存在极显著性差异,以牛油组最低,鱼油组最高(P<0.01)。鱼油组的毛皮质量显著低于其他两组(P<0.05)。
     ②鱼油、牛油和猪油组EE的表观消化率各组之间均存在显著性差异(P<0.05),以猪油组显著优于其他两组。与其他两组相比,蓝狐日粮中添加鱼油可使肠道绒毛变短(P<0.01),隐窝深度加深(P<0.05),而猪油和牛油之间无显著性差异(P>0.05),不同脂肪类型日粮对肠道消化酶活性影响不显著(P>0.05)。
     ③蓝狐鱼油组的TG、TC、HDL-C和LDL-C均表现出较高的浓度,体脂沉积各性状显著升高,尤其是肝脂率和肝体指数(P<0.01),猪油组和牛油组各指标间差异不显著(P>0.05)。猪油和牛油对蓝狐肝脏组织结构未产生不良影响,而鱼油组蓝狐的肝脏组织结构受损伤。
     ④ChREBP基因表达量各组之间存在极显著差异(P<0.01),以鱼油组最高,牛油组最低。鱼油组MTP的基因表达量显著高于其他两组(P<0.05),而猪组与牛油组之间无显著性差异(p>0.05)。鱼油组SREBP-1c基因的表达量极显著低于其他两组(P<0.01),而猪组与牛油组之间无显著性差异(p>0.05)。
     第二部分日粮脂肪水平对育成期蓝狐消化代谢规律的影响
     选取日龄相近、体重相近的健康幼狐64只,随机分成4组,每组有8只公狐8只母狐,分别饲喂脂肪水平约为12%、26%、40%和54%的试验日粮。结果表明:
     ①随日粮脂肪含量的增加日采食量和料肉比逐渐降低,日采食代谢能有先增加后保持平衡的趋势,40%组日采食代谢能极显著高于12%组(P<0.01)。公狐以26%组,母狐以40%组生长最快。毛皮质量各指标随着日粮脂肪含量的增加有先增加后降低的趋势,26%组公狐极显著优于其他三组(P<0.01),54%组母狐极显著均劣于其他三组(P<0.01)。
     ②整个育成期,除碳水化合物外的各营养物质的利用率都随着日粮脂肪水平的增加呈逐渐上升趋势。12%组CP、EE、DM和GE的消化率极显著低于40%和54%组(P<0.01)。随着日粮脂肪含量的增加氮摄入量、粪氮、尿氮逐渐降低,NPU和BV有上升趋势。日粮中较高的脂肪水平会引起蓝狐肠道形态学上的改变,使小肠绒毛变短,隐窝加深,同时脂肪酶活性增大,但对胰蛋白酶和淀粉酶活性没有影响。
     ③日粮脂肪水平为54%时,蓝狐体脂沉积各性状显著升高尤其是肝脂率和肝体指数(P<0.05),并出现高血脂高血糖现象,肝脏组织结构受损严重。血清TG和HDL-C可初步作为生长蓝狐肝脏脂肪侵润程度、肝体指数及内脏脂肪含量的预测指标。
     ④MTP基因表达量随着脂肪水平的增高明显增高的趋势,以54%组极显著高于其他组(P<0.01),40%组极显著高于12%和26%组(P<0.01),而12%和26%组两组间无显著差异(P>0.05)。
     综上所述,本文认为育成期蓝狐日粮适宜脂肪水平为26%;日粮中过高脂肪含量会引起蓝狐病变;MTP基因表达量随着脂肪水平的增高明显增高的趋势。鱼油组多数生理、生产指标显著低于牛油和猪油,而牛油和猪油组间无差异;鱼油组肝脏SREBP-1c基因的表达量显著低于其他两组,但组织形态学观察鱼油组肝脏受损,因此不建议在此时期单独添加鱼油。
Blue foxes (Alopex lagopus) are well-known carnivorous mammals of the Canidae family and are precious fur-bearing animals. They mainly live on animal feedstuff of high protein and high fat. This study focused on the effects of dietary lipid levels and fat species on the nutrient absorption and metabolism in Blue foxes.
     Hopefully, this paper could provide a reliable basis for development and utilization of fodder as well as prevention and control of fat related disease by determination of reproductive performance, nutrient utilization, serum biochemical indices, digestive tract enzyme activity, fat deposition, tectology and genes expression of lipid metabolism and systematic research of the assimilation and metabolism mechanism of fat. The dietary lipid levels are 12%。
     The paper consists of two parts:
     PartⅠThe Effect Of Different Fat On Digestion And Metabolism Of Blue Foxes In Growing Period
     48 larva foxes, which were healthy, and roughly the same age and body weight, were allotted into 3 treatments randomly, each treatment consisted of 8 male and 8 female, fed with diet containing fish oil, lard and tallow seperately.
     ①Blue foxes fed with diet containing fish oil had the lowest daily weight gain, which was significantly lower than the ones fed with diet containing lard and tallow(P<0.05). Feed conversion ratio and energy/gain ratio of fish oil group were significantly higher than the other two groups during the early growing period. However the male blue foxes of the three groups showed extremely significant differences in feed conversion ratio and energy/gain ratio, with the lowest in fish oil group and highest in tallow group(P<0.01).the fish oil fed group had the significant poorer fur quality compared with the other two(P<0.05).
