维生素E对鲤鱼肠上皮细胞生长发育及抗氧化能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以原代培养鲤鱼肠上皮细胞为研究模型,研究了维生素E对鲤鱼肠上皮细胞生长发育及抗氧化能力的影响。研究共包括2个试验:试验一、维生素E对鲤鱼肠上皮细胞生长发育的影响;试验二、维生素E对鲤鱼肠上皮细胞抗氧化能力的影响。
     试验一结果表明:2.5μg/ml维生素E显著增加了鲤鱼肠上皮细胞的MTT吸光值(P<0.05)。维生素E对原代培养鲤鱼肠上皮细胞蛋白含量、细胞蛋白含量/MTT吸光值、Na~+-K~+-ATP酶活力、Na~+-K~+-ATP酶活力/MTT吸光值有极显著(P<0.01)影响;且维生素E与细胞蛋白含量、Na~+-K~+-ATP酶活力、Na~+-K~+-ATP酶活力/MTT吸光值分别呈显著或极显著的正相关(r_1=+0.4810,P<0.05;r_2=+0.6740,P<0.01;r_3=+0.6440,P<0.01);维生素E与细胞Na~+-K~+-ATP酶活力呈极显著的二次回归关系(Y=0.092+0.014X-0.002X~2,R~2=0.4600,P<0.01;其中Y为细胞Na~+-K~+-ATP酶活力,X为培养液中维生素E浓度),当维生素E浓度为3.5000μg/ml时,鲤鱼肠上皮细胞Na~+-K~+-ATP酶活力最大。维生素E对原代培养鲤鱼肠上皮细胞AKP活力、蛋白消耗量、蛋白消耗量/MTT有极显著(P<0.01)影响,当维生素E浓度达到最大值(7μg/ml)时,鲤鱼肠上皮细胞AKP活力、蛋白消耗量、蛋白消耗量/MTT吸光值均极显著(P<0.01)降低。维生素E对原代培养鲤鱼肠上皮细胞培养液LDH活力、培养液氨浓度分别有显著(P<0.05)或极显著(P<0.01)影响,且维生素E与培养液氨浓度呈显著的负相关(r=-0.5100,P<0.05)。蛋白消耗量/MTT吸光值与细胞AKP活力、培养液氨浓度分别呈显著或极显著的正相关(r_1=+0.4710,P<0.05;r_2=+0.5540,P<0.01)。
     试验二结果表明:维生素E对原代培养鲤鱼肠上皮细胞抗超氧阴离子活力、抗羟自由基活力有极显著(P<0.01)影响,维生素E与细胞抗超氧阴离子活力、细胞抗羟自由基活力呈极显著正相关关系(r_1=+0.5410,P<0.01;r_2=+0.8100,P<0.01),且维生素E与细胞抗羟自由基活力呈极显著的二次回归关系(Y=98.718+17.237X-1.300X~2,R~2=0.7440,P<0.01;其中Y为细胞抗羟自由基活力,X为培养液中维生素E浓度),当维生素E浓度为6.6296μg/ml时,鲤鱼肠上皮细胞抗羟自由基活力最大。维生素E对细胞GSH浓度、GSH/GSSG比例有极显著影响(P<0.01),维生素E与细胞GSH浓度呈显著的正相关(r=+0.4070,P<0.05);且维生素E与细胞GSH浓度、GSH/GSSG比例分别呈极显著的二次回归关系(Y_1=85.925+18.547X-2.132X~2,R~2=0.4510,P<0.01;Y_2=0.858+0.212X-0.024X~2,R~2=0.3690,P<0.01;其中Y_1为细胞GSH浓度,Y_2为细胞GSH/GSSG比例,X为培养液中维生素E浓度),当维生素E浓度为4.3497μg/ml、4.4167μg/ml时,鲤鱼肠上皮细胞GSH浓度、GSH/GSSG比例分别达到最大。维生素E对鲤鱼肠上皮细胞培养液丙二醛含量有显著(P<0.05)影响,且维生素E与培养液丙二醛含量存在显著的负相关(r=-0.4450,P<0.05;)。
     结果说明:适量维生素E能够促进鲤鱼肠上皮细胞的增殖;维生素E能促进鲤鱼肠上皮细胞的生长发育,主要与维生素E促进单个肠上皮细胞发育和功能完善有关;维生素E维护了鲤鱼肠上皮细胞结构的完整性:同时维生素E能够通过清除自由基、增加细胞自身非酶性抗氧化物和减少脂质过氧化物质产生来提高鲤鱼肠上皮细胞的抗氧化能力。当维生素E浓度为6.6296μg/ml时,鲤鱼肠上皮细胞抗羟自由基能力最强;当维生素E浓度为4.3497μg/ml时,鲤鱼肠上皮细胞内GSH含量最高;当维生素E浓度为4.4167μg/ml时,鲤鱼肠上皮细胞GSH/GSSG比值最大。
The carp intestinal epithelial cells in primary culture were selected to evaluate effectsof vitamin E on the growth and development and anti-oxidation capacity. Firstly, the MTTabsorbance values, protein content, Na~+-K~+-ATPase activities, alkaline phosphataseactivities in the cells and lactate dehydrogenase activities and ammonia concentration inthe culture medium were investigated after vitamin E was added 96 h. 2.5μg/ml of vitaminE concentration significantly increased carp intestinal epithelial cells MTT absorbancevalues (P<0.05). The results showed that the protein content, protein content/MTT OD,Na~+-K~+-ATPase activities, Na~+-K~+-ATPase activities /MTT OD in the cells were verysignificantly enhanced by vitamin