羧甲基壳聚糖智能释药肝靶向纳米传递系统的构建与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝炎、肝硬化和肝癌等慢性肝脏疾病,极大地危害人体的健康。尽管目前某些药物能够达到预期的治疗效果,但由于给药系统难以将药物准确传递到肝脏病灶细胞而降低了其生物利用度,并产生较大毒副作用,限制了其临床应用。解决这个问题的有效办法就是靶向给药系统。
     靶向给药系统能将药物传递到病灶部位,减少用药剂量和给药次数,提高药物治疗指数,避免或减轻药物不良反应。二硫键对谷胱甘肽的浓度刺激具有强的响应性,由于血液中谷胱甘肽的浓度较低(微摩尔级),二硫键很稳定,能维系纳米粒形态结构的稳定性,控制纳米粒内部包封的药物不被释放;而在细胞中,由于谷胱甘肽的浓度相对较高(毫摩尔级),二硫键能被谷胱甘肽分解,纳米粒结构受到破坏,内部药物被释放出来。
     课题通过半乳糖配基对羧甲基壳聚糖氨基的修饰赋予其主动肝靶向性,通过羧甲基壳聚糖羧基的巯基化,在组装纳米粒的过程中发生二硫键交联,赋予纳米粒高稳定性及智能性(即对谷胱甘肽浓度的刺激响应性)。主要研究内容和结果如下:
     (1)以包封率和粒径为指标,采用正交设计优化羧甲基壳聚糖纳米粒制备工艺,考察了羧甲基壳聚糖分子量对纳米粒粒径及包封率的影响,随着分子量的增大,纳米粒的粒径及包封率都增大。体外释放试验表明,羧甲基壳聚糖纳米粒可对甘草酸起到缓释作用,分子量较大的羧甲基壳聚糖制备的纳米粒的体外释放较慢。药动学研究表明,羧甲基壳聚糖纳米粒较甘草酸溶液分布快药理作用强,能延长体内作用时间。小鼠体内组织分布表明,将甘草酸制成纳米粒后,在肝脏中的分布增大,在肾脏中的分布减少,有利于提高疗效,降低毒副作用。
     (2)以O-羧甲基壳聚糖为原料,采用还原胺化法合成得到半乳糖羧甲基壳聚糖(LAC-CMC)。在LAC-CMC纳米粒的制备过程中,采用单因素法考察了LAC-CMC分子量、甘草酸浓度、LAC-CMC浓度对包封率及粒径的影响。体外释放试验表明,分子量较大的LAC-CMC制备的纳米粒的体外释放较慢。药动学研究表明,半乳糖羧甲基壳聚糖纳米粒较羧甲基壳聚糖纳米粒药理作用强。小鼠体内组织分布表明,引入肝靶向基团后,纳米粒的肝靶向性增强,毒副作用减弱。
     (3)半乳糖羧甲基壳聚糖在EDC和NHS催化下,与半胱胺反应,得到N-半乳糖-O-巯基化羧甲基壳聚糖。采用Ellman's试剂测定了巯基的含量,并考察了半胱胺的用量、反应的pH值、反应时间对巯基含量的影响。体外释放实验表明,交联纳米粒在模拟血液中72小时的释放较少,而在模拟细胞液中72小时能将药物大量的释放出来,充分证明了交联纳米粒的智能释药性。药代动力学实验表明:将甘草酸制成交联纳米粒,可延长甘草酸在体内的作用时间,在一定程度上克服甘草酸注射液代谢太快的缺点,提高药物疗效;组织分布试验表明:交联纳米粒能延长甘草酸在肝中的药物浓度、具有明显的肝靶向性,有利于提高甘草酸对肝组织的疗效,交联纳米粒能明显降低甘草酸在肾组织中的蓄积,因而能有效降低其肾毒性。
     因此,N-半乳糖-O-巯基化羧甲基壳聚糖所制备的交联纳米粒具有智能释药和肝靶向的特点,有望作为纳米药物载体。
Chronic hepatic disease such as hepatitis, hepatocirrhosis and hepatoma was a major class of serious disease that threating the health of the people. At present, some drugs can reach the anticipative curative effect, but drugs were difficult to be transferred to the targeting site specifically and accurately by the drug delivery system, which caused a low bioavailbility, toxicity, side-effect and limited drugs clinic application. An effective approach to overcome this critical issue is the development of targeted drug delivery systems.