     ②Comparing with the other two treatments, diets with fish oil can shorten the intestinal mucosae(P<0.01) and deepen the recess(P<0.05). The treatments with lard and tallow showed no significant differences (P>0.05).All type of dietary had no significant effect on activity of intestinal digestive enzyme.
     ③The TG, TC, HDL-C and LDL-C of blue foxes in fish oil treatment all with high on centration, the index of fat deposition were significantly raised especially the hepatic fat rate and liver/body ratio(P<0.01). The treatments with lard and tallow showed no significant differences in these indexes (P>0.05). Lard and tallow had no bad effects on liver while the fish oil caused damage to the structure of liver.
     ④Extremely significant difference was observed in expression quantity of ChREBP,reaching the highest in fish oil group and lowest in tallow group(P<0.01). The expression quantity of MTP in group fed with fish oil contained diet was significantly higher than those of lard group and tallow group (P<0.05), between which no significant differences were observed (p>0.05). The expression quantity of SREBP-1c in group fed with fish oil contained diet was significantly lower than those of lard group and tallow group (P<0.01),between which no significant differences were observed (p>0.05).
     PartⅡThe Affect of Fat Level On Digestion and Metabolism In Blue Foxes In Growing Period 64 larva foxes, which were healthy, and roughly the same age and body weight, were allotted into 4 treatments randomly, each treatment consisted of 8 male and 8 female, fed with diet containing 12%、26%、40% and 54% fat.
     ①Average daily feed intake and feed conversion ratio decreased as the dietary fat increased, d metabolizable energy tended to increase at first then remained stable. The daily metabolizable energy of 40% treatment was significantly higher than 12% treatment (P<0.01). Male foxes in 26% treatment and female in 40% treatment grew most rapidly.
     As the fat in dietary increased, pelt quality increased at first and then decreased. Pelt quality of male foxes in 26% treatment was significantly better than other treatments (P<0.01) while that of female in 54% treatment was significantly worse than other treatments (P<0.01).
     ②The nutrient-use efficiency increased as the dietary lipid level rose except carbohydrate during growing period. The digestibilities of crude protein, ether extract, dry matter and gross energy of 12% treatment was significantly lower than those of treatment 40% and 54%.
     As the fat in dietary increased, there was a decline of nitrogen intake, fecal nitrogen and urinary nitrogen, while net protein utilization and biological value of protein increased. High level of fat in dietary would cause morphological change in intestinal canal such as shorter intestinal villi, deeper recess and more lipase activity, but trypsinase and amylopsin were not affected.
     ③With 54% fat in dietary, the index of fat deposition were significantly raised especially the hepatic fat rate and liver/body ratio (P<0.05), hyperlipoidemia and hyperglycosemia were detected, the liver was badly damaged.
     The TG and HDL-C of serum can be preliminary predictive index of degree of liver fat accumulation, liver/body ratio and visceral adiposity in blue foxes in growing period.④In sum, this study suggested optimum dietary fat level of blue fox in growing period is 26%.
     ④The expression quantity of MTP increased with the fat level and the 54% group was extremely significantly higher than the other groups(P<0.01), 40% group was extremely significantly higher than 12% and 26% group(P<0.01).No significant difference was observed between 12% and 26% group(P>0.05).
     In conclusion, based on this study, the optimum dietary fat level in blue foxes of growing-furring period is 26%, higher fat level could cause pathological changes. The expression quantity of MTP increased with the fat level. Feeding effect of lard and tallow were equally good. Most physiological performance and production performance of fish oil group were significantly lower than those of lard group and tallow group, between which no significant differences were observed. The expression quantity of SREBP-1c in liver in group fed with fish oil contained diet was significantly lower than those of other groups, but the liver of foxes in fish oil group were morphologically damaged, so fish oil was not recommended at this period.
引文
[1]阐志超,李岩等.清脂益肝汤对非酒精性脂肪肝大鼠治疗的实验研究[J].河北医药, 2006, 28 (3): 168-170.
    [2]陈萍,李福昌.日粮中添加脂肪对断奶至2月龄肉兔生产性能与生理指标的影响[J].动物营养学报, 2006, 18(3): 179-185.
    [3]陈静,田志强,张伟国等.腹内脂肪面积切点与代谢综合征临床检出率的关系[J].中华医学杂志, 2006, 86(30): 2 110-2 113.
    [4]陈立敏.饲粮营养水平对育成期蓝狐生产性能和营养物质消化代谢的影[D].硕士学位论文.北京:中国农业科学学院, 2001.
    [5]陈萍.日粮脂肪类型和水平对生长肉兔生长发育、营养物质利用及肉质的影响[D].硕士学位论文.泰安:山东农业大学, 2004.
    [6]陈樟勇.脂肪在毛皮兽日粮中的应用[J].特产研究, 1995(04): 59-61.
    [7]陈宗良.血脂、脂蛋白及载脂蛋白的基本概念[J].中国循环杂志, 2009, 24(4): 315-316.
    [8]程世鹏等.特种经济动物常用数据手册[M].沈阳:辽宁科学技术出版社,2000.
    [9]程万里,王彦华,宋光耀等.不同脂肪酸饮食导致大鼠肝脏脂代谢紊乱的实验研究[J].中国老年学杂志, 2008, 28: 742-744.
    [10]段铭,高宏伟,郝黎明.不同脂肪源对肉仔鸡肝脏中脂肪代谢相关基因表达的影响[J].中国畜牧杂志, 2003, 39(6): 6-9.