E concentration (P<0.01),andthere were significantcorrelation between vitamin E and protein content, Na~+-K~+-ATPase activities,Na~+-K~+-ATPase activities /MTT OD in the cells (r_1=+0.4810,P<0.05; r_2=+0.6740,P<0.01; r_3=+0.6440, P<0.01).The regression results showed that there were verysignificant quadratic relationship between Na~+-K~+-ATPase activities and vitamin E level(R~2= 0.4600, P<0.01).The alkaline phosphatase activities, protein consumption, proteinconsumption/MTT OD in the culture medium was significantly depressed by vitamin Econcentration (P<0.05). When the vitamin E concentration achieved the maximum (7μg/ml), alkaline phosphatase activities,protein consumption/MTT OD in the cells werevery significantly lower (P<0.01). Vitamin E on the carp intestinal epithelial cell culturemedium LDH activity, ammonia concentrations were significantly (P<0.05) orsignificantly (P<0.01), and there were significantly negative correlation between vitamin Eand ammonia concentration in the culture medium (r=-0.5100, P<0.05). The results ofcorrelation analysis showed that there were significant correlation between proteinconsumption/MTT OD in the cells and alkaline phosphatase activities in the cells,ammonia concentration in the culture medium (r_1=+0.4710, P<0.05; r_2=+0.5540, P<0.01).
     Secondly, malondialdehyde concentration in the culture medium and anti-superoxideanion activitity,anti-hydroxy radical activitity, reduced glutathione concentration,the ratiobetween reduced glutathione and oxidized glutathione in the cells were investigated.Theresults showed that anti-superoxide anion activitity,anti-hydroxy radical activitity,reduced glutathione concentration,the ratio between reduced glutathione and oxidizedglutathione in the cells were very significantly enhanced and the malondialdehydeconcentration in the culture medium was significantly depressed with the vitamin Econcentration increasing(P<0.01). The results of correlation analysis showed that therewere very significant correlation between vitamin E level and anti-superoxide anionactivities,anti-hydroxy radical activities in the cells(r_1=+0.5410, P<0.01; r_2=+0.8100,P<0.01;),and vitamin E and anti-hydroxyl radical activity was highly significant quadraticregression relationship(R~2=0.7440, P<0.01). There were significant correlation betweenvitamin E level and reduced glutathione concentration in the cells (r=+0.4070, P<0.05),but negative significant correlation between vitamin E level and malondialdehydeconcentration in the culture medium (r=-0.4450, P<0.05;).
