吡哆醇对幼建鲤抗氧化能力的影响及其缺乏症研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验主要研究了吡哆醇对幼建鲤抗氧化能力的影响以及幼建鲤吡哆醇缺乏的表观临床症状,组织器官细胞病理学变化。试验选择1050尾健康幼建鲤(初重为11.71±0.05 g)平均分成7组,每组设3个重复,每个重复50尾,分别饲喂吡哆醇水平为0.20、1.71、3.23、4.96、6.32、8.58和12.39 mg kg~(-1)的半纯合饲粮。试验期为80天。
     结果表明:吡哆醇可以极显著(P<0.01)或显著(P<0.05)降低幼建鲤血清、肠道和后肾组织丙二醛(MDA)含量。当吡哆醇含量从1.71mg/kg分别增加到3.23,4.96和3.23 mg/kg时,幼建鲤血清、肠道和后肾组织MDA含量达到最低,并不随吡哆醇的添加而降低;吡哆醇对血清、肠道和肾脏组织MDA含量有极显著的负直接作用(P_(10.1)=-0.287,d_(10.1)=0.0824;P_(20.1)=-0.455,d_(20.1)=0.208;P_(30.1)=-0.885,d_(30.1)=0.784)。吡哆醇对幼建鲤肠道和后肾组织蛋白质羰基含量有极显著的影响(P<0.01),当吡哆醇含量分别为5.91和6.27 mg/kg时,蛋白质的氧化损伤最低。吡哆醇对肠道和肾脏组织蛋白质羰基含量分别有极显著的直接和负直接作用(P_(10.1)=1.702,d_(10.1)=2.896;P_(20.1)=-0.259,d_(20.1)=0.0670)。说明,毗哆醇能够减少水生动物脂质和蛋白质的过氧化,降低水生动物的氧化损伤。吡哆醇可以极显著(P<0.01)或显著(P<0.05)提高血清、肠道和后肾组织抗超氧阴离子活力(ASA)。当吡哆醇含量为3.23 mg/kg时,血清、肠道和后肾组织ASA极显著(P<0.01)或显著(P<0.05)提高,并不再随吡哆醇含量的增加而提高。血清、肠道和肾脏组织ASA分别与血清、肠道和肾脏组织MDA含量呈极显著或显著的负相关(r_1=-0.924,P<0.01;r_2=-0.943,P<0.01;r_3=-0.825,P<0.05);肠组织ASA与肠组织蛋白质羰基含量呈极显著的负相关(r=-0.964,P<0.01),说明吡哆醇可以增强幼建鲤清除超氧阴离子的作用,提高鱼类的抗氧化能力。吡哆醇可以极显著影响幼建鲤肾脏组织抗羟自由基活力(P<0.01),当吡哆醇水平从1.71 mg/kg增加到4.96 mg/kg时,幼建鲤肾脏组织抗羟自由基活力逐渐升高,进一步增加吡哆醇含量,没有显著变化。相关分析显示,后肾组织抗羟自由基活力与蛋白质羰基含量呈极显著的负相关(r=-0.981,P<0.01)。毗哆醇对血清和肠组织清除羟自由基能力没有影响,但能增强肾脏组织清除羟自由基能力。吡哆醇对血清超氧化物歧化酶(SOD)活力、过氧化氢酶(CAT)活力、谷胱甘肽过氧化物酶(GSH-Px)活力、谷胱甘肽S转移酶(GST)活力、谷胱甘肽还原酶(GR)活力和还原型谷胱甘肽(GSH)含量有极显著(P<0.01)或显著影响(P<0.05)。当吡哆醇含量从1.71 mg/kg分别增加到4.96、3.23、3.23、3.23和6.32 mg/kg时,血清SOD、CAT、GSH-Px、GST和GR活力极显著(P<0.01)或显著(P<0.05)提高,进一步增加吡哆醇含量没有影响。血清MDA含量和SOD、CAT、GSH-Px、GST和GR活力含量呈极显著(P<0.01)或显著(P<0.05)负相关(r_1=-0.924,P<0.01;r_2=-0.817,P<0.05;r_3=-0.968,P<0.01;r_4=-0.926,P<0.01;r_5=-0.913,P<0.05;r_6=-0.824,P<0.05;r_7=-0.907,P<0.05)。