    [11]樊丹君.固醇调节元件结合蛋白与脂质代谢的研究进展[J].国际内科学杂志, 2007, 34 (3): 152-154.
    [12]范建高,曾民德,李继强等.脂肪肝与肝纤维化关系的实验研究[J].胃肠病学. 1998, 3(4): 195-198.
    [13]范卫星,何瑞国,胡骏鹏,等.朗德鹅血液性状与体脂沉积间相关关系的研究[J].饲料工业, 2007, 28(15): 36-38.
    [14]冯建,贾刚.饵料中不同脂肪水平诱导红姑鱼脂肪肝病的研究[J].水生生物学报, 2005, 29(1): 61-64.
    [15]付世建,谢小军,曹振东.南方鲇的营养学研究:Ⅲ.饲料脂肪对蛋白质的节约效应[J].水生生物学报, 2001, 25(1): 70-75.
    [16]高士争.添加脂肪酸钙提高蛋鸡生产性能的试验[J].中国家禽. 1999, 21(4): 28.
    [17]顾宪红,李德发.仔猪脂肪代谢的影响因素[J].饲料研究, 2000, 04: 21-23.
    [18]胡金城.工厂化养殖卵鲳鲹脂肪肝的防治[J].科学养鱼, 2004, 1:42.
    [19]黄巧云,杨福泰,钟频祥等.脂肪肝与高脂血症的关系调查[J].海峡预防医学, 2003, 5(9): 36.
    [20]贾刚,冯健.饵料中不同脂肪水平诱导红姑鱼脂肪肝病的研究[J].水生生物学报, 2005, 29(1) : 61-64.
    [21]蒋建家,孙炳庆,庄玉君等.内脏脂肪蓄积与血尿酸和代谢综合征的关系[J].福建医科大学学报, 2009, 43(4): 327-330.
    [22]邝智祥,王俐智,王惠影等.添加不同脂肪酸对填饲朗德鹅产肝性能、屠宰性能及体脂沉积的影响[J].中国家禽. 2008, 30(23): 9-16.
    [23]赖璐华.代谢综合征的研究进展[J].柳州医学, 2008, 21(2): 77-80.
    [24]雷其智,莫艳榛.七星鱼“脂肪肝”症的诊治[J].广西畜牧兽医, 1999, 15(3): 27-28.
    [25]冷董碧.不同来源油脂对断奶仔猪生产性能的影响[D].硕士学位论文.长沙:湖南农业大学, 2007.
    [26]冷静,朱仁俊.共轭亚油酸对猪营养的作用[J].黑龙江畜牧兽医. 2002, (8):17-181.
    [27]黎荣山.微粒体甘油三酯转移蛋白及其基因多态性的研究进展[J].广西医科大学学报, 2006, 23(4): 686-689.
    [28]李跃林,李丽,邓卓军.实验性脂肪性肝病大鼠肝细胞凋亡与组织病理的对比研究[J].河北医药, 2004, 26(12): 929-931.
    [29]李建国,冯仰廉,莫放等.粗料型日粮真胃灌注棕榈油对肉牛能量和蛋白质转化效率影响的初步研究.畜牧兽医学报, 2000, 31(05): 385-389.
    [30]梁旭方,白俊杰,劳海华等.真鲷脂蛋白脂肪酶基因表达与内脏脂肪蓄积营养调控定量研究[J].海洋与湖沼, 2003 , 34(6): 625- 631.
    [31]廖玉英,杨家晃,何仁春等.日粮代谢能水平对鹅生长性能、养分利用率及肉质的影响[J].粮食与饮料工业, 2006(5): 38-40.
    [32]刘佰阳,李光玉,张海华等.不同水平脂肪对冬毛期蓝狐生产性能及消化代谢的影响[J].经济动物学报, 2008, 12(3): 132-137.
    [33]刘佰阳.不同脂肪对育成期蓝狐生产性能及消化代谢的影响[J].经济动物学报, 2007(3): 125-129.
    [34]刘建红,黄森,林文弢等.有氧运动对高糖高脂膳食大鼠肝脏碳水化合物反应元件结合蛋白mRNA表达的影响[J].中国运动医学杂志, 2008, 27(5): 624-625.
    [35]刘金银.早期断奶仔猪对脂肪的利用[J].中国饲料, 2000, 04: 16-18.
    [36]刘淑娥.饲料级油脂的使用[J].饲料广角, 2002, (14): 21-22.
    [37]刘振山,李齐发,李学斌等.糖类应答元件结合蛋白—葡萄糖信号途径中的转录因子[J].生命的化学, 2006, 26(4): 302-305.
    [38]刘志军,韩占江,宋迁红.淡水优质鱼类养殖大全[M].北京:中国农业出版社, 2004, 415-417.
    [39]龙婷婷,李志扬,吴铁等.脂肪乳剂灌胃建立实验性脂肪肝小鼠模型[J].汕头大学医学院学报. 2009, 22(2): 89-91.
    [40]卢建雄,杨公社,陈粉粉等. TNF影响胰岛素对原代培养大鼠脂肪细胞增殖及生脂基因的转录表达[J].动物学报, 2006, 52(1): 123-129.
    [41]卢建雄,杨公社,陈粉粉.胰岛素对原代培养猪脂肪细胞生脂和脂解相关基因转录表达及脂代谢的影响[J].农业生物技术学报, 2006, 14(1): 11-16.
    [42]吕瑞娟,任登先,闫明.脂肪肝的发病机理和治疗研究进展[J].甘肃科学学报, 2001, 13(2): 57-64.