     In summary, proper vitamin E can promote carp intestinal epithelial cellproliferation .But vitamin E can promote carp intestinal epithelial cell growth anddevelopment, with the major vitamin E for a single intestinal epithelial cell developmentand improve the function. Vitamin E safeguarded carp intestinal epithelial cells structuralintegrity. Vitamin E also can be passed to remove free radicals, own cells to increasenon-enzymatic antioxidants and reduction of lipid peroxidation to raise carp intestinalepithelial cells antioxidant capacity.
引文
[1] 张琼.不同水平维生素E对幼建鲤免疫功能的影响.[硕士论文].四川雅安,四川农业大学,2004.
    [2] 罗辉.维生素E对幼建鲤消化功能及免疫功能的影响.[硕士论文].四川雅安,四川农业大学,2006.
    [3] Huang C. H., Huang S. L. Effect of dietary vitamin E on growth, tissue lipid peroxidation, and liver glutathione level of juvenile hybrid tilapia, Oreochromis niloticus_O.aureus, fed oxidized oil. Aquculture, 2004, 237: 381-389.
    [4] Bai S. C., Lee K. J. Different levels of dietary DL-a-tocopheryl acetate affect the vitamin E status of juvenile Korean rockfish, Sebastes schlegeli. Aquculture, 1998, 161: 405-414.
    [5] 陈四清,李爱杰.中国对虾对维生素E、K营养需要的研究.海洋科学,1993,5:1-4.
    [6] Burton G. W., Joyce A., Ingold K. U. Is vitamin E the only lipid-soluble, chain-breaking an-tioxitant in human blood plasma and erythrocyte membranes. Arch Biochem Biophys, 1983, 221: 281-290.
    [7] 楼允东.组织与胚胎学.北京,中国农业出版社,1994,123-142.
    [8] 尾崎久雄.鱼类消化生理.上海,上海科学技术出版社,1983,308-421.
    [9] Hemre G. I., Deng D. F., Wilson R. P., et al. Vitamin A metabolism and early biological responses in juvenile sunshine bass (Morone chrysops_M.saxatilis) fed graded levels of vitaminA. Aquculture, 2004, 235: 645-658.
    [10] Tasinato A., Boscoboinik D., Bartoli G. M., et al. d-a-Tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations, correlates with protein kinase C inhibition, and is independent of its antioxidant properties. Biochemistry, 1995, 92: 12190-12194.
    [11] 赵岚,李红卫,吴坤.维生素E琥珀酸酯对人胃癌细胞增殖分化和热休克蛋白70表达的影响.中国公共卫生,2004,20:1308-1309.
    [12] Zhang Wei, Zhang Jun-chu, Zhu Da-qiao, Ye Lai-ying, Zhang I ing-zhen, Wang Qiang. Effect of vitam in E succinate on the proliferation of human breast cancer cells. Journal of Medical Colleges of PLA, 2005, 20(4): 215-218.
    [13] Samandari E., Visarius T., Zingg J. M., Azzi A. The effect of c-tocopherol on proliferation, integfin expression, adhesion, and migration of human glioma cells. Biochemical and Biophysical Research Communications, 2006, 342: 1329-1333.
    [14] Kempna P., Reite E., Arock M., Azzi A., and Zingg J. M. Inhibition of HMC-1 Mast Cell Proliferation by Vitamin E. The journal ofbiologal chemistry, 2004, 279: 50700-50709.
    [15] Moorthi R. V., Bobby Z., Selvaraj N., Sridhar M. G. Vitamin E protects the insulin sensitivity and redox balance in rat L6 muscle cells exposed to oxidative stress. Clinica Chimica Acta, 2006, 367: 132-136.
