代谢正常人肝脏脂肪含量与全天血糖谱及代谢变化的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     采用质子磁共振波谱(~1H MRS)法测定代谢正常人肝脏脂肪含量,并采用动态血糖监测系统观察全天血糖波动情况,旨在观察肝脏脂肪含量与血糖波动特征之间的关系。
     方法:
     通过询问病史,测量身高、体重、腰围、臀围、血压,检测肝功能、肾功能、血脂谱。口服75g葡萄糖耐量试验(OGTT),将47例各项检查均在正常范围的受试者确定为代谢正常人。然后对这组受试者应用~1H MRS法测定肝脏脂肪含量,应用动态血糖监测系统进行为期3日连续血糖监测。定量参数根据其分布正态性与否应用均值±标准差或中位数表示,采用Spearman相关分析,结果以P<0.05为差异具有统计学意义。
     结果:
     47例代谢正常人中,肝脏脂肪含量<5%者37人(78%),≥5%~<10%者4人(9%),≥10%者6人(13%)。
     根据中位数将47例代谢正常人分为肝脏脂肪含量<2.21%组(n=23),肝脏脂肪含量≥2.21%组(n=24)。肝脂肪含量较高组的HDL-c显著低于较低组,而TG、空腹C肽、空腹胰岛素及HOMA-IR显著高于较低组。肝脏脂肪含量≥2.21%组的葡萄糖曲线下面积(OGTT-AUC)、胰岛素曲线下面积(Insulin-AUC)及胰岛素30分钟增量(Insulin-Plus)均高于肝脏脂肪含量<2.21%组,其中后两者差异有统计学意义(P=0.003,P=0.003)。
     根据肝脏脂肪含量水平,将代谢正常人分为肝脏脂肪含量<5%组(n=37)、肝脏脂肪含量5%~10%组(n=4)及肝脏脂肪含量≥10%组(n=6)。空腹胰岛素、胰岛素曲线下面积及胰岛素增量在三组间各不相同,随肝脏脂肪含量的增加而增高;肝脏脂肪含量≥10%组的HOMA-IR值明显高于肝脏脂肪含量<5%组(P=0.003)。
     Spearman相关分析发现,肝脏脂肪含量与TG(r=0.329)、AST(r=0.323)、GGT(r=0.308)、空腹胰岛素水平(r=0.413)、2h胰岛素水平(r=0.333)、空腹C肽水平(r=0.334)、HOMA-IR(r=0.423)之间存在线性正相关(P值均<0.05),其中以HOMA-IR相关性最强。肝脏脂肪含量与年龄、BMI、血压、TC、LDL-c、HDL-c、ALT、AKP、GGT、空腹及OGTT后2小时后血糖、2小时C肽水平之间没有相关性。
     共获CGMS有效数据35例,其中男性20人,女性15人;年龄44.51±12.74岁,BMI22.43±1.81 kg/m~2,收缩压112.03±9.88mmHg,舒张压75(60-80)mmHg,甘油三酯0.96±0.37mmol/L,LDL-c:2.78±1.05 mmol/L,HDL-c:1.62±0.63 mmol/L,肝脏脂肪含量2.20(0-18.73)%,空腹血糖4.76±0.66 mmol/L,餐后2小时血糖5.30(2.79-7.50)mmol/L,CGMS所得平均血糖5.75±0.09 mmol/L,最高值8.35(6.50-12.25)mmol/L,最低值3.90±0.13 mmol/L,标准差0.80(0.45-1.85)mmol/L,平均血糖波动幅度(MAGE)2.32±0.83 mmol/L,大于7.8血糖时间比:2.50(0.00-25.00)%,小于3.9血糖时间比:0.00(0.00-28.00)%,大于5.6曲线下面积0.48(0.10-1.45)mmol/L~*h,大于6.1曲线下面积0.23(0.00-1.15)mmol/L~*h。
     根据肝脏脂肪含量水平,将代谢正常人分为肝脏脂肪含量<5%组(n=28)、肝脏脂肪含量≥5%组(n=7)。两组代谢正常人的动态血糖监测曲线中,肝脏脂肪含量较高组的平均血糖及大于5.6曲线下面积显著高于肝脏脂肪含量较低(P=0.027,P=0.023)。
     Spearman相关分析发现,肝脏脂肪含量与CGMS所得平均血糖水平(r=0.338,P=0.047)、大于5.6曲线下面积(r=0.408,P=0.015)、大于6.1曲线下面积(r=0.409,P=0.015)呈正相关。肝脏脂肪含量与最高血糖值、最低血糖值、血糖标准差、平均绝对标准差、平均血糖波动幅度、高低血糖所占时间比无相关性。
     结论:
     在这组代谢正常人中,已有22%的人脂肪含量大于5%,并且随着肝脏脂肪含量增加胰岛素抵抗程度及血糖水平呈升高趋势。随着肝脏脂肪含量的增加,代谢正常人中动态血糖谱有所改变,表现为平均血糖水平的升高,尤其以餐后血糖升高明显。
Object
     To observe the association of liver fat content and blood glucose variation among normal population using ~1H magnetic resonance spectroscopy and continuous glucose monitoring system.