肠道和后肾组织SOD、CAT、GSH-Px、GST和GR活力与血清中抗氧化酶有类似的趋势。肠道和后肾组织SOD活力、CAT活力和ASA分别与肠道和后肾组织蛋白质羰基含量呈极显著的负直接作用(P_(10.2)=-1.575,d_(10.2)=2.4819;P_(10.3)=-0.705,d_(10.3)=0.4966;P_(10.4)=-3.402,d_(10.4)=11.576;P_(20.2)=-0.159,d_(20.2)=0.0252;P_(20.3)=-0.970,d_(20.3)=0.0252;P_(20.4)=-0.327,d_(20.4)=0.107)。说明,吡哆醇能够通过提高抗氧化酶活力,增强水生动物的抗氧化酶系统的防御能力。吡哆醇对血清、肠道和后肾组织还原型谷胱甘肽(GSH)含量有极显著(P<0.01)影响。血清、肠道和肾脏组织GSH含量分别与血清、肠道和肾脏MDA含量呈显著负相关(r_1=-0.907,P<0.05;r_2=-0.861,P<0.05;r_3=-0.865,P<0.05);与肠道和肾脏组织蛋白质羰基含量呈极显著负相关(r_1=-0.930,P<0.01;r_2=-0.943,P<0.01)。说明吡哆醇可以通过增加类血清和组织中非酶抗氧化物质GSH含量,提高水生动物非酶抗氧化系统的抗氧化能力。
     研究结果也表明:吡哆醇缺乏引起幼建鲤死亡率增加,鱼体游动异常,呈螺旋状运动或快速绕圈游动,呼吸困难;出现眼球突出、鳍条出血、头部皮肤糜烂、肛门红肿和鳃丝糜烂等外观变化;头肾、后肾、脾脏、肝胰脏和胆囊肿胀或萎缩,色泽异常;肝细胞溶解,形成大小不一的空泡;头肾有大量的含铁血黄素沉积;后肾上皮细胞肿胀,肾小管上皮细胞变性、坏死、脱落;脾脏淋巴样细胞减少;肠道肠绒毛坏死;心肌纤维肿胀、变性,肌纤维间隙增宽等病理损伤。
     综上研究结果说明:吡哆醇能够提高幼建鲤抗脂质和蛋白质氧化损伤能力,其能力的提高与吡哆醇提高了机体、肠道和后肾组织超氧阴离子和脂质过氧化产物清除能力有关,也与后肾羟自由基产生能力降低有关。在本试验条件下,对于体重为11~75g的幼建鲤,以血清、肠道和后肾组织脂质过氧化产物MDA含量为标识,饲粮中吡哆醇最适含量分别为3.48、4.72和3.44 mg/kg;以肠道和后肾组织蛋白质羰基含量为标识,饲粮中吡哆醇最适含量分别为5.91和6.27 mg/kg。吡哆醇缺乏引起水生动物死亡增加,神经机能紊乱,眼球突出、鳍条出血、头部皮肤糜烂、肛门红肿和鳃丝糜烂等缺乏症。肝胰脏、肌肉、后肾、肠道、鳃、脾脏和心脏等组织出现病理变化。
This experiment was conducted to study the effects of dietary pyridoxine(PN) levels on antioxidant status of juvenile Jian carp(Cyprinus carpio var.Jian) and determine the histopathology observation and effect of digestive enzyme and immune function with dietary pyridoxine deficiency.Semi-purified diets with seven levels(0.20,1.71,3.23,4.96, 6.32,8.58 and 12.39 mg PN/kg) of supplemental calcium d-pantothenate were fed for 80 days to triplicate groups of 50 fish(initial weight 11.70±0.05 g,mean±SD).