    [16] 姜俊.谷氨酰胺对鲤鱼肠上皮细胞生长与代谢的影响.[硕士论文].四川雅安,四川农业大学,2005.
    [17] 冯琳.大豆凝集素对鲤鱼肠上皮细胞增殖和分化的影响.[硕士论文].四川雅安,四川农业大学,2006.
    [18] 郭林英.大豆抗原蛋白对鲤鱼肠上皮细胞增殖和分化的影响.[硕士论文].四川雅安,四川农业大学,2006.
    [19] 王和民,齐广海.维生素营养研究进展.中国科学技术出版社,1993年出版.
    [20] Muralidhara K. S. D., Hollander. Intestinal absorption of a-tocopherol in the unanaesthetized rat:The influence of luminal constituents on the absorptive process. Journal of Lahoratory and Clinical Medicine, 1977, 90: 85-91.
    [21] Kayden H. J., Traber M. G. Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans. J Lipid Res, 1993, 34: 343-358.
    [22] Bjomeboe A., Bjorneboe G. E., Bodd E., Hagen B. F., Kveseth N., Drevon C. A. Transport and distribution of alpha-tocopherol in lymph, serum and liver cells in rats. Biochim. Biophys. Acta, 1986, 889: 310-315.
    [23] Lee-Kim Y. C., Meydani M., Kassarjian Z., Blumberg J. B., Russell R. M. Enterohepatic circulation of newly administered alpha-tocopherol in the rat. Int J Vitam Nutr Res, 1988, 58: 284-291.
    [24] Meydani M., Martin K. R. Intestinal absorption of fat-soluble vitamins. In Intestinal lipid metabolism, 2001, 367-381.
    [25] Anwar K., Kayden H. J., Hussain M. M. Transport of vitamin E by differentiated Caco-2 cells. Journal of Lipid Research, 2006, 47: 1261-1273.
    [26] Traber M. G., Kayden H. J., Rindler M. J. Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line. J Lipid Res, 1987, 28: 1350-1363.
    [27] Farhangi M., Carter C. G., Tardy R. W., and et al. Growth physiological and immunological responses of rainbow trout (Oncorhynchus mykiss) to different dietary inclusion, levels ofdehulled lupin (Lupinus angustifolius). Aquac Res, 2001, 32(1): 329-340.
    [28] Olli J. J., Krogdahl A. Nutritive value of four soybean products as protein sources in diets for rainbow trout (Oncorhynchus raykiss, Walbaum) reared in fresh water. Acta Agric Scandinavica Sec-Anim Sci, 1994, 44(3): 185-192.
    [29] 沈振国,崔德才.细胞生物学.北京,中国农业出版社,2003.
    [30] Cooper G. M. The Cell: A molecular approach. Washington, Amer Soc Microbiol, 1997, 892-918.
    [31] Alberts B. Molecular biologyofthe cell(3rd edition). New York, Garland Pub, 1994, 1190-1194.
    [32] Ortego L. S., Hawkins W. E., Walker W. W., Krol R. M., Benson W. H. Detection of proliferating cell nuclear antigen in tissue of three small fish species. Biotech Histochem, 1994, 69: 317-323.
    [33] Ortego L. S., Hawkins W. E., Walker W. W., Krol R. M., Benson W. H. Immunohistochemical detection of proliferating cell nuclear antigen (PCNA) in tissues of aquatic animals utilized in toxicity bioassays. Mar Environ Res, 1995, 39:271-273.
    [34] Wood S. R., Zhao Q., Smith L. H.and Daniels C. K. Altered morphology in cultured rat intestinal epithelial IEC-6 cells is associated with alkaline phosphatase expression. Tissue Cell, 2003, 35(1): 47-58.