     Materials and Methods
     Clinical data of 47 normal subjects had been chosen using demographic data and OGTT test.~1H magnetic resonance spectroscopy was used then to measure liver fat content,while continuous glucose monitoring system was used to acquire blood glucose profile for 3 consecutive days.Differences were considered statistically significant if P<0.05.
     Results
     Among 47 normal subjects,liver fat content of 37 subjects(78%) were<5%, 4(9%) were≥5%~<10%,6(13%) were≥10%.
     According to the median value of liver fat content,normal population were divided into two groups:fat content<2.21%group(n=23),and fat content≥2.21% group(n=24).HDL-c was significantly lower among the group whose fat content was relatively higher,but TG,fasting C peptide,fasting insulin level and HOMA-IR were significantly lower.The Insulin-AUC and 30 minutes Insulin-plus were significantly higher in fat content≥2.21%group(P=0.003,P=0.003).
     Liver fat content showed statistically significant positive correlations with TG(r=0.329),AST(r=0.323),GGT(r=0.308),fasting insulin level(r=0.413),2h insulin level(r=0.333),fasting C peptide level(r=0.334),HOMA-IR(r=0.423)(P<0.05),and no correlations with age,BMI,BP,TC,LDL-c,HDL-c,ALT,AKP,GGT,fasting and 2h blood glucose,2h C peptide level.
     According to liver fat content,normal population were divided into three groups: fat content<5%group(n=37),fat content 5%~10%group(n=4) and fat content>10%group(n=6).Fasting insulin level,Insulin-AUC and 30 minutes Insulin-plus were different among 3 groups,and increased with liver fat content. HOMA-IR is significantly higher in fat content≥10%group than that in fat content<5%group(P=0.003).
     CGMS data of 35 subjects had been acquired,Among whom 20 were male, 15were female.Mean age was 44.51±12.74years,BMI was 22.43±1.81 kg/m~2,SBP was 112.03±9.88mmHg,DBP was 75(60-80) mmHg,TG was 0.96±0.37mmol/L, LDL-c was 2.78±1.05 mmol/L,HDL-c was 1.62±0.63 mmol/L,liver fat content was 2.20(0-18.73)%,FBG was 4.76±0.66 mmol/L,2h-BG was 5.30(2.79-7.50)mmol/L, CGMS mean BG was 5.75±0.09 mmol/L,maximum BG was 8.35(6.50-12.25) mmol/L,minimum BG was 3.90±0.13 mmol/L,SDBG was 0.80(0.45-1.85) mmol/L,MAGE was 2.32±0.83 mmol/L,Time%_(7.8) was 2.50(0.00-25.00)%, Time%_(3.9) was 0.00(0.00-28.00)%,AUC_(5.6) was 0.48(0.10-1.45) mmol/L~*h, AUG_(6.1) was 0.23(0.00-1.15) mmol/L~*h.