     The effect of pyridoxine on antioxidant status in fish showed that:pyridoxine significantly decreased malondialdehyde(MDA) in serum,intestine and kidney tissue.The MDA content was reduced with increasing dietary pyridoxine levels up to 3.23,4.96 and 3.23mg kg~(-1) diet(P<0.01 or P<0.05),respectively,in serum and intestine tissue,and no differences were found with further increase of pyridoxine levels(P>0.05).In serum, intestine and kidney tissue path-analysis results indicated levels of pyridoxine had significantly negative direct effects on MDA content(P_(10.1)=-0.287,d_(10.1)=0.0824;P_(20.1)= -0.455,d_(20.1)=0.208;P_(30.1)=-0.885,d_(30.1)=0.784).Pyridoxine significantly decreased protein carbonyl in serum,intestine and kidney tissue(P<0.01).Regression analysis results indicated that protein carbonyl content was lowest when pyridoxine concentration≥5.91 and 6.27 mg kg~(-1),respectively,in intestine and kidney tissues.Path-analysis results indicated that levels of pyridoxine had negative direct effects on protein carbonyl content, in intestine and kidney tissue(P_(10.1)=1.702,d_(10.1)=2.896;P_(20.1)=-0.259,d_(20.1)=0.0670). This result suggested that pyridoxine may decrease lipid peroxidation and oxidative damage to proteins in fish.Pyridoxine significantly increased anti-superoxide anion activity(ASA) in serum,intestine and kidney tissue.The ASA was increased with increasing dietary pyridoxine levels all up to 3.23mg kg~(-1) diet(P<0.01 or P<0.05), respectively,in serum and intestine tissue,and no differences were found with further increase of pyridoxine levels(P>0.05).The correlation-analysis results indicated that there were significant negative correlation between MDA with ASA in serum,intestine and kidney tissue(r_1=-0.924,P<0.01;r_2=-0.943,P<0.01;r_3 =-0.825,P<0.05),and protein carbonyl was negative related to ASA in intestine tissue(r=-0.964,P<0.01). Path-analysis results indicated that ASA had negative direct effect on MDA content,in serum,in intestine and kidney tissue(P_(10.4)=-0.327,d_(10.4)=0.107;P_(20.4)=-0.389,d_(20.4)= 0.151;P_(30.4)=-1.127,d_(30.4)=1.271).These results indicated that pyridoxine may enhance ASA and increased antioxidative defense in fish.Pyridoxine significantly increased anti-hydroxyl radical activity(AHR) in kidney tissue.The AHR was increased with increasing dietary pyridoxine levels all up to 4.96 mg kg~(-1) diet(P<0.01),in kidney tissue, and no differences were found with further increase of pyridoxine levels(P>0.05).The correlation-analysis results indicated that protein carbonyl was negative related to AHR in kidney tissue(r=-0.981,P<0.01).Pyridoxine had no effect on AHR in serum and intestine.Pyridoxine significantly increased the activities of superoxide dismutase(SOD), catalase(CAT),glutathione peroxidase(GSH-Px),glutathione S-transferase(GST) and glutathione reductase(GR) in serum.The activities of SOD,CAT,GSH-Px,GST and GR in serum,were increased with increasing dietary pyridoxine levels all up to 4.96、3.23、3.23、3.23 and 6.32 mg kg~(-1) diet(P<0.01 or P<0.05),respectively,and no differences were found with further increase of pyridoxine levels(P>0.05).The correlation-analysis results indicated that there were significantly negative correlation between MDA with the activities of SOD,CAT,GSH-Px,GST and GR in serum(r_1=-0.924,P<0.01;r_2=-0.817, P<0.05;r_3=-0.968,P<0.01;r_4=-0.926,P<0.01;r_5=-0.913,P<0.05;r_6=-0.824,P<0.05;r_7=-0.907,P<0.05),and there were significantly negative correlation between protein carbonyl and antioxidant enzymes in intestine and kidney tissue(P_(10.2)=-1.575, d_(10.2)=2.4819;P_(10.3)=-0.705,d_(10.3)=0.4966;P_(10.4)=-3.402,d_(10.4)=11.576;P_(20.2)=-0.159, d_(20.2)=0.0252;P_(20.3)=-0.970,d_(20.3)=0.0252;P_(20.4)=-0.327,d_(20.4)=0.107).The effect of pyridoxine on the activites of antioxidative enzymes in intestine and kidney have similar pattern with serum.These results indicated that pyridoxine may enhance the activites of SOD,CAT,GSH-Px,GST and GR,thus increased antioxidative defense systemes in fish. Pyridoxine significantly increased reduced glutathione(GSH) in serum,intestine and kidney tissue(P<0.01).Regression analysis results indicated that pyridoxine concentration≥4.78,4.77 and 5.41 mg kg~(-1),respectively,in serum,intestine and kidney tissues could achieve the requirement of GSH.Correlation-analysis results indicated that there was significant negative correlation between MDA with the GSH content in serum in serum(r_1=-0.907,P<0.05;).In intestine and kidney tissue,correlation-analysis results indicated that levels of GSH were negative correlated with MDA and protein carbonyl contents in intestine and kidney tissue(r_(11)=-0.861,P<0.05;r_(12)=-0.865,P<0.05;r_(21)= -0.930,P<0.01;r_(22)=-0.943,P<0.01).These results suggested that pyridoxine may increase GSH content,and promoted non-enzymes antioxidative ability in fish.