    [43]朴厚坤,王树志,丁群山.实用养狐技术[M].北京:中国农业出版社, 2004.
    [44]浦云飞.腹型肥胖内脏脂肪定量检测的评估及其临床价值[D].硕士学位论文.重庆:第三军医大学. 2009: 8-9.
    [45]秦红波,曹浩强,华志元等,高脂饮食致大鼠非酒精性脂肪肝模型的建立[J].南京医科大学学报(自然科学版). 2008, 28(8): 973-976.
    [46]邵新宇,贾伟平.腹内脂肪与代谢综合征[J].中华内分泌代谢杂志, 2004, 3: 279-282.
    [47]苏继影.提高早期断奶仔猪脂肪利用效果的研究[D].硕士学位论文.哈尔滨:东北农业大学, 2006.
    [48]孙德文,詹勇,许梓荣等.日粮脂肪酸和动物免疫机能[J].中国兽药杂志,2003,37(4): 32-36.
    [49]唐兰,屈小英,张明军等.体重指数及血脂甘油三酯与脂肪肝的相关性分析[J].重庆医科大学学报, 2007, 32(4): 410-430.
    [50]唐韬,李燕.固醇调节元件结合蛋白与脂质代谢[J].生理科学进展, 2005, 36(1): 29-34.
    [51]佟煜人,钱国成.中国毛皮兽饲养技术大全[M].北京:中国农业科技出版社, 1990.
    [52]王健,黄群,吕农华等.高脂血症与肝脏脂肪浸润[J].实用临床医学, 2003, 4(6): 85-86.
    [53]王爱民,吕富,杨文平等.饲料脂肪水平对异育银鲫生长性能、体脂沉积、肌肉成分及消化酶活性的影响[J].动物营养学报, 2010, 22(3): 625-633.
    [54]王宝山.日粮类型对小尾寒羊小肠各段消化酶活性影响的研究[D].硕士学位论文.保定:河北农业大学, 2003.
    [55]王建明,鲁玉辉,余冰.猪脂肪营养的应用及调控研究动态[J].畜禽业. 1998, (6): 12-15.
    [56]王立泽,孙树春,张国宾.配制水貂饲料要添加脂肪[J].养殖与饲料, 2008, (03): 83-84.
    [57]王微,许卫华,韩春生等.脂肪肝与高脂血症、高血压病、糖尿病的相关性研究[J].中国现代医药杂志. 2008, 10(2): 47-48.
    [58]王向东,刘荣华,马宝娟等.内脏脂肪含量对青年肥胖女性心肺功能及有氧运动能力的影响[J].现代预防医学, 2010,37(10): 1 907-1 909.
    [59]王燕等.脂肪酸合成酶在非小细胞肺癌中表达的临床意义[J].中华肿瘤杂志, 2002, 24(3):271-273.
    [60]魏登邦,张宝琛.共轭亚油酸对脂肪代谢的影响[J].黑龙江畜牧兽医.2002, (11): 54-55.
    [61]吴寒,戴嘉,张燕等.脂肪肝相关危险因素分析[J].上海预防医学, 1999, 11(18): 358-361.
    [62]肖培弘.鱼类脂肪肝[J] .农家参谋.2002,5:30.
    [63]熊文中,杨凤,周安国.猪重生长激素对杂交肥育猪脂肪代谢调控的研究[J].畜牧兽医学报. 2001, 32(1): 1-4.
    [64]熊文中.饲料中脂肪酸对动物脂肪合成酶及其基因表达的影响[J].动物营养学报. 1999, 11(2): 12-18.
    [65]徐彬,李绍玉.多不饱和脂肪酸的生物学功能以及在养猪生产上的应用研究[J].畜禽业, 2007, 218: 14-18.
    [66]杨凤.动物营养学(第2版)[M].北京:中国农业出版社, 2001.
    [67]杨鸿昆.卵磷脂、胆碱和肌醇在罗非鱼脂肪肝病变中的作用机制[D].硕士学位论文,2006.
    [68]杨嘉实,张洪如,靳世厚.狐各生物学时期典型饲粮配方及营养水平推荐值[A].全国首届特产动物营养学术讨论会文集[C]. 1990.
    [69]杨嘉实.中国特产(种)动物营养需要及饲料配制技术[M].北京:中国科学出版社, 1994.
    [70]姚浪群,萨仁娜,佟建明,霍启光.安普霉素对仔猪肠道微生物及肠壁组织结构的影响[J].畜牧兽医学报, 2003, (03): 250-257.
    [71]于会民,李德发,管武太等.不同脂肪对肉鸡营养素沉积、体组成和血清代谢物的影响[J].畜牧兽医学报, 1998, 29(4): 304-314.
    [72]喻礼怀,王梦芝,王洪荣等.代谢能水平对6~10周龄扬州鹅增重效率及体脂沉积的影响[J].中国畜牧杂志, 2010, 46(21): 28-33.
    [73]张金伟.能量来源对产蛋鸡肝脏脂肪代谢的影响及其机制研究[D].硕士学位论文.四川农业大学, 2009.
    [74]张梅.高脂肪高蛋白饮食对发育期大鼠糖代谢的影响[D].硕士学位论文.北京:中国医科大学, 2009: 11-13.
    [75]张书平,王丽坤,南月敏.家兔脂肪肝模型的建立及病理学研究[J].河北医科药大学学报, 2004, 25(6): 321-325.