     According to liver fat content,normal subjects were divided into two groups:fat content<5%group(n=28) and fat content≥5%group(n=7).Mean BG and AUC_(5.6) are significantly higher among the group whose fat content was above normal (P=0.027,P=0.023).
     Spearman analysis showed there was a significant positive correlation between liver fat content and mean CGMS BG(r=0.338,P=0.047),AUC_(5.6)(r=0.408, P=0.015) and AUC_(6.1)(r=0.409,P=0.015).No correlation was showed between liver fat content and maximum BG,minimum BG,SDBG,MAGE,Time%_(7.8) and Time% _(3.9).
     Conclusions
     We found that 22%of population who had normal glucose metabolism had fatty liver.Liver fat content was associated with insulin resistance and blood glucose level, especially postprandial blood glucose.
引文
[1]Bugianesi E,Leone N,Vanni E,et al.Expanding the natural history of nonalcoholic steatohepatitis:from cryptogenic cirrhosis to hepatocellular carcinoma[J].Gastroenterology,2002,123:134-40.
    [2]Socha P,Wierzbicka A,Neuhoff-Murawska J et al.Nonalcoholic fatty liver disease as a feature of the metabolic syndrome[J].Rocz panstw Zakl Hig,2007,58(1):129-37.
    [3]Ford ES,Giles WH,Dietz WH.Prevalence of the metabolic syndrome among US adults:findings from the third National Health and Nutrition Examination Survey [J].JAMA,2002,287:356-59.
    [4]Marchesini G,Bugiansi E,Forlani G et al.Nonalcoholic fatty liver,steatohepatitis,and the metabolic syndrome[J].Hepatology,2003,37(4):917-23.
    [5]S.Jimba,T.Nakagami,M.Takahashi et al.Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults [J].Diabetic Medicine,2005,22:,1141-145.
    [6]颜红梅,高鑫,刘蒙等,糖调节正常的非酒精性脂肪肝病患者β细胞功能与胰岛素敏感性变化[J].中华内分泌代谢杂志,2007,23(1):12-5.
    [7]Vozarova B,Stefan N,Lindsay RS,Saremi A,Pratley RE,Bogardus C,Tataranni PA.High alanine aminotransferase is associated with decrease hepatic insulin sensitivity and predicts the development of type 2 diabetes[J].Diabetes,2002,51:1189-1895.
    [8]Nannipieri M,Haffner SM,,Ferrannini E,et al.Liver enzymes,the metabolic syndrome and incident diabetes:The mexico city Diabetes Study[J].Diabetes Care,2005,28:1757-1762.
    [9]Barry H,Ginsberg M.D.,et al.The FDA panel advises approval of the first continuous glucose sensor[J].Diabetes Technology & Therapeutics,1999,1(2):203-4.
    [10]John J.Mastrototaro,Ph.D.The Minimed Continuous Glucose Monitoring System[J].Diabetes Technology & Therapeutics,2000,2(Suppl 1):S13-8.
    [11]David C,Klonoff,M.D.,et al.A Review of Continuous Glucose Monitoring Technology[J].Diabetes Technology & Therapeutics,2005,7(5):770-5.
    [12]Ricci C,Renata L,Eugenio G,et al.Noninvasive in vivo quantitative assessment of fat content in human liver[J].Journal of Hepatology.1997,27:108-13.
    [13]刘军,高鑫,陈刚等,CT定量评价脂肪肝[J].上海医学影像,2002,3:170-2.
    [14]Carsten Thomsen,Ulrik Becker,Kjeld Winkler et al.Quantification of liver fat using magnetic resonance spectroscopy[J].Magnetic Resonance Imaging,1994,12(3):487-95
    [15]Szczepaniak LS,Babcock EE,Schick F,et al.Measurement of intracellular triglyceride stores by 1H spectroscopy:validation in vivo[J].Am J physiol.1999;276:E977-89.
    [16]Hwang JH,Stein DT,Balent L,et al.Simultaneous quantitative assessment of intraheaptic triglycerides and IMCL using 1H MRS in non-diabetic subjects:relationship to insulin sensitivity.Proc Intl Soc Mag Reson Med.2002:1:10.