     Targeted drug delivery systems can release the drugs at the desired site of action, reduce drug dosage and administration times, increase therapeutic efficacy, and reduce side-effect. Covalently bonded disulfides can be formed spontaneously by autoxidation of sulfhydryls, primarily via oxidation upon exposure to air, which can reversibly be cleaved in the presence of reducing agents. The advantage of the nanoparticles with a disulfide crosslinkage in drug delivery is that the disulfide bond is stable in the blood, but cleaved inside the cell based on the fact that the concentrations of glutathione, the most abundant reducing agent in most cells including mammals, are in a millimolar range inside the cells, whereas those in blood plasma are in a micromolar range.
     Galactose group was coupled with carboxymethyl chitosan to synthesis lactosaminated carboxymethyl chitosan (LAC-CMC) for liver specificity. Through the sulfhydrylation of LAC-CMC, the nanoparticles were crosslinked through disulfide bond for intelligence. The main contents and conclusions of study are as follows:
     The preparation of CMC nanoparticle was optimized by the method of orthogonal design, according to encapsulation efficency and size. The impact of CMC molecular weight to nanoparticle size and encapsulation efficency was also studied, and as a result, encapsulation efficency and size of nanoparticles increased when the molecular weight increased. The in vitro release experiment showed that the nanoparticles with larger molecular weight had more apparent effect to slow down the release. The pharmacokinetics study demonstrated that CMC nanoparticles deliveried faster and had stronger pharmacological effect to lengthen the active time. The study of tissue delivery in rats indicated that the concentration of glycyrrhizic acid in liver increased while in kidney it decreased, after glycyrrhizic acid was loaded in nanoparticles, which can boost the curative effect and lower the toxic and side-effect.
     LAC-CMC was synthesized from O-CMC, by reductive amination reaction. While preparing the LAC-CMC nanoparticles, the influence of the molecular weight of LAC-CMC, the concentration of glycyrrhizic acid and the concentration of LAC-CMC to size and encapsulation coefficency was studied by the method of single factor. The in vitro release experiment showed that LAC-CMC nanoparticles with larger molecular weight can delay the release of glycyrrhizic acid. The pharmacokinetics study indicated that LAC-CMC nanoparticles acted stronger pharmacological effect than CMC nanoparticles. The study of tissue delivery in rats showed the liver targeting efficiency was increased and side effect was decreased after the targeting group was introduced into the molecule.
     Thiolated LAC-CMC was synthesized by LAC-CMC and cysteamine under the catalyst of N-(3-dimethyl amino-propyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccimide (NHS) through the acylation. Ellman's reagent was employed to determine the content of-SH. To study the factor to impact the content of-SH, the amount of cysteamine, the pH and the reaction time were investigated. The in vitro release experiment showed that the crosslinked nanoparticles released more drug in mimic cytoplasm than in mimic blood after 72h, which proved the intelligent release of crosslinked nanoparticles. The pharmacokinetics study showed that the reactive time of glycyrrhizic acid was lengthened after it was loaded in crosslinked nanoparticles, which, to some degree, overcame the fast metabolization of glycyrrhizic acid solution and boosted the curative effort. The study of tissue showed that crosslinked nanoparticles can increase the concentration of drug in liver and manifest a obvious liver targeting property, which can reinforce the drug's curative effect, meanwhile, the crosslinked nanoparticles can reduce the content of glycyrrhizic acid in kidney so as to lower its renal toxicity.