     Results indicated that the diet which pyridoxine deficient results in the increased mortality,tetany,convulsions,epiletiform fits and other nervous disorders;exophthalmus, hemorrhage of fins,dissipated in the skin of head and hyperplasia of gill filaments,etc.. Clinic anatomises showed that tumescence or atrophy in the head kidney,definite kidney, spleen,hepatopancreas and gallbladder of fish fed diet lack of pyridoxine.Reduced vacuolization,cytolysis in hepatocytes;deposited siderous heme of head kidney; degeneration of proximal tubules in kidney;decreased lymphoid cells of spleen;intestinal villus were ruptured and degeneration of myocardial fiber in this experiment.
     In considering these results,pyridoxine can decrease lipid peroxidation and oxidative damage to proteins in Jian carp.Pyridoxine promoted fish antioxidant capacity by removing superoxide anion and lipid peroxidative product in organism,intestine and kidney.Pyridoxine also decreased the ability of kidney to produce hydroxy radical.The optimum dietary pyridoxine requirement for the levels of malondialdehyde(MDA) in serum,intestine and kidney tissue of juvenile Jian carp(11~75 g) was determined to be 3.48,4.72 and 3.44 mg/kg,respectively,and the optimum dietary pyridoxine requirement for the protein carbonyls in intestine and kidney tissue of juvenile Jian carp(11~75 g) was determined to be 5.91 and 6.27 mg/kg,respectively.Fish fed pyridoxine-deficient diets performed increased mortality,tetany,convulsions,epiletiform fits and other nervous disorders;exophthalmus,hemorrhage of fins,dissipated in the skin of head and hyperplasia of gill filaments,etc..The pathologic changes of tissue and cell trauma such as hepatopancreas,head kidney,kidney,spleen,intestinal and fiber were observed.
引文
[1]Atli,G.,Alptekin,(O|¨).,T(u|¨)kel,S.,et al.Response of catalase activity to Ag~+,Cd~(2+),Cr~(6+),Cu~(2+) and Zn~(2+) in five tissues of freshwater fish Oreochromis niloticus.Comparative Biochemistry and Physiology,Part C,2006,143:218-224.
    [2]Mourente,G.,Diaz-Salvago,E.,Bell,J.G.,et al.Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream(Sparus aurata L.) fed dietary oxidized oil:attenuation by dietary vitamin E.Aquaculture,2002,214:343-361.
    [3]Lin,Y.H.,Shiau,S.Y.,Deitary selenium requirement of juvenile grouper,Epinephelus malabaricus.Aquaculture 2005a.250,356-363.
    [4]Orun,I.,Talas,Z.S.,Ozdemir,I.,et al.Antioxidative role of selenium on some tissues of(Cd~(2+),Cr~(3+))-induced rainbow trout.Ecotoxicol.Environ.Saf,2008,71:71-75.
    [5]Mitra,G.,Mukhopadhyay,P.K.,Ayyappan,S.,Modulation of digestive enzyme activities during ontogeny of Labeo rohita larvae fed ascorbic acid enriched zooplankton.Comp.Biochem.Physiol.2008,149:341-350.
    [6]Guitland,J.C.,Bereksi-Reguig,B.,Lequeu,B.,et al.Int.J.Vit.Nutr.Res,1984,54:185-193.
    [7]Hoyumpa,A.M.Alcohol Clin.Exp.Res.1986,10:573-581.
    [8]Maranesi,M.,Barzanti,V.,Coccheri,S.,et al.Prostaglandins Leukotrienes Essent.Fatty Acids,1993,49:531-536.
    [9]Swiglo,A.G.Antioxidant activity of water soluble vitamins in the TEAC(trolox equivalent antioxidant capacity) and the FRAP(ferric reducing antioxidant power)assays.Food Chem.2006,96,131-136.
    [10]Noguchi,N.,Okimoto,Y.,Cynshi,O.,et al.Inhibition of oxidative modification of low density lipoprotein by novel antioxidant BO-653 prepared by theoritical design.In:Paker,L.;Ong,A.S.H.,eds.Biological oxidants and antioxidants.Champaign,IL:AOCS Press,1998:139-152.
    [11]冯秀妮、张文兵、麦康森等.饲料中维生素B6对皱纹盘鲍幼鲍蛋白质代谢的影响.海洋科学,2006,10(30):52-60.
    [12]Huang,J.W.,Tian,L.X.,Du,Z.Y.,et al.,Pyridoxine deficiency of grouper,Epinephelus coioides:physiological and biochemical alteration.Fish.Physiol.Biochem.2005,31:331-337.
    [13]Smith,C.E.,Birn,M.,Halver,J.E.Biochemical,physiological,and pathological changes in pyridoxine deficient rainbow trout(Salmo gairderi).J.Fish.Res.Bd.Can.1974,31:1893-1898.