    [76]周爱军,王静.中链脂肪酸在仔猪生产中的应用[J].山东畜牧兽医, 2006, 4: 9-10.
    [77]周顺伍,动物生物化学(第3版) [M]北京:中国农业出版社, 2000: 144-146.
    [78]朱金娈,邹晓庭.蛋鸡脂肪代谢及脂肪肝防治研究进展[J].黑龙江畜牧兽医. 2002, 11: 46- 47.
    [79]庄景凡,谢迪华,王文初等.血液生化指标在脂肪肝诊断中的意义[J].中国校医, 2009, 1 (23): 68-69.
    [80]邹晓庭,方洛云,许梓荣.共轭亚油酸在畜禽中的应用[J].中国饲料. 2002, (8): 290-301.
    [81] Ahlstr?m ?., Fuglfi E., Mydland Torunn L. Comparative nutrient digestibility of arctic foxes (Alopex lagopus) on Svalbald and farm-raised fox (Alopex lagopus)[J]. Comparative Biochemistry and Physiology. 2003, 134: 63-68.
    [82] Ahlstr?m ?., Skrede A. Comparative Nutrient Digestibility in Dogs, Blue Foxes, Mink and Rats [J]. The Journal of Nutrition. 1998, 128: 2 676-2 677.
    [83] Ahlstr?m ?., Skrede A. Feed with divergent fat: carbohydrate ratios for blue foxes (Alopex lagopus) and mink (Mustela vison) in the growing-furring period [J]. Norway Journal of Agricultural Science. 1995, 9: 115-126.
    [84] Akexander NJ, Smythe NL. Dietary modulation of in vitro lymphocyte function [J] . Ann Nutr Metab. 1998, 32 (1):192-199.
    [85] Appel SJ, Jones ED, Kennedy-Malone L. Central obesity and the metabolic syndrome: implications for primary care providers [J]. Journal of the American Academy of Nurse Practitioners. 2004, 16: 335-342.
    [86] Bassett, C. F. 1951. U. S. Bur. Anim. Ind., Fur Anim. Exp. Stn., Saratoga Springs, N. Y. Unpublished data.
    [87] Bell J G, John M, Douglas R T et al. Replacement of fish oil with rapeseed oil in diets of Atland salmon (Salmo salar)affects tissue lipid composition and hepatocyte fatty acid metabolism[J]. J. Nutr. 2001, 131: 1535-1543.
    [88] Beluy M A, Moya-Camarena S Y, Liu K L , et al. Dietary Conjugated linoleic acid induces peroxisome-specific enzyme accumulation and omith ine decarboxylase activity in mouse liver[J]. Journal of Nutritional Biochemistry. 1997, (8): 579- 584.
    [89] Bensadoun, A., C.Ehnholm and D. Steinberg. Purification and characterization of lipoprotein lipase from pig adipose tissue [J]. The Journal of Biochemical Chemistry.1974, 249(7):222 -2227.
    [90] Bird F.H, and Moreau E.G. The effect of dietary protein levels in isocaloric diets on the composition avian pancreatic juice [J]. Poult Sci. 1979.57:1622-1628.
    [91] Blake W L ,Clarke S D. Suppression of rat hepatic fatty acid synthesis and S14 gene transcription by dietary polyunsaturated fat[J]. J Nutr. 1990, (120): 1727- 1729.
    [92] Brauge C, Corraze G, Medale F. Effects of dietary levels of carbohydrate and lipid on glucose oxidation and lipogenesis from glucose in rainbow trout, Oncorhynchus mykiss, reared in fresh water or in seawater [J]. Comp Biochem. Physiol A. 1995, 111:117-124.
    [93] Brown MS, Goldstein J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J]. Cell, 1997, 89:331-340.
    [94] Burlikowska K., Szymeczko, R., B?aszyk J. Apparent ileac digestibility of fat and fatty acids in polar foxes [J]. Scientifur, 2003, 27: 71-77.
    [95] Burlikowska K, Szymeczko R, B?aszyk J. 2003: Apparent ileal digestibility of fat and fatty acids in polar foxes [J]. Scientifur. 27, 71-77.
    [96] CHAPMAN B, MORGANL M, MURPHYM C. Maternal and early dietary fatty acid intake: changes in 1ipid metabolism and 11ver enzymes in adult rats [J]. Nutr. 2000, 130:146 - 151.
    [97] CHENAIS B., MOLLE I., TRENTESAUX C., et al. Time2course of butyric acid2 induced differentiation in human K562 leukemic cell line: rapid increase in r2 globin porphobilibogen deaminase and NF2E2 mRNA levels [J]. Leukemia, 1997, 11(9):1575-1579.
    [98] Clarke S D, A rm strong M K, Jump D B. Dietary polyunsaturated fats uniquely supp ress rat liver fatty acid synthase and S14M ma content[J]. J Nutr, 1990, (120):225- 231.
    [99] Clarke S D, Hembree J. Inhibition of Triiodo thyronine’s induction of rat liver lipogenic enzymes by dietary fat [J]. J Nutr. 1990, (120):625- 630.
    [100] Clarke S. D. Regulation of fatty acid synthase gene expression: A n approach for reducing fat accumulation [J]. J Anim Sci., 1993, (71): 1957- 1965.
    [101] Crespo N., Esteve-Garcia. E. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens [J]. Poult Sci.2001, 80:71-78.