    [35] Bodiga V., Boindala S., Putcha U., Subramaniam K. and Manchala R. Effects of vitamin restriction and supplementation on rat intestinal epithelial cell apoptosis. free radical biology and medicine, 2005, 38: 1614-1624.
    [36] Umit M. T., Erbil Y., bztezcan S., et al. The effect of selenum and or vitamin E treatments on radiation-induced intestinal injury in rats.Life science, 2000, 66:1905-1913.
    [37] Green D. R., Reed J. C. Mitochondria and apoptosis. Science, 1998, 281(28): 1309-1312.
    [38] Klock R. M., Bossy W. E., Green D. R., et al. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997, 275(5303): 1132-1134.
    [39] Susin S. A., Zamzami N., Castedo M., et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med, 1996, 184(4): 1331-1335.
    [40] 李建明.线粒体在活性氧诱导肠上皮细胞凋亡中的作用.[博士论文].第三军医大学,2002.
    [41] Musalmah M., Fairuz A. H., Gapor M. T. andZurina W., Ngah W.. Effect of vitamin E on plasma malondialdehyde,antioxidant enzyme levels and the rates of wound closures during wound healing in normal and diabetic rats. Asia Pacific J Clin Nutr, 2002, 11: 448-451.
    [42] Mutalib M. S. A., Huzwah K., Klaus W. J. Palm-tocotrienol rich fraction (TRF) is a more effective inhibitor of LDL oxidation and endothelial cell lipid peroxidation than a-tocopherol in vitro. Food Research International, 2003, 36: 405-413.
    [43] Nano J, L., Nobilia C., Femand G. P., Patrick R.. Effects of fatty acids on the growth of Caco-2 cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 69: 207-215.
    [44] Susin S. A., Lorenzo H. K., Zamzami N., et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999, 397: 441-446.
    [45] Wallace D. C. Mitochondrial diseases in man and mouse. Science, 1999, 283: 1482-1488.
    [46] Yoshida H., Kong Y. Y., Yoshida R., et al. Apafl is required for mitochondrial pathways of apotosis and brain development. Cell, 1998, 94: 739-750.
    [47] Green D. R., Reed J. C. Mitochondrial and apoptosis. Science, 1998, 281: 1309-1312.
    [48] Chow C. K. Ibrahim W., Wei Zhi hua and Chan A. C. Vitamin E regulates mitochondrial hydrogen peroxide generation. Free Radical Biology and Medicine, 1999, 27: 580-587.
    [49] Hengartner M. O. The biochemistry of apoptosis. Nature, 2000, 407(12): 770-776.
    [50] Annie N. Y., Tanya A., Mawdsley D. J. et al. Formation of the digestive system in zebrafish:Ⅲ. Intestinal epithelium morphogenesis. Developmental Biology, 2005, 286: 114-135.
    [51] Ji H. B., Zhai Q. W., Liu X. Y., et al. Transcription regulation of bcl-2 gene. Acta Biochem Biophys Sin, 2000, 32(2): 95-99.
    [52] Tsujimoto Y., Shimizu S.. Bcl-2 family: Life or death switch. FEBS lett, 2000, 466(1): 6-10.
    [53] zamzami N., Susin S. A., Marchetti P., et al. Mitochondrial control of nuclear apoptoais. J Exp Med, 1996, 183(4): 1533-1544.
    [54] Ruth M. K., Ella B. W., Douglas R. G., et al. The release ofcytochrome c from apoptosis. Science, 1997, 275(5303): 1132-1136.
    [55] Narita M., Shimizu S., Ito T., et al. Bax interacts with the pcrmeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondrial. Proc Natl Acad Sci USA, 1998, 95(25): 14681-14686.
    [56] Fukamachi H. Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture. J Cell Sci, 1992, 103: 511-519.
    [57] 伍烽,金先庆,吴仕孝等.小肠粘膜上皮细胞原代培养最适条件的研究.重庆医科大学学报,1998,23(3):222-225.