    [14]Kissil,G.W.,Cowey,C.B.,Adron,J.W.et al.Pyridoxine requirements of the gilthead bream,Sparus aurata.Aquaculture,1981,23:243-255.
    [15]Agrawal,N.K,Mahajan,C.L.Pathology of vitamin B-6 deficiency in Channa(=Ophiocephalus)punctatus Bloch,Journal of Fish Diseases,1983,6(5):439-450.
    [16]Ogino,C.B.Vitamins Requirements of Carp,Cyprinus Carpio-I.Deficiency Symptoms and Requirement of Vitamin B6.Bulletin of the Japanese Society of Scientific Fisheries.1965,31(7):546-551.
    [17]申顺立.维生素C缺乏对幼建鲤器官发育和组织结构变化的影响.[硕士论文].四川农业大学硕士论文,2001.
    [18]刘扬.饵料维生素C营养需要研究.[硕士论文].四川农业大学硕士学位论文,2002.
    [19]吴建波.幼建鲤维生素E缺乏症的研究.[硕士论文].四川雅安,四川农业大学,2004.
    [20]李江.肌醇缺乏对幼建鲤消化功能和免疫功能的影响.[硕士论文].四川农业大学硕士学位论文,2007.
    [21]Halliwell.B,Zhao.K,Whiteman.M.The gastrointestinal tract:A major site of antioxidant action? Free Radical Research.2000,33:819-830.
    [22]Mittal,C.K.,Murad,F.Activation of guanylate cyclase by superoxide-dismutase and hydroxyl radical—Physiological regulator of guanosine 3,5-monophosphate formation.Proc.Natl.Acad.Sci.U.S.A.,1977,74:4360-4364.
    [23]Cadenas, E., Sies, H. (1998). The lag phase. Free. Radic. Res., 1998, 28: 601-609.
    [24]Kohen, R., Nyska, A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol, 2002, 6: 620-650.
    [25]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of Biochemistry and Cell Biology, 2007, 39: 44-84.
    [26]Bai S. C, Lee K. J. Different levels of dietary DL-a-tocopheryl acetate affect the vitamin E status of juvenile Korean rockfish, Sebastes schlegeli. Aquculture, 1998, 161:405-414.
    [27]Oru(?), E. (O|¨)., Usta, D., Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ. Toxicol. Pharmacol. 2007,23:48-55.
    [28] Martinez-Alvarez, R. M., Morales, A. E., Sanz, A. Antioxidant defenses in fish: Biotic and abiotic factors. Fish Biology and Fisheries, 2005,15: 75-88.
    [29]Mahfouz, M. M., Kummerow, F. A. Vitamin C or Vitamin B_6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. Int. J. Biochem. Cell. B. 2004. 36: 1919-1932.
    [30]Maranesi, M., Bochicchio, D., Zambonin, L., et al. Effects of different dietary amounts of LCPUFA n3 and vitamin B_6 on lipid composition and antioxidant defences in rat kidney. J. Nutr. Biochem, 2004, 15: 396-401.
    [31]Cabrini, L., Bergami, R., Fiorentini, D., et al. Vitamin B6 deficiency affects antioxidant defenses in rat liver and heart. Biochem. Mol. Biol. Int. 1998, 46:689-697.
    [32]Benderitter, M., Hadj-Saad, F., Lhuissier, M., et al. Effects of exhaustive exercise and vitamin B6 deficiency on free radical oxidative process in male trained rats. Free Radic. Biol. Med. 1996, 21:541-549.
    [33]Taysi, S. Oxidant / antioxidant status in liver tissue of vitamin B_6 deficient rats. Clinical Nutr, 2005.24, 385-389.
    [34]Anand, S. S. Protective effect of vitamin B6 in chromium-induced oxidative stress in liver.J.Appl.Toxicol,2005a,25,440-443.
    [35]Anand,S.S.Pyridoxine attenuates chromium-induced oxidative stress in rat kidney.Basic.Clin.Pharmacol,2005b,97,58-60.
    [36]Kannan,K.,Jain,S.K.,Effect of vitamin B6 on oxygen radicals,mitochondrial membrane potential,and lipid peroxidation in H_2O_2-treated U937 monocytes.Free Raical Biol.Med,2004,36:423-428.
    [37]Jain,S.K.,Lim,G.Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation,protein glycosylation,and(Na~++K~+)-ATPase activity reduction in hig glucose-treated human erythrocytes.Free Radical Biology and Medicine,2001,30:232-237.
    [38]Bhor,V.M.,Raghuram,N.,Sivakami,S.Oxidative Damage and Altered Antioxidant Enzyme Activities in the Small Intestine of Streptozotocin-Induced Diabetic Rats.Int.J.Biochem.Cell.B,2004,36:29-97.