    [17]刘蒙,颜红梅,高鑫,高键.非酒精性脂肪肝病患者肝酶异常与代谢综合征的关系[J].中华医学杂志,2007,87:253-255.
    [18]Jian-Gao Fanl,Jun Zhul,Xing-Jian Li et al.Prevalence of and risk factors for fatty liver in a general Population of Shanghai,China[J].Journal of Hepatology,2005,43:508-514.
    [19]颜红梅,高鑫等;非酒精性脂肪肝与代谢综合征关系研究[J].中国糖尿病杂志,2006,14:326-328
    [20]Lidia S.Szczepaniak,et al.Magnetic resonance spectroscopy to measure hepatic triglyceride content:prevalence of hepatic steatosis in the general population[J].Am J Physiol Endocrinol Metab2005,288:462-468.
    [21]Mastrototaro,J.,The MiniMed Continuous Glucose Monitoring System(CGMS).[J]Pediatr Endocrinol Metab,1999,12 Suppl 3:751-8.
    [22]刘蒙 高鑫,等.质子磁共振波谱分析定量检测肝脏脂肪含量方法的建立与临床应用 中华医学杂志 2008,88(8):531-533
    [23]Friedewald WT,Levy RI,Friedrickson DS.Estimation of the concentration of low-density lipoprotein cholesterol on plasma,without use of the preparative ultracentrifuge[J].Clin Chem,1972,6:499-502.
    1.Bland,J.M.and D.G.Altman,Statistical methods for assessing agreement between two methods of clinical measurement.Lancet,1986.1(8476):P.307-10.
    2.Bland,J.M.and D.G.Altman,Comparing methods of measurement:why Plotting difference against standard method is misleading.Lancet,1995.346(8982):P.1085-7.
    3.Mastrototaro,J.,The MiniMed Continuous Glucose Monitoring System (CGMS).J Pediatr Endocrinol Metab,1999.12 SuPPl 3:P.751-8.
    4.Clinical Performance of CGMS in type 1 diabetic Patients treated by continuous subcutaneous insulin infusion using insulin analogs.Diabetes Care,2003.26(3):P.582-9.
    5.Real-time continuous glucose monitoring.Curr OPin Endocrinol Diabetes Obes,2007.14(4):P.288-95.
    6.Evaluating clinical accuracy of systems for self-monitoring of blood glucose.Diabetes Care,1987.10(5):P.622-8.
    7.Parkes,J.L.,et al.,A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose.Diabetes Care,2000.23(8):P.1143-8.
    8.Kovatchev,B.P.,et al.,Evaluating the accuracy of continuous glucose-monitoring sensors:continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data.Diabetes Care,2004.27(8):P.1922-8.
    9.Cox,D.J.,et al.,Understanding error grid analysis.Diabetes Care,1997.20(6):P.911-2.
    10.Gough,D.A.and EX.Botvinick,Reservations on the use of error grid analysis for the validation of blood glucose assays.Diabetes Care,1997.20(6):P.1034-6.
    11.Wentholt,I.M.,et al.,How to assess and comPare the accuracy of continuous glucose monitors? Diabetes Technol Ther,2008.10(2):P.57-68.
    12.Boyne,M.S.,et al.,Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor.Diabetes,2003.52(11):P.2790-4.
    13.Clarke,W.L.,et al.,A critical appraisal of the continuous glucose-error grid analysis:response to Wentholt et al.Diabetes Care,2007.30(2):P.449-50;author reply 450-1.
    14.Wentholt,I.M.,J.B.Hoekstra,and J.H.Devries,A critical appraisal of the continuous glucose-error grid analysis.Diabetes Care,2006.29(8):P.1805-11.
    15.Wentholt,I.M.,et al.,Comparison of a needle-type and a micro dialysis continuous glucose monitor in type 1 diabetic Patients.Diabetes Care,2005.28(12):P.2871-6.
    16.Menthol,I.M.,et al.,Relationship between interstitial and blood glucose in type 1 diabetes patients:delay and the push-pull phenomenon revisited.Diabetes Technol Ther,2007.9(2):p.169-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700