    [102] Dahlman T., Valaja J., Jalava T, Skrede A. Growth and fur characteristics of blue foxes (Alopex lagopus) fed diets with different protein levels and with or without DL-methionine supplementation in the growing-furring period [J]. Can. J. Anim. Sci.2003, 83, 239-245.
    [103] Dahlman T, Valaja J, Nieml? P, Jalava T. Influence of protein level and supplementary L-methionine and lysine on growth performance and fur quality of blue fox (Alopex lagopus)[J]. Acta Agric.Scand. 2002, 52, 174-182.
    [104] Dana R S, DarrellA K, Stephen B S. Depression of lipogenesis in swine adipose tissue by specific dietary fatty acids[J]. J. Anim. Sci. 1996, (74): 975-983.
    [105] Dentin R., Pegorier J.P, Benhamed F., et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene epression [J]. J Biol Chem, 2004, 279(19):20314-20326.
    [106] Deplano M., Connes R, Diaz J P, et al. Intestinal steatosis in the farm reard sea bass Dicentrarchus labrax[J]. Dis. Aquac. Org., 1989, 6: 121-130.
    [107] Ding S. T.,Mersmann H J. Modification of porcine preadipocyte differenti-ation by selected polyunsaturated fatty acids[J].In Vitro Cellular & Develop-mental Biology-Animal, 2002, 38:352-357.
    [108] Dove-C.R. The effect of adding copper and various fat sources to the diets of weanling swine on growth performance and serum fatty acid profiles [J]. J-anim-sci. 1993. 71(8): 2187-2192.
    [109] Duke G. E.,Evanson O.A. Inhibition of gastric motility by duodena contents in chickens[J]. Poult. Sci., 1972, 51:1625-1636.
    [110] Eckel R H. Lipoprotein lipase: a multifunctional enzyme relevant to common metabolic diseases [J]. N.Eng.J.Med.1989, 320(16): 1060-1066.
    [111] Edwards PA, Tabor D, KastHR, et al. Regulation of gene expression by SREBP and SCAP [J]. Biochimica, et al., Biophysica Acta, 2000, 1529:103~113.
    [112] Ellis S. C., Reigh R C. Effects of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum, Sciaenops ocellat us [J]. Aquaculture, 1991, 97:383-394.
    [113] Felder T. K., Klein K, PatschW, et al. A novel SREBP-1 splice variant: tissue abundance and transactivation potency [J]. Biochim Biophys Acta, 2005, 1731(1): 41-47.
    [114] Foretz M, Ancellin N., Amdreelli F.,et al. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver[J]. Diabetes, 2005, 54 (5): 1331-1339.
    [115] Freeman C.P. Properties of fatty acids in dispersions of emulsified 1ipid and bile salt and the significance of these properties in fat absorption in the pig and the Sheep[J]. Br.Nutr. 1969.23:10-17.
    [116] Gaylord T. G., Gatlin A M.Ⅲ. Dietary lipid level but not L-camitine affects growth performance of hybrid striped bass (M orone chrysops×M.saxatilis)[J]. Aquaculture, 2000, 190: 237-246.
    [117] Gugo?ek A., Zab?ocki W., Kowalska D., et al. Nutrient digestibility in Arctic fox (Vulpes lagopus) fed diets containing animal meals [J]. Brazilian Journal of Veterinary and Animal Science, 2010, 62(4): 948-953.
    [118] Gugo?ek A, Zab?ocki W, Kowalska D, Janiszewski P, Konstantynowicz M., Strychalski J.Nutrient digestibility in Arctic fox (Vulpes lagopus) fed diets containing animal meals [J]. Arq. Bras. Med. Vet. Zootec.2010, 62, 948-953.
    [119] Hasegawa J., satom ik O., Wurf, et al. Anovel factor binding to the glucoe response elements of liver pyruvate-kinase and fatty acid synthase gene [J]. J Biol. Chem., 1999, 274 (2):1100- 1107.
    [120] Hersteinsson, P. Population genetics and ecology of different colour morphs of arctic foxes (Alopex lagopus) in Iceland [J]. Finnisch Game Reserve, 1989, 46: 64-78.
    [121] Hirokane H, Nakahara M, Tachibana S, et al. Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4[J]. J Biol Chem, 2004, 279(44):45 685-45 692.
    [122] Horton JD, Goldstein JL, BrownMS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver [J]. J Clin Invest, 2002, 109:1125-1131.
    [123] Hughes D.A., et al.ω- 3 polyunsaturated fatty acids inhibit the antigen- presenting function of human monocytes [J]. J. Clin Nutr., 2000 (71):357-360.
    [124] Ibeas C, Cejas J, Gomez T, et al. Influnce of dietary n-3 highly unsaturated fatty acids levels on juvenile gilthead seabream (Sparus aurata) growth and tissue fatty acid composition[J]. Aquaculture, 1996, 142: 221-235.
    [125] Iritani N., M.Komiya, H.Fukuda, T.Sugimoto. Lipogenic enzyme gene expression is quickly suppressed in rats by a small amount of exogenous polyunsaturated fatty acids [J].J Nutr.1998, 128:967-972.
    [126] Jacques Mourot, Gerard Guy, Philippe Peiniau, et al. Effects of overfeeding on lipid synthesis, transport and storage in two breeds of geese differing in their capacity for fatty liver production[J].Anim res, 2006,(55):427-442.
    [127] Jamil H, Dickson JK Jr, Chu CH, et al. Microsomal triglyceride transfer protein specificity of lipid binding and transport [J]. J Biol Chem, 1995, 270(12):6549-6554.
