人体小肠微生态研究及肝移植受者肠道微生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栖息在人类的微生物的数量达100万亿个,超过人体细胞和生殖细胞的10倍,被称为是人类的“第二基因组”,构成了人体的一个代谢器官,参与机体的代谢,肠道微生物作为体内菌群最多的共生生态系统影响着人类的健康、营养及生长发育。近年来,随着非培养技术的进步,对人类肠道微生态的研究及其对健康与疾病影响的研究呈现空前的增长。越来越多的研究表明,肠道微生态的失衡与许多疾病如肥胖、糖尿病、炎性肠病、过敏性疾病等均有关。然而寄居在人类肠道的微生物达上千种,我们所了解的只是其中的一小部分,因此进一步研究肠道微生物的特征构成,尤其是对既往研究未曾涉及的肠道标本以及特殊人群肠道微生态的变化将有助于我们更为深入的了解微生物在人类健康与疾病中的作用。
     本研究第一部分对10位器官捐献者的小肠不同部位的样本进行了研究,在无菌状态下获取空肠上段、空回肠交界处及回肠末端三个部位的肠内容物,提取细菌DNA,应用454焦磷酸测序技术,对小肠内菌群结构特征进行了详细的分析,明确和比较了小肠不同部位肠道菌群多样性及其组成结构,共获得69506条高质量的16S rRNA基因V5-V6区序列,所有序列依据97%相似度水平划分为518个分类操作单元(operational taxonomic units,OTU),在细菌门分类水平丰度较高的有6个已知的门类和一个未分类的门类,包括变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、TM7门、梭杆菌门(Fusobacteria),拟杆菌门(Bacteroidetes)上述门类细菌覆盖了小肠内85%的细菌微生物,另外检测到7个丰度较低的细菌门类。通过研究表明,人体小肠微生态呈现与生理解剖部位相关的特征性改变,空肠上段与空回肠交界处小肠微生态多样性无明显差异,空肠上段、空回肠交界处小肠微生态多样性与回肠末段小肠微生态多样性相比较存在显著差异。
     本研究第二部分对肝移植受者肠道微生态进行了研究,共收集47份粪便标本,包括健康对照组(n=15),肝移植术前组(n=17)、肝移植术后组(n=15)、提取粪便基因组DNA,同样应用454焦磷酸测序技术,共获得527735条万条高质量的16S-rRNA基因序列,1911个OTU。分析结果提示在肝移植术前、术后及正常对照者的所有样本在门类水平分属12个门类,包括厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)、TM7门、蓝藻菌门(Cyanobacteria)、梭杆菌门(Fusobacteria)、疣微菌门(Verrucomicrobia)、柔膜菌门(Tenericutes)、Synergistetes门,古细菌(Archaea)以及未分类细菌。其中厚壁菌门、拟杆菌门和变形菌门占所有细菌的92%。在本研究中肝移植术前患者与健康对照者相比,粪便中变形菌门(Proteobacteria)丰度增加,其中主要是以肠杆菌科(Enterobacteriaceae)明显增加;拟杆菌门(Bacteroidetes)中的普沃氏菌属(Prevotella)丰度明显降低,拟杆菌属(Bacteroides)无明显变化。肝移植术后患者的与术前相比,变形菌门(Proteobacteria)丰度明显减少,其中主要是肠杆菌科(Enterobacteriaceae)减少,而厚壁菌门的丰度增加。肝移植术前术后患者与健康人群之间肠道微生态均存在差异,而肝移植患者术前术后变化更为明显。
     本研究通过对器官捐献者小肠微生态的研究,初次用Bar coded454测序描绘人体小肠微生物的种群结构及丰度,并依据生理解剖位置的不同对小肠微生态进行了分析,为进一步研究人类肠道微生态与宿主物质代谢、免疫功能调节及疾病的关系提供重要参考数据。另外本研究通过比较肝移植患者术前术后肠道微生态的变化,初步揭示肝脏移植手术治疗以及免疫抑制治疗等特殊因素对肠道微生态的影响,为进一步的研究提供重要依据。
The number of human microorganism is about100trillion,10times more than the number of somatic cells and germ cells. In this way, human microbiota, regarded as the second human genome, forms an organ which takes part into the metabolism. Human intestinal microbiota, containing the greatest amount of organisms, have a critical influence on human health, nutrition and growth. Recently, with the development of culture-independent techniques, the knowledge about human intestinal microbiota and its effects on health and disease is increasing significantly. Increasingly more evidences show that imbalance of human intestinal microbiota has a closely relationship with many diseases, such as obesity, diabetes, inflammatory bowel disease, allergic diseases and so on. However, despite the existence of thousands of kinds of organisms, we only recognize a very small part of them. Therefore, the study on the characters of human intestinal microbiota, especially on some unstudied intestinal samples or some specific objects, would facilitate us to further understand the role of human intestinal microbiota in health and disease.