    [39]Trenzado,C.,Hidalgo,M.C.,Garcia-Gallego,M.,et al.Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorpynchus mykiss.A comparative study.Aquaculture.2006,254:758-767.
    [40]Winston,G..W.,Di Giulio,R.T.,Prooxidant and antioxidant mechanisms in aquatic organisms.Aquat.Toxicol,1991,19:137-161.
    [41]McCord,J.M.,Fridovich,I.Superoxide dismutase an enzymic function for erythrocuprein Hemocuprein.J.Biol.Chem.,1969,244:6049-6055.
    [42]David,M.,Munaswamy,V.,Halappa,R.,et al.Impact of sodium cyanide on catalase activity in the freshwater exotic carp,Cyprinus carpio(Linnaeus).Pestic.Biochem.Phys,2008,92:15-18.
    [43]Lackner,R.,Oxidative stress in fish by environmental pollutants.Fish.Ecotoxicol.Exp.Suppl,1998,86:203-224.
    [44]Elia,A,C.,Anastasi,V.,D(o|¨)rr,A.J.M.Hepatic antioxidant enzymes and total glutathione of Cyprinus carpio exposed to three disinfectants,chlorine dioxide,sodium hypochlorite and peracetic acid for superficial water potabilization.Chemosphere,2006,64:1633-1641.
    [45]冯秀妮.维生素C和B6对皱纹盘鲍(Haliotis discus hannai Ino)代谢反应和贝壳 生物矿化影响的研究.[硕士论文].山东青岛,中国海洋大学,2005.
    [46]Selvam,R.,Ravichandran,V.Lipid peroxidation in liver of vitamin B-6 deficient rats.J.Nutr.Biochem,1991,2:245-250.
    [47]Tappel,A.L.Vitamin E as the biological lipid antioxidant.Vitam.Horm,1962,20:493-510.
    [48]Som,S.,Basu,S.,and Mukherjee,D.Ascorbic acid metabolism in diabetes mellitus.Metabolism.1981,30:572-577.
    [49]McCay,P.B.,Brueggrnan,G.,Lai,E.K.,et al.Vitamin E:Biochemistry and health implications.Ann.N.Y.Acad.Sci.1989,570:32-45.
    [50]Andrews,J.W.,Murai,T.Pyridoxine requirements of channel catfish.J Nutr,1979,109:533-537.
    [51]Mohamed,S.J.Dietary pyridoxine requirement of the Indian catfish,Heteropneustes fossilis.Aquaculture,2001,194:327-335.
    [52]Adron,J.W.,Knox,D.,Cowey,C.B.Studies on the nutrition of marine flatfish.The pyridoxine requirement of turbot(Scophthalmus maximus).Br.J.Nutr,1978,40:261-268.
    [53]Shiau,Shi-Yen.,Wu,Ming-Hsun.Dietary vitamin B6 requirement of grass shrimp,Penaeus monodon.Aquaculture,2003,225:397-404.
    [54]徐志昌、刘铁斌、李爱杰.中国对虾对维生素B2、B5、B6营养需要的研究.水产学报,1995,6,19:97-104.
    [55]王军霞、翟宗昭、王维娜等.凡纳滨对虾对维生素B2、B6的营养需求研究.动物学报,2005,51:174-179.
    [56]Arai,S.,Nose,T.,Hashimoto,Y.Qualitative requirements of young eels(Anguilla japonica) for water-soluble vitamins and their deficiency symptoms.Bull Freshw Fish Res Lab,1972,22:69-83.
    [57]Herman,R.L.Histopathology associated with pyridoxine deficiency in Atlantic salmon(Salmo salar).Aquaculture,1985,46:173-177.
    [58]Halver,J.E.The vitamins.In:Halver,J.E.Ed.,Fish Nutrition.2nd edn.Academic Press,1989.
    [59]Lim,C.,LeaMaster,B.R.,Brock,J.A.Pyridoxine requirement of fingerling red hybrid tilapia grown in seawater.J.Appl.Aquacult,1995,5:49-60.
    [60]Giri,I.N.A.,Teshima,S.I.,Kanazawa,A.,et al.Effects of dietary pyridoxine and protein levels on growth,vitamin B sub(6) content,and free amino acid profile of juvenile Penaeus japonicus.Aquaculture,1997,157:261-273.
    [61]Sauberlich,H.E.Interaction of vitamin B6 status assessment:past and present.In:methods in vitamin B6 Nutrition(leklem,J.E.et al.eds.),Plenum press,New Yourk,1985:203-239.