    [128] Jeffery N. M., Cortina M, Newsholme PC, et al. Effects of variations in theproportions of monounsaturated and polyunsaturated fatty acids in the rat diet on spleen lymphocyte function [J]. British J of Nutri, 1997, 77 (3): 8052823.
    [129] Kawaguchi T., Takenoshita M.,Kabashima T.,et al. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/ dephosphorylation of the carbohydrate response element binding protein[J]. Proc Natl Acad Sci USA, 2001, 98(24): 13710-13715
    [130] Kim T S, Freske H C. High carbohydrate diet and starvation regulate lipogenic mRNA in rats in a tissue-specific manner [J]. J Nutr, 1996, 126(3):611- 617.
    [131] Kopczewski A., Nozdryn-P?otnicki Z., Ondra?ovi? M., et al. The effect of feed with various high-energy levels on anatomical and histopathological changes in arctic foxes [J]. Folia Veterinaria, 2001, 45:134-138.
    [132] Korshunov-SS. Fat sinthe diets for wild animals [J]. Krolikovodstvo-i-Zverovodstvol, 1994(1): 5-6.
    [133] Koskinen N., Tauson A.-H., Sepponen J., et al. Energy metabolism of growing blue foxes [J]. Scientifur, 2008, 32(4): 149-150.
    [134] Leskanich C.O. The effect of dietary oil containing (n-3) fatty acids on the fatty acid physiocochemical, and organoleptic characteristics of pig meat and fat[J]. J.anim.sci.1997, 75(3): 673-683.
    [135] Letexier D.,Pinteur C.,Large V et al. Comparison of the expression and activity of the lipogenic pathway in human and rat adipose tissue[J]. J Lipid Res, 2003, 44(11):2127-2134.
    [136] Lie O, Lied E, Lambertsen G. Feed optimization in Atlantic cod (Gadus morhua): fat versus protein content in the feed [J]. Aquaculture, 1988, 68: 3333-341.
    [137] Lin H, Romsos D R, Tack P L, et al. Influence of dietary lipid on lipogenic enzyme activities in coho salmon (Oncorhynchus kisutch Walbaum) [J]. J.Nutr, 1977, 107: 846-851.
    [138] Lin Ding, Mao Yongqing, Cai Fasheng. Nutritional lipid liver disease of grass carpCtenopharyngodon idullus (C. et V.)[J] Chinese Journal of Oceanology and Limnology, 1990, 8, (4) .
    [139] Lin MCM, Gordon D, Wetterau J R, et al. Microsomal Triglyceride Transfer Protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTPgene expression [J]. J Lipid Res,1995,36(5):1073-1081
    [140] McPherson R., Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform spcific modulation of lipid sythesiss. Bioochem Cell Biol, 2004, 82: 201-211
    [141] Mildner A. M., Clarke S. D. Porcine fatty acid synthase: Cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotrop in and dietary protein [J]. J Nutr. , 1991, (121): 900- 907.
    [142] Moorman,T.E., Baldassarre,G.A., Richard,D.M. Carcass mass, composition,and gut morphology dynamics of mottled ducks in fall and winter in Louisiana[J]. Condor, 1992, 94:407-417.
    [143] Mosconi Bac N. Hepatice disturbances induced by an artifi-cial feed in the sea bass (Dicentrachus labax) during the first year of life [J]. Aquculture, 1987, 67:93-99.
    [144] Nanji A.A. Khwaja S. Sadrzadeh SMH. Decreased prostacycline production by liver non-parenchymal cells precedes liver injury in experimental alcoholic liver disease [J]. Life Sci. 1994.54.455.
    [145] Nematipour G R, Gatlin D M. Requirement of hybrid striped bass for ditetary (n-3) highly unsaturated fatty acids [J]. J. Nutr., 1993, 123:744-753.
    [146] NJF. Fur Animal Research [A]. Nordic Association of Agricultural Research. NJF Seminar[C] Finland: Nordic Association of Agricultural Research, 1964.
    [147] NRC. Nutrient requirements of dogs and cats[S]. Washington, D. C.: National Academy Press, 2005.
    [148] NRC. Nutrient Requirements of Mink and Foxes[S]. Washington, D. C.: National AcademyPress, 1982.
    [149] Rahman S M, Wang Y M, Yotsumo to H, et al. Effects of Conjugated linoleic acid on serum leptinc on centration, body-fat accumulation andβ-oxidation of fatty acid in OL ETF rats [J]. Nutrition. 2001, (17): 385- 390.
    [150] Rajas F., Gautier A., Badyi, et al. Polyunsaturated fatty acyl coenzyme A suppress the glucose 262 phosphatase promoter activity by modulating the DNA binding of hepatocyte nuclear factor 4[J]. J Biol Chem, 2002, 277:15 736 -15 744.
    [151] Reginatto, M.F., A.M. Ribeiro and A.M. Penz, 2000. Effect of energy, energy: protein ratio and growing phase on the performance and carcass composition of broilers [J]. Rev. Bras. Cienc. Avic., 3: 229-237.
    [152] Rimesl?tten, H. Experiments in feeding different levels of protein, fat and carbohydrates to blue foxes [M]. In: Proceedings of the First International Scientific Congress in Fur Animal Production, held at Helsinki, Finland, 27-29 April 1976. p.21
    [153] Romsos D.R., Belo P.S., Bennink M.R., et al. Effects of dietary carbohydrate, fat and protein on growth, body composition and blood metabolite levels in the dog [J]. The Journal of Nutrition, 1976, 106(10): 1 452-1 464.