     In the first part, we studied the intestinal microbiota from10organ donors. Under the sterile condition, the contains from the upper jejunum, jejunoileum junction, and the terminal ileum were colected. Then, DNA was purified. With454pyrosequencing technology, we analyzed the characters of small intestinal microbiota, and compared the composition and diversity of microbiota among different locations. We attained69506high qualified16s rRNA V5-V6sequences. According to97%level of identity, all these sequences were classified into518operational taxonomic units (OTUs). There were6bacterial phylums, whose abundance were above1%, including Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, TM7, Cyanobacteria, Fusobacteria, Bacteroidetes and one unclassified bacteria. The phylums mentioned above nearly covered85%organisms in human small intestinal. Besides, several phylums with extremely low abundance were also tested out. According to our study have shown that the conditions of human intestinal microbiota is anatomical location dependent. Human intestinal microbiota in either upper jejunum or jejunoileum junction shows no statistical significance. But the diversity of human intestinal microbiota in upper jejunum and jejunoileum junction is significantly different from that in terminal ileum.
     In the second part, we collected47stool specimens from liver transplant recipients in order to study human intestinal microbiota. These specimens were divided into3groups, including healthy control group (n=15), pre-liver trasnplantaton group (pre-LT)(n=17), and post-liver transplantation group (post-LT)(n=15). Then, DNA was purified. With454pyrosequencing technology, we attained527735high qualified16s rRNA sequences and1911OTUs. The results showed that all the specimens from3groups were belonged to12phylums, including Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, TM7, Cyanobacteria, Fusobacteria, Verrucomicrobia, Tenericutes, and Synergistetes. And approximate92%of the bacteria from these specimens are from Firmicutes, Bacteroidetes, and Proteobacteria. Compared with the control group, the abundance of Proteobacteria, especially Enterobacteriaceae, in stool specimens from pre-LT group was increased. The abundance of Bacteroidetes was also increased, except for the abundance of Prevotella, which was significantly decreased. Compared with pre-LT group, the abundance of Proteobacteria in stool specimens from post-LT group was declined, while the abundance of Firmicutes was elevated. The differences between control, pre-LT, and post-LT group all reached statistically significance, and the differences between pre-LT, and post-LT group were more significant.
     Our study aims to explore the intestinal microbiota in liver transplantation recipients. We first adopt the techniques of Barcoded454sequence to characterize the composition and abundance of human intestinal microbiota, analyze the microbiota from different human intestinal locations, and provide the important parameters for the. further study on association among human intestinal microbiota, host metabolism, immuno-regulation, and relative diseases. Additionally, our study also discuss the changes of intestinal microbiota between pre-LT and post-LT groups, and preliminary disclose the influence of operation and immunosuppressants on intestinal microbiota, providing the critical evidences for the further study.
引文
1. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature,2010,464:59-65.
    2. Human Microbiome Project Consortium. Structure,function and diversity of the healthy human microbiome. Nature,2012,486:207-214.
    3. Yang X,Xie L,Li Y,et al. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS one,2009,4:e6074.
    4. Hayashi H, Sakamoto M, Benno Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol, 2002,46:535-548.
    5. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science,2005,308:1635-1638.
    6. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR:Molecular ecological analysis of the gastrointestinal microbiota:a review. J. Nutr.,2004,134,465-472.
    7. Bik EM, Eckburg PB, Gill SR et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA.,2006,103,732-737.
    8. Cummings, J.H., and Macfarlane, G.T. Colonic microflora:nutrition and health. Nutrition,1997, 13:476-478.
    9. Kurokawa K,Itoh T.Kuwahara T,et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res,2007,14:169-181.
    10. Turnbaugh PJ,Ridaura VK,Faith JJ,et al. The effect of diet on the human gut microbiome:a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med,2009,1:6-14.
    11. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature,2006,444:1027-1031.
    12. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature,2008,455:1109-1113.
    13. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell,2007,131:33-45.
    14. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science,2010,328:228-231.
    15. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature,2009,457:480-484.
    16. Guarner F. What is the role of the enteric commensal flora in IBD?. Inflamm Bowel Dis,2008, 14 Suppl 2:S83-84.
    17. van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol, 2011,128:948-955.
    18. Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe,2010,16:444-453.
    19. Li L, Chen L, Hu L, et al. Nuclear factor high-mobility group box1 mediating the activation of Toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology,2011,54:1620-1630.
    20. Kelly S, Yeo J, Robertson GM, Chapman B, Wells JE, Frizelle FA:Functional assessment of bacterial colonization in patients with ileal pouch-anal anastomosis and Brooke ileostomy. Dis. Colon Rectum,2004,47,1386-1389.
    21. Neut C, Bulois P, Desreumaux P et al.:Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn's disease. Am. J. Gastroenterol.,2002,97,939-946.
    22. Santavirta J, Mattila J, Kokki M, Matikainen M:Mucosal morphology and fecal bacteriology after ileoanal anastomosis. Int. J. Colorectal Dis.,1991,6,38-41.
    23. Lane DJ, Pace B, Olsen GJ, et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA,1985,82:6955-6959.