     Therefore, the crosslinked nanoparticles may be used as a potential drug delivery system with hepatic targeting and intelligent release.
引文
[1]Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions[J]. Carbohydrate Polymers,2003,53(4):355-359.
    [2]Lu L, Zhu X, Valenzuela RG, Currier BL, Yaszemski MJ. Biodegradable polymer scaffolds for cartilage tissue engineering[J]. Clinical orthopaedics and related research,2001,391: 251-270.
    [3]Yang YM, Hu W, Wang XD, Gu XS. The controlling biodegradation of chitosan fibers by n-acetylation in vitro and in vivo[J]. Journal of material science:materials in medicine,2007, 18(11):2117-2121.
    [4]Xu J, McCarthy SP, Gross RA, Kaplan DL. Chitosan film acylation and effects on biodegradability[J]. Macromolecules,1996,29(10):3436-3440.
    [5]Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives[J]. Biomaterials,1997,18(7):567-575.
    [6]Ragnhild J, Hjerde N, Varum KM. Chemical composition of O-(carboxymethyl) chitins in relation to lysozyme degradation rate[J]. Carbohydrate polymers,1997,34(3):131-139.
    [7]Varum KM, Myhr, MH, Hjerde RJN, Smidsr(?)d O. In vitro degradation rates of partially N-acetylated chitosans in human serum[J]. Carbohydrate research,1997,299(1-2):99-101.
    [8]Lu GY, Sheng BY, Wang G, Wei YJ, Gong YD, Zhang XF, Zhang LH. Controlling the degradation of covalently cross-linked carboxymethyl chitosan utilizing bimodal molecular weight distribution[J]. Journal of biomaterials application,2009,23(5):435-451.
    [9]陈浩凡,潘仕荣,胡瑜。不同取代羧甲基壳聚糖体外酶降解的研究[J].中国药师,2005,8(10):807-809.
    [10]周贵,奚廷斐,郑裕东,汤京龙,郑琪。羧甲基壳聚糖膜的生物学评价与降解模型研究[J].透析与人工器官,2008,19(4):6-10.
    [11]Chen J, Sun J, Yang L, Zhang Q, Zhun H, Wu H, Hoffman AS, Kaetsu I. Preparation and characterization of a novel IPN hydrogel memberane of poly(N-isopropylacrylamide)/ carboxymethyl chitosan (PNIPAAM/CMCS) [J]. Radiation Physics and Chemistry,2007, 76(8-9):1425-1429.
    [12]陈凌云,杜予民,刘义.羧甲基壳聚糖的结构与抗菌性能研究[J].武汉大学学报(自然科学版),2000,46(2):191-194.
    [13]Liu XF, Guan YL, Yang DZ, Li Z, Yao KD. Antibacterial action of chitosan and carboxymethylated chitosan[J]. Journal of applied polymer science,2001,79(7):1324-1335.
    [14]Anitha A, Divya Rani VV, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura H, Jayaleumar. Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles[J]. Carbohydrate polymers,2009,78(4):672-677.
    [15]Cai K, Yao K, Li Z, Yang Z, Li X. Rat osteoblast functions on the o-carboxymethyl chitosan-modified poly(D,L-lactic acid) surface[J]. Journal of biomaterials science, polymer edition,2001,12(12):1303-1315.
    [16]张沈丽,王丽娟,肖庆桓,赵青,李金鸣.羧甲基壳聚糖对豚鼠单一心室肌细胞延迟外向钾电流的作用[J].中国海洋药物,2000,19(1):11-13.
    [17]Budiraharjo R, Neoh KG, Kang ET, Kishen A. Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model[J]. International endodontic journal,2010, 43(10):930-939.
    [18]刘瑾,唐梓进,杨佐宪.唾液腺素、羧甲基壳聚糖、低分子壳聚糖对豚鼠齿龈炎的疗效[J].南京师大学报(自然科学版),2000,23(2):102-104.