    [58] 冯仁勇.维生素A对幼建鲤消化功能及免疫功能的影响.[硕士论文].四川雅安,四川农业大学,2006.
    [59] 林燕.谷氨酰胺对幼建鲤肠道功能和免疫力的影响.[硕士论文].四川雅安,四川农业大学,2006.
    [60] Boscoboinik D., Szewczyk A., Hensey C., et al. Inhibition of Cell Proliferation by a-Tocopherol. The Journal of Biological Chemistry, 1991, 266 (10): 6188-6194.
    [61] 向德栋,王宇明,李奇芬.维生素E对培养肝细胞抗脂质过氧化作用的影响.重庆医学,2001,30(6):502-503.
    [62] 赵维玲,何小解等.维生素E对脂多糖诱导的大鼠系膜细胞增生的影响.中华儿科杂志,2002,40(12):744-747.
    [63] Towle D. W., Mangum C. P., Johnson B. A., et al. The role of the coxal gland in ionic, osmotic, and pH regulation in the horseshoe crab Limulus polyphemus. Prog Clin Biol Res, 1982, 81: 147-172.
    [64] Bird T. A., Kyriakis J. M., Tyshler L., et al. Interleukin-1 activates p54 mitogen-activated protein (MAP) kinase/stress-activated protein kinase by a pathway that is independent of p21ras, Raf-1, and MAP kinase kinase. J Biol Chem, 1994, 269: 31836-31844.
    [65] 徐志昌等.中国对虾对维生素B2,B5,B6营养需要的研究.水产学报,1995,19(2):97-104.
    [66] Rboads J. M., Chen P., Chu P., et al. L-glutamine and L-asparagine stimulate Na+, H+ exchange in porcine jejunal enterocytes. Am Physiol, 1998: 828-834.
    [67] 谢建新,顾岩,刘银坤等.联合应用生长激素和谷氨酰胺对短肠大鼠小肠粘膜吸收功能的影响.解剖学杂志,2001,24(3):231-234.
    [68] Cuvier P. A. and Kestemont. Development of some digestive enzymes in Eurasian perch larvae Perca fluviatilis. Fish Physiology and Biochemistry, 2001, 24(4): 279-285.
    [69] Ribeiro L., Zambonino-Infante J. L. Development of digestive enzymes in larvae of solea senegalensis. Aquaculture, 1999, 179: 465-473.
    [70] Johnson L. R., Brockway P. D., Madsen K., et al. Polyamines alter intestinal glucose transport. Am J Physiol Gastrointest Liver Physiol, 1995, 268: 416-423.
    [71] Malagelada J. R. and Linscheer W. G. The effect of fatty acid perfusion on intestinal alkaline phosphatase: studies on the rat. J Digest Dis, 1977, 22:516-523.
    [72] Roubaty C. and Portmann P. Relation between intestinal alkaline phophatase activity and brush border membrane transport of inorganic phosphate D-glucose and D-glucose-6-phophate. Pflugers Arch, 1988, 412: 482-490.
    [73] 赵保路.氧自由基与天然抗氧化剂.北京,科学出版社,1999.
    [74] 孙存普,张建中,段绍瑾.自由基生物学导论.合肥,中国科学技术大学出版社,1999:28-36.
    [75] 吴南.自由基的测定及抗氧化剂的研究与应用.[硕士论文].中南工业大学,2001.
    [76] Meydani M., Meisler J. G. A closer look at vitamin E. C an this a ntioxidant prevent chronic diseases? P ostgrad Med, 1997, 102 (2): 199-201.
    [77] Wilson R. P., Bowser P. R., and Poe W. E. Dietary vitamin E requirement of fingrling channel catfish. Aquaculture, 1984, 56: 187-195.
    [78] Frigg M., Prabucki A. L., and Ruhdel E. U. Effect of dietary vitamin E levels on oxidative stability of trout fillets. Aquaculture, 1990, 84(2): 145-158.