    [62]Dakshinamurti,K.Vitamin B6.Ann.N.Y.Acad Sci,1990,585:1-570.
    [63]Marcus,R.,Coulston,A.M.The vitamins:water-soluble vitamins,In:Goodman and Gilman's The pharmacological Basis of Therapeutics,9~(th) edn.Pp 1-1547.Edited by Gilman AG,Hardman JG,Limbird LE et al.1996,Pergamon Press,New York.
    [64]Agrawal,N.K.,Mallajan,C.L.Haematologieal and haematopoietie studies in pyridoxine defieient fish,Channa Punctatus Bloeh.Journal of Fish Biologyl,1984,22:91-103.
    [65]Sakaguchi,H.,Takeda,F.,Tange,K.Studies on vitamin requirements by yellowtail.1.Vitamin B6 and vitamin C deficiency symptoms.Bulletin of Japanese Society of Scientific Fisheries,1969,35:1201-1206.
    [66]Narisawa,S.,Wennberg,C.,Millan,J.L.,Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities,but not the impaired bone mineralization,J Pathol.,2001,193:125-133.
    [67]Sergee,I.N.,Spirichev,V.G..Role of vitamin B6 in the regulation of interactions of 1,25(OH)_2D_3(calcitriol) receptors with chromation and DNA.Byulleten.Eksperinmentalnoi.Biologii I Meditsny.1990,110:631-631.
    [68]Rpberts,R.J.(Editor),Fish Pathology.Baillere Tindall,London.1979:318.
    [69]黄俊娃.斜带石斑鱼吡哆醇、硫胺素、核黄素和烟酸的营养生理研究.[博士论文].中山大学博士学位论文,2007.
    [70]Iwama,H.,Iwase,O.,Hayashi,S.,et al.Macrocytic anemia with anisocytosis due to alcohol abuse and vitamin B6 deficiency.1998,39:1127-1130.
    [71]赵春蓉.赖氨酸对幼建鲤生产性能和免疫力的影响.[硕士论文].四川农业大学硕士论文,2005.
    [72]帅柯。蛋氨酸对幼建鲤消化功能和免疫功能的影响.[硕士论文].四川农业大学硕士论文 , 2006.
    [73]NRC (National Research Council) Nutrient Requirements of Fish. 1993, National Academies Press, Washington, D. C.
    [74]Livingstone, D. R., Garcia, M. P., Michel, X., et al. Oxyradical production as a pollution-mediated mechanism of toxicity in the common mussel, Mytilus edulis L. and other molluscs. Funct Ecol, 1990,4: 415-424.
    [75]Halliwell, B., Whiteman, M., Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Brit. J. Pharmacol, 2004, 142: 231-255.
    [76] Jiang, J., Zheng, T., Zhou, X.Q., et al., in press, Influence of glutamine and vitamin E on growth and antioxidant capacity of fish enterocytes. Aquaculture nutrition. 2008.
    
    [77]Zhang, X. D., Zhu, Y. F., Cai, L. S., et al. 2008. Effects of fasting on the meat quality and antioxidant defenses of market-size farmed large yellow croaker (Pseudosciaena crocea). Aquaculture doi:10.1016/j.aquaculture.2008.05.010.
    [78] Aebi, H., Catalase "in vitro". Methods Enzymol, 1984,105: 121-127.
    [79]Lora, J., Alonso, F. J., Segura, J. A., et al., Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur. J. Biochem, 2004, 271: 4298-4306.
    [80]Lushchak, V. I., Lushchak, L. P., Mota, A. A.,et al., Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am. J. Physiol, 2001, 280: 100-107.
    [81]Beutler, E., Duron, O., Kelly, B. M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med, 1963, 61: 882-888.
    [82]Ravichandran, V., Selvam, R. Lipid peroxidation in sub-cellular fractions of liver and kidney of vitamin B-6 deficient rats. Med. Sci. Res, 1990, 18: 369-371.
    [83] Wei HE, Xiao-Qiu ZHOU, Lin FENG, et al. Dietary pyridoxine requirement of juvenile Jian carp {Cyprinus carpio var. Jian). Aquaculture Nutrition, 2008-8-22.
    [84]Dalle-Donnea, I., Rossib, R., Giustarini, D., et al. Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 2003, 329: 23-38.
    [85]Levine,R.L.,Garland,D.,Oliver,C.N.,et al.Determination of carbonyl content in oxidatively modified proteins.Methods Enzymol,1990,186:464-478.