    [19]Zhou L, Wang Y, Liu Z, Huang Q. Carboxymethyl chitosan-Fe3O4 nanoparticles: preparation and adsorption behavior toward Zn2+ ions[J]. Acta physico-chimica sinica,2006, 22(11):1342-1346.
    [20]Sun S, Wang A. Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan. Journal of hazardous materials[J],2006,131(1-3):103-111.
    [21]Tang LG, Hon DNS. Removal of Hg(Ⅱ) from acid aqueous solutions by poly(N-vinylimidazole) hydrogel[J]. Journal of applied polymer science,2001,79(8): 1476-1485.
    [22]Hon DNS, Tang LG. Chelation of chitosan derivatives with zinc ions. I[J]. O,N-carbovymethyl chitosan,2000,77(10):2246-2253.
    [23]Loke WK, Lau SK, Yong LL, Khor E, Sum CK. Wound dressing with sustained anti-microbial capability[J]. Journal of biomedical materials research, part A,2000,53(1): 8-17.
    [24]Kennedy R, Costain DJ, McAlister V, Lee TDG. Prevention of experimental postoperative peritoneal adhesions by N,O-caboxymethyl chitosan[J]. Surgery,1996,120(5):866-870.
    [25]Costain DJ, Kennedy R, Ciona C, McAlister V, Lee TDG. Prevention of postsurgical adhesions with N,O-caboxymethyl chitosan:Examination of the most efficacious preparation and the effect of N,O-caboxymethyl chitosan on postsurgical healing[J]. Surgery,1997, 121(3):314-319.
    [26]Duran B, AK D, Cetin A, Guvenal T, Meral C, Imir AG Reduction of postoperative by N,O-caboxymethylchitosan and spermine NONOate in rats[J]. Experimental animals,2003, 52(4):267-272.
    [27]Krause TJ, Zazanis G, Malatesta P, Solina A. Prevention of pericardial adhesions with N,O-caboxymethylchitosan in the rabbit model[J]. Journal of investigative surgery,2001, 14(2):93-97.
    [28]Watanabe K, Saiki I, Uraki Y, Tokura S, Azuma I.6-O-carboxymethyl-chitin(CM-chitin) as a drug carrier[J]. Chemical & Pharmaceutical bulletin,1990,38(2):506-509.
    [29]Dev A, Mohan JC, Sreeja V, Tamura H, Patzke GR, Hussain F, Weyeneth S, Nair SV, Jayakumar R. Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications[J]. Carbohydrate polymers,2010,79(4):1073-1079.
    [30]张晓金,原续波,胡云霞,常津,康春生,浦佩玉.具有靶向抗癌功能的O-CMC磁性纳米载体系统的制备[J].高分子通报,2004,3:89-92.
    [31]Liu Z, Jiao Y, Zhang Z. Calcium-carboxymethyl chitosan hydrogel beads for protein drug delivery system[J]. Journal of applied polymer science,2007,1.03(5):3164-3168.
    [32]Shi X, Du Y, Yang J, Zhang B, Sun L. Effect of degree of substitution and molecular weight of carboxymethyl chitosan nanoparticles on doxorubicin delivery. Journal of applied polymer science[J],2006,100(6):4689-4696.
    [33]Chen L, Tian Z, Du Y. Synthesisi and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices[J]. Biomaterial,2004,25(17): 3725-3732.
    [34]Wang YS, Jiang Q, Li RS, Liu LL, Zhang QQ, Wang YM, Zhao J. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel[J]. Nanotechnology,2008,19(14):145101.
    [35]刘爱红,孙康宁,赵冬梅,李爱民.纳米羟基磷灰石/羧甲基壳聚糖多孔生物复合材料的制备与性能研究[J].人工晶体学报,2007,36(2):276-280.
    [36]韩媛媛,李红,容建华,周长忍.羧甲基壳聚糖复合磷酸钙骨水泥的实验[J].暨南大学学报(自然科学版),2007,28(3):288-291.