    [79] Huang C. H., Chang R. J., Huang S. I., and et al. Dietary vitamin E supplementation affects tissue lipid peroxidation of hybrid tilapia, Oreochromis niloticusxO, aureus. Comp Biochem Physiol B Biochem Mol Biol, 2003, 134(2): 265-270.
    [80] 汪求真,马爱国等.大剂量维生素E、C联用对细胞功能的影响.中国公共卫生,2006,22(9):1053-1055.
    [81] Hwang J. J. and Curthoys N. P. Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenol pyruvate carboxykinase gene expression. J Biol Chem, 1991, 266: 9392-9396.
    [82] Papageorgiou G., Iliadis S., Botsoglou N., et al. Lipid peroxidation of rat myocardial tissue following daunomycin administration. Toxicol, 1998, 126:83-91.
    [83] Hishinuma L., Nakamura T. Alpha-tocopherol and inhibition of cytolysis in glutathione-depleted hepatocytes in primary culture. J Nutr Sci Vitaminol (Tokyo), 1988, 34: 11-23.
    [84] Shukla G. S., Srivastava R. S., Chandra S. V. Prevention of cadmium-induced effects on regional glutathione status of rat brain by vitamin E. J Appl Toxicol, 1988, 8 (5): 355-358.
    [85] Marcus S. R., Chandrakala M. V., Nadiger H. A. Effect of chronic ethanol administration on glutathione levels and its metabolising enzymes in rat brain. Medical Science Research, 1994, 22 (10): 731-732.
    [86] 凌诒萍.细胞生物学.北京,人民卫生出版社,2001,190-209.
    [87] 李爱杰.水产动物营养与饲料科学.北京,中国农业出版社,1996,8-12.
    [88] Park J. U., Yang J. H., Yon S. J., et al. Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells. Bio chimie, 2003, 84:1198-1204.
    [89] Shan S. V. Role of reactive oxygen metabolites in experimental glomerular disease. Kidney Int, 1989, 35: 1093.
    [90] 左玉,马雪萍,谢文磊,弓延忠.脂质的氧化及其对DNA损伤的研究进展.河南工业大学学报,2006,27(5):73-78.
    [91] Cerutti P. A. Prooxidant states and tumor promotion. Science, 1985, 227: 375-381.
    [92] 汪求真,马爱国等.大剂量维生素E对大鼠抗氧化和DNA损伤的影响.营养学报,2005,27(6):467-470.
    [93] Donnelly E. T., McClure N., Lewis S. E. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxideinduced DNA damage in human spermatozoa. Mutagenesis, 1999, 14: 505-512.
    [94] Behl C., Rupprecht R., Skutella T., et al. Haloperidol-induced cell death: Mechanism and protection with vitamin E in vitro. Neuro Report, 1995, 7: 360-364.
    [95] 徐宏伟,韩秀霞,杜卫等.维生素E对大鼠心肌线粒体ATP酶和抗氧化酶活性影响的研究.2006,8(24):354-355.
    [96] 王枫,董兆申,陈耀明等.膳食维生素E对冷应激大鼠红细胞膜丙二醛含量和钠,钾-ATP酶活性的影响.中国公共卫生学报,1998,17:285-286.
    [97] Mazlan M., Mian T. S., Top G. M., et al. Comparative effects of a-tocopherol and g-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes. Journal of the Neurological Sciences, 2006, 243: 5-12.
    [98] Baud L., Ardaillou R. Reactive oxygen species: production and role in the kidney. Am J Physiol, 1986, 251: 765-769.
    [99] Koh J. Y., Choi D. W. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods, 1987, 20(1): 83-90.
    [100] 周承藩,沈彤,丁锐等.维生素E和银杏叶提取物对3种氯代烯烃细胞毒性的拮抗作用.毒理学杂志,2005,19(2):102-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700