    [154] Rouvinen K. Dietary Effect of Omega-3 polyunsaturated fatty acids on body composition and health status of farm raised blue and silver fox [J]. Acta Agri. Scan, 1991, 44:401-414.
    [155] Rouvinen K. Dietary Effect of Omega-3 polyunsaturated fatty acids on body composition and health status of farm raised blue and silver fox [J]. Acta Agri. Scan, 1991, 44:401-414.
    [156] Sabat P., J.A.Lagos, F.Bozinovic. Test of the adaptive modulation hypothesis in rodents: dietary flexibility and enzyme plasticity [J]. Comparative Biochemistry and Physiology Part A, 1999, 123: 83-87.
    [157] Sanz M., Flores A., Lopez-Bote C.J. The metabolic use of energy from dietary fat in broilers is affected by fatty acid saturation [J]. Br Poult Sci.2000, 41:61-68.
    [158] Sanz M., Flores A., Perez de Ayala. P., Lopez-Bote C.J.. Higher lipid accumulation in broilers fed on saturated fats than in those fed on unsaturated fats [J]. Br Poult Sci.1999, 40:95-101.
    [159] Sharp D., Blinderman L, Combs K. A., et al. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia [J]. Nature, 1993, 365(6441):65-69.
    [160] Simces N.C, Georgette B. Adaptation of pancreatic lipase to the amount and nature of dietary lipids in the grow pigs [J]. Reprod.Nutr.Develop, 1986, 26:1273-1280.
    [161] Stanly T.S. Use of fats in diets for growing pigs [J].In: Wiseman, Fats in Animal Nutrition.Butterworth, London. 1985.313-331.
    [162] Stoeckman A. K., Towle HC. The role of SREBP-1c in nutritional regulation of lipogenic enzyme gene expression [J]. J. Biol Chem, 2002, 277 (30): 27029-27035.
    [163] Takahashi K, Akiba Y. Influnce of dietary protein, sulfur aminoacid content and their ratio on actives of malic enzayme [J]. Animal science and technology. 1996, 67(3):305-309.
    [164] Tamba S., Nishizawa H , Funahashi T, et al. Relationship between the serum uric acid level , visceral fat accumulation and serum adiponectin concent ration in Japanese men [J]. Internal Medicine, 2008, 47(13): 1 175-1 180.
    [165] Tebbeyd M., Mcgowan K. M., Sstephens J. M., et al., Arachidonic acld down 2 regulates the insulin2 dependent g1ucose transporter gene in 3T3-Ll adipocytes ny inhibiting transcriptlon and enchancing mRNA turnover [J]. Biol Chem, 1994, 269:639-644.
    [166] Uyeda K, Yamashita H, Kawaguchi T. Carbohydrateresponsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochem Pharmacol, 2002, 63 (12): 2075-2080.
    [167] Valaja J., P?l?nen I., Jalava T., et al. Effects of dietary mineral content on mineral metabolism and performance of growing blue foxes [J]. Scientifur, 2000, 24: 28-31.
    [168] Vernon R Cx Control of lipogenesis and lipolysis in the control of fat and lean deposition[C], Proc, of the Easter School.Univ. Nottingham, U.K. 1992:59-81.
    [169] Verreth J., Coppoolse J., Segner H. The effect of low HUFA and high HUFA enriched Artemia, fed at different feeding levels, on growth, survival, tissue fatty scids and liver histology of Clarias gariepinus larvae [J]. Aquculture, 1994, 126:137-150.
    [170] Wang J. T., Liu Y. T., Tian L X. , et al. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogensis in juvenile cobia (Rachycentron canadum)[J]. Aquaculture, 2005, 249: 439-447.
    [171] Wilson T. A. , Nicolosi R J , Chrysam M , et al. Conjugated lino leic acid reduces early aortic athero sclero sis greater than lino leic acid in hypercho lestero lemic hamsters[J]. Nutrtion Reserch, 2000, 20 (12): 1795- 1805.
    [172] Wilson M.D., W.L.Blake, L.M.Salati, S.D.Clarke. Potency of polyunsaturated and saturated fats as short-term inhibiyors of hepatic lipogenesis in rats [J]. J Nutr.1990, 120:544-552.
    [173] Xu J., Christian B., Donald B.J. Regulation of Rat Hepatic L-Pyruvate Kinase Promoter Composition and Activity by Glucose, n-3 Polyunsaturated Fatty Acids, and Peroxisome Proliferator -activated Receptor-αAgonist [J]. J Biol Chem, 2006,281(27): 18351-18362
    [174] Xu X.L., Fontaine P., Mélard C., et al. Effects of dietary fat levels on growth, feed efficiency and biochemical compositions of Eurasian perch Perca fluviatilis [J]. Aquaculture International, 2002, 9(5): 437-449.
    [175] Yaqoob P, Newsholme P C, Cakler PC. The effect of dietary lipid manipulation on rat lymphocyte subsets and proliferation [J]. Immunology, 1994, 82 (3): 603-610.
    [176] Young R J and Garrett R L. Effect of oletc and linoleic acids on the absorption of saturated fatty acids in the chick [J]. Nutr. 1963,81:321-329.
    [177] Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action[J]. J Clin Invest, 2001, 108: 1167- 1174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700