    [37]辛秀娟,魏东芝,董长松,周文瑜,刘建文.壳聚糖修饰L-天门冬酰胺酶对酶活及抗原的影响[J].华东理工大学学报,28(4):380-382.
    [38]Li FQ, Sua H, Wang J, et al. Preparation and characterization of sodium ferulate entrappedbovine serum albumin nanoparticles for liver targeting[J]. International journal of pharmaceutics,2008,349(1-2):274-282.
    [39]Cho CS, Kobayashi A, Takei R et al. Recepter-mediated cell modulator delivery to hepatoc using nanoparticles coated with carbohydrate-canyinpolymer[J]. Biomaterials,2001, 22(1):45.
    [40]蔡春.四川大学博士学位论文,2006,138.
    [41]Hashida M, Nishlkawa M, Takakllra Y. Cell-specific delivery of genes with glycosylated carriers[J]. Advanced drug delivery reviews,2001,53(3):187-191.
    [42]Bider MD, Spiess M. Ligand-induced endocytosis of the asialoglycoprotein receptor: evidence for heterogeneity in subunit oligomerization[J]. FEBS letters,1998,434(1-2): 37-42.
    [43]徐颖,周世文.半乳糖受体介导的肝靶向性研究进展[J].中国医院药学杂志,2001,21(2):108-110.
    [44]Fall RJ, Schwartz AL. Asialoglycoprotein receptor phosphorylation and receptor-mediated endocytosis in hepatoma cells. Effect of phorbol esters[J]. Journal of Biological Chemistry, 1988,263,:13159.
    [45]Di Stefano G, Kratz F, Lanza M, et al. Doxorubicin coupled to lactosaminated human albumin remains confirmed within mouse liver cells after the intracellular release from the carrier[J]. Digestive liver disease,2003,35(6):428-433.
    [46]Di Stefano G, Lanza M, Kratz F, et al. A novel method for coupling doxorubicin to lactosaminated human albumin by an acid sensitive hydrazone bond:synthesis, characterization and preliminary biological properties of the conjugate[J]. European journal of pharmaceutical sciences,2004,23:393-397.
    [47]Luigi F, Lmgi B, Corrado B, et al. Doxombicin coupled to lactosaminated albumin inhibits the growth of hepatocellular carcinomas induced in rats by diethylnitrosamine[J]. J Henatol, 2005,43(4):645-652.
    [48]Di Stefano G, Fiume L, Domenicali M, et al. Doxorubicin coupled to lactosaminated albumin:effects on rats with liver fibrosis and cirrhosis[J]. Digestive & Liver Disease,2006, 38(6):404-408.
    [49]梁正路,管昌田,钟裕国等.双糖密度半乳糖基胰岛素的合成及肝靶向性初步研究.华西医大学报[J],2000,31(1):1-4.
    [50]蔡春,苏敏,杨健等.肝靶向前药半乳糖化人血清白蛋白氟尿嘧啶偶联物的合成机靶向作用.中国药学杂志[J],2006,41(10):786-789.
    [51]Akamatsu K, Nishikawa M, Takakura Y, Hashida M. Synthesis and biodistribution study of liver-specific prostaglandin E1 polymeric conjugate[J]. International journal of pharmaceutics, 1997,155(1):65-74.
    [52]李崇辉,温宋明,迟木根等.半乳糖多聚赖氨酸的肝靶向特征[J].中国药理学与毒理 学杂志,1999,13(2):110-114.
    [53]Hashida M, Takemura S, Nishikawa M, et al. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine) [J]. Journal of controlled release,1998,53:301-310.
    [54]王玮煜,曹利民,司进等.半乳糖基多聚赖氨酸介导自杀基因对肝癌细胞的杀伤效应.中国肿瘤生物治疗杂志[J],2005,12(2):119.