    [86]Zhang,P.,Stanley,T.O.β-Caroteni and protein oxidation:effects of ascorbic acid and α-tocopherol.Toxicology,2000,146:37-47.
    [87]Wills,E.D.Mechanisms of lipid peroxide formation in tissues.Role of metals and haematin proteins in the catalysis of the oxidation of unsaturated fatty acids.Biochim.Biophys.Acta,1965,98:238-251.
    [88]郑婷.维生素E对鲤鱼肠上皮细胞生长发育及抗氧化能力的影响.[硕士论文].四川雅安,四川农业大学,2004.
    [89]Baud,L.,Ardaillou,R.Reactive oxygen species:production and role in the kidney.Am J Physiol,1986,251:765-769.
    [90]Mauricio,M.,Geraldine,J.,el at.Vitamin B-6 deficiency in rats reduces hepatic serine hydroxymethyltransferase and cystathicnine synthase activities and rates of in vivo protein turover homocysteine remethylation and transsulfuration.Journal of Nutrition.2000:1115-1123.
    [91]萌士安、靳雅笙、山口贤次.膳食维生素B6对硒的生物利用率影响的研究。卫生研究,1995(24):37-39.
    [92]Reiter,R.J.,Tan,D.X.,Allegra,M.Melatonin:Reducing molecular pathology and dysfunction due to free radicals and associated reactants.Neuroendocrino 1 Lett,2002,23:3-8.
    [93]Reiter,R.J,Tan,D.X.,Manchester,L.C.,et al.Biochemical reactivity of melatonin with reactive oxygen and nitrogen species.A review of the evidence.Cell Biochem Biophys,2001,34:237-256.
    [94]Filho,D.W.Reactive oxygen species,antioxidants and fish mitochondria.Frontiers in Bioscience,2007,12:1229-1237.
    [95]Schaeffer,M.C.Attenuation of acoustic and tactile startle responses of vitamin B-6deficient rats.Physiology & Behavior,1987,40:473-478.
    [96]Maitin,D.L.,Rimvall,K.Regulation of gama-aminohutyric acid synthesis in the hram.Journal Neurochem,1993,60:395.
    [97]洪燕,程义勇,章广远等.维生素B6缺乏对大鼠海马脑区氨基酸类和一氧化氮 递质系统的影响.解放军预防医学杂志,2001,4(19):239-242.
    [98]Guilarte,T.R,Mrceli,R.C.Reduced NMDA receptor-ion channel function in vitamin B6 restricted neonatal rat brain.Neuroscience letters,1991,121:207-210.
    [99]Raccah,D.,Gallice,P.,Pouget,J.,et al.Hypothesis:low ATPase activity in the red cell membrane,a potential marker of the predisposition of diabetic neuropathy.Diabete Metabol,1992,18:236-241.
    [100]何伟.吡哆醇对幼建鲤消化吸收能力和免疫能力的影响.[硕士论文].四川雅安,四川农业大学,2008
    [101]Ueland,P.M.,Refsum,H.,Stabler,S.P.Total homocystein-einplasrna of serum:Methodsand clinical applications.Clin Chem,1993,39(9):1764-1769.
    [102]Liu,G.,Nellaiappan,K.,Kagan,H.M.,et al.Irreversible inhibition of lysyl oxidase by homocysteine thiolactone and its selenium and oxygen analogues.J BiolChem,1997,272:32370-32377.
    [103]Ferretti,G.,Bacchetti,T.,Marotti,E.,et al.Effect of homocysteinylation on human high-density lipoproteins:a correlation with paraoxonase activity.Metabolism,2003,52:146-151.
    [104]刘欢,黄国伟,刘莉等.叶酸、维生素B6、B12对局灶性脑缺血大鼠血浆同型半胱氨酸水平和抗氧化作用的研究.营养学报,2007,29(4):344-347.
    [105]Upchurch,G..R.,Welch,G..N.,Fabian,A.J.,et al.Homocysteine decreases biavailable nitric oxide by a mechanism involving glutathione peroxiase.Biol Chem,1997,272,27:17012-17017.
    [106]王肇赣,徐伯亥.尼罗非鱼腐皮病致病菌的研究.水产学报,1985,9,3:217-221.
    [107]Halver,J.E.Fish Nutrition.New York,Academic Press,2002.
    [108]文泽平.泛酸对幼建鲤消化吸收功能和免疫功能的影响.[硕士论文].四川雅安,四川农业大学,2008
    [109]罗莉,叶元土,林适梅.灌胃必需氨基酸模式溶液对草鱼全鱼和肌肉、肝胰脏蛋白质合成代谢的影响.水产学报.2002,26:73-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700