    [55]Mahato R, Takemura S, Akamatsu K, et al. Physicochemical and disposition characteristics of antisense oligonucleotides complexed with glycosylated poly(L-lysine). Biochemical pharmacology[J],1997,53(6):887-895.
    [56]项贵明,周世文,汤建林等.肝靶向抗病毒药Lac-PLL-ACV的制备及其趋肝性研究.第三军医大学学报[J],2003,24(3):311-313.
    [57]Kato Y, Onishi H, Machida Y. Biological characteristics of lactosaminated N-succinyl-chitosan as a liver-specific drug carrier in mice[J]. Journal of controlled release, 2001,70(3):295-307.
    [58]Yang YW, Li XR, Yang ZL, et al. Novel polyion complex micelles for liver-targeted delivery of diammonium glycyrrhizinate:in vitro and in vivo characterization[J]. Journal of biomedical materials research, part A,2009,88(1):140-148.
    [59]Wang Q, Zhang L, Hu W, et al. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery[J]. Nanomedicine:nanotechnology, biology, and medicine,2010,6(2):371-381.
    [60]王学东,冯永堂,陈相英等.乳糖化羧甲基壳聚糖的合成及转运质粒DNA的作用[J].中国海洋药物杂志,2005,24(4):24-27.
    [61]Park YK, Park YH, Shin BA, et al. Galactosylated chitosan-graft-dextran as hepatocyte-targeting DNA carrier[J]. Journal of controlled release,2000,69(1):97-108.
    [62]Park IK, Ihm JE, Park YH, et al. Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier, preparation and physicochemical characterization of GC-graft-PVP/DNA complex (1) [J]. Journal of controlled release,2003, 86(2-3):349-359.
    [63]Park IK, Kim TH, Park YH, et al. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier[J]. Journal of controlled release,2001,76(3):349-362.
    [64]Gao S, Chen J, Xu X, et al. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting[J]. International journal of pharmaceutics,2003,255(1-2):57-68.
    [65]Zhang XQ, Wang XL, Zhang PC, et al. Galactosylated ternary DNA/polyphosphoramidate nanoparticles mediate high gene transfection efficiency in hepatocytes[J]. Journal of controlled release,2005,102(3):749-763.
    [66]Seymour LW, Eerry DR, Anderson D, et al. Hepatic drug targeting:phase I evaluation pf polymerbound doxorubicin[J]. Journal of clinical oncology,2002,20(6):1668-1676.
    [67]Zheng H, Zhou Z, Chen Y, et al. pH-sensitive alginate/soy protein microspheres as drug transporter[J]. Journal of applied polymer science,2007,106(2):1034-1041.
    [68]Zhang L, Guo J, Peng X, et al. Preparation and release behavior of carboxymethylated chitosan/alginate microspheres encapsulating bovine serum albumin[J]. Journal of applied polymer science,2004,92(2):878-882.
    [69]Xu Y, Zhan C, Fan L, et al. Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system[J]. International journal of pharmaceutics,2007,336(2):329-337.
    [70]Shu XZ, Zhu KJ, Song W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release[J]. International journal of pharmaceutics,2001,212(1):19-28.
    [71]Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology [J]. Journal of Controlled Release,2008,132 (3):164-170.
    [72]Vlerken LE, Duan Z, Seiden MV, et al. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer[J]. Cancer Research,2007,67 (10): 4843-4850.
    [73]Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor[J]. Journal of controlled release,2005,103(2):405-418.
    [74]Li H, Liu J, Ding S, et al. Synthesis of novel pH-sensitive chitosan graft copolymers and micellar solubilization of paclitaxel[J]. International journal of pharmaceutics,2009,44(3): 249-256.
    [75]Hruby M, Konak C, Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin[J]. Journal of controlled release,2005,103(1):137-148.
    [76]Wang Y, Yu L, Han L, et al. Difunctional Pluronic copolymer micelles for paclitaxel delivery:synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines[J]. International Journal of Pharmaceutics,2007,337 (1-2):63-73.
    [77]Liu J, Li H, Jiang X, et al. Novel pH-sensitive chitosan-derived micelles loaded with paclitaxel[J]. Carbohydrate polymers,2010,82(2):432-439.
    [78]Kim JK, Garripelli VK, Jeong UH, et al. Novel pH-sensitive polyacetal-based block copolymers for controlled drug delivery[J]. International journal of pharmaceutics, 2010,401(1-2):79-86.
    [79]吴明红,陈捷,周瑞敏等.辐射制备热敏性水凝胶及控制释放[J].辐射研究与辐射工艺学报,1997,15(1):53-55.
    [80]Liu XM, Yang B, Wang YL, et al. New nanoscale pulsatile drug delivery system[J]. Chem Master,2005,17(11):2792-2795.
    [81]Kakizawa Y, Harada A, Kataoka K. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond[J]. Journal of the american chemical society,1999,121(48):11247-11248.
    [82]Meister A, Anderson ME. Glutathion[J]. Annual Review Biochemistry,1983,52:711-760.
    [83]Kakizawa Y, Harada A, Kataoka K. Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly(ethylene glycol)-block-poly(1-lysine):a potential carrier for systemic delivery of antisense DNA[J]. Biomacromolecules,2001,2(2):491-497.
    [84]Neu M, Germershaus O, Mao S, et al. Crosslinked nanocarriers based upon poly(ethylene imine) for systemic plasmid delivery:in vitro characterization and in vivo studies in mice[J]. Journal of controlled release,2007,118(3):370-380.
    [85]Miyata K, Kakizawa Y, Nishiyama N, et al. Freeze-dried formulations for in vivo gene delivery of PEGylated polyplex micelles with disulfide crosslinked cores to the liver[J]. Journal of Controlled Release,2005,109,15-23.
    [86]Vachutinsky Y, Oba M, Miyata K, et al. Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles[J]. Journal of controlled release,2010, in press.
    [87]张建湘,蔡克勤,马卫东,等.壳聚糖棒材的组织相容性和安全性评价[J].生物医学工程学杂志,1996,13(4):293-297.
    [88]Varun KM, Myhr MM, Hierde RJ, et al. In vitro degradation rates of partially N-acetylated chitosans in human serum [J]. Carbohydrate research,1997,299(1-2):99-101.
    [89]Zheng Y, Wu Y, Yang W, et al. Preparation, characterization, and drug release in vitro of chitosan-glycyrrhetic acid nanoparticles[J]. Journal of pharmaceutical sciences,2006,95(1): 181-190.
    [90]Bravo-Osuna I, Ponchel G, Vauthier C. Tuning of shell and core characteristics chitosan-decorated acrylic nanoparticles[J]. European journal of pharmaceutical sciences,2007,30 (2): 143-154.
    [91]Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer[J]. Cancer Research,2005,65 (12):5317-5324.
    [92]Liang HF, Chen CT, Chen SC, et al. Paclitaxel-loaded poly(gamma-glutamic acid)-poly (lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer[J]. Biomaterials,2006,27 (9):2051-2059.
    [93]Senkoylu A, Simsek A, Sahin F, et al. Interaction of cultured chondrocytes with chitosan scaffold[J]. Journal of Bioactive and Compatible Polymers,2001,16(2):136-144.
    [94]Shi X., Du Y, Yang J, et al. Effect of degree of substitution and molecular weight of carboxymethyl chitosan nanoparticles on doxorubicin delivery [J]. Journal of Applied Polymer Science,2006,100:4689-4696.
    [95]孙立苹,杜予民,陈凌云等.羧甲基壳聚糖水凝胶的制备及其在药物控释中的应用[J].高分子学报,2004,(2):191-195
    [96]尹承慧,侯春林,蒋丽霞,等.羧甲基壳聚糖作为植入可降解缓释微球辅料的实验研究[J].生物医学工程学杂志,2004,21(3):350-354.
    [97]Di Colo G, Zambito Y, Burgalassi S, et al. Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. International journal of pharmaceutics,2004,273(1-2):37-44.
    [98]Miwa A, Ishibe A, Nakano M, et al. Development of novel chitosan derivatives as micellar carriers of taxol. Pharm Res,1998,15(12):1844-1850.
    [99]周利民,王一平,黄群武,等.磁性羧甲基化壳聚糖纳米粒子的制备与表征[J].高分子材料科学与工程,2008,24(8):143-146.
    [100]Bruno S, Domingos F, Francisco V, et al. Characterization of insulin loaded alginate nanoparticles produced by iono-tropic pregelation through DSC and FTIR studies[J]. Carbohydrate polymers,2006,66(2):1-7.
    [101]王银松,王玉玫,李荣珊,等.新型壳聚糖基自组装纳米胶束紫杉醇药物释放载体[J].高等学校化学学报,2008,29(5):1065-1069.
    [102]李斌霞,佟杰.甘草酸药理作用及机制的研究进展[J].数理医药学杂志,2007,20(2):228-231.
    [103]徐会选.甘草酸类药物的不良反应[J].药物不良反应杂志,2003,5(3):166-171.
    [104]杨全良,周彤,陆宏俊,等.甘草酸二胺注射液治疗化疗所致药物性肝损害临床疗效观察[J].蚌埠医学院学报,2005,30(5):433--434.
    [105]陆斌.药物新剂型与新技术[M].北京:人民卫生出版社,1998:218.
    [106]刘昌孝.药物评价学[M].北京:化学工业出版社,2006:161-163,185-239.
    [107]夏盖尔,吴幼玲,余炳灼.应用生物药剂学与药物动力学[M].北京:化学工业出版社,2006:35-70
    [108]陈文晖,许德余.光动力治癌药血卟啉单甲醚的药代动力学研究[J].中国激光医学杂志,2000,9(2):105-108.
    [109]陆斌.药剂学[M].北京:中国医药科技出版社,2003:439-440.
    [110]Zhang C, Ping Q, Ding, Y. Synthesis and Characterization of Chitosan Derivatives Carrying Galactose Residues[J]. Journal of applied polymer science,2005,97(5):2161-2167.
    [111]Vandenberg GW, Drolet C, Scott SL, et al. Factors affecting protein release from alginate-chitosan coacervate microcapsules during production and gastric/intestinal simulation[J]. Journal of controlled release,2001,77(3):297-307.
    [112]Prabaharan M, Gong S. Novel thiolated carboxymethyl chitosan g-p-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers[J]. Carbohydrate polymers,2008,73(1): 117-125.
    [113]Bernkop-Schnurch A, Brandt UM, Clausen AE. Synthesis and in vitro evaluation of chitosan-cysteine conjugates[J]. Scientia Pharmaceutica,1999,67:196-208.
    [114]Bernkop-Schnurch A, Hopf TE. Synthesis and in vitro evaluation of chitosan-thioglycolic acid conjugates[J]. Scientia Pharmaceutica,2001,69:109-118.
    [115]Kast CE, Bernkop-Schnurch A. Thiolated polymers-thiomers:development and in vitro evaluation of chitosan-thioglycolic acid conjugates[J]. Biomaterials,2001,22(17): 2345-2352.
    [116]Bernkop-Schnurch A, Hornof M, Zoidl T. Thiolated polymers-thiomers:synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates[J]. International journal of pharmaceutics,2003,260(2):229-237.
    [117]Roldo M, Hornof M, Caliceti P, et al. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery:synthesis and in vitro evaluation[J]. European journal of pharmaceutics and biopharmaceutics,2004,57(1):115-121.
    [118]Kast CE, Bernkop-Schnurch, A. Thiolated polymers-thiomers:Development and in vitro evaluation of chitosan-thiogly-colic acid conjugates[J]. Biomaterials,2001,22(17): 2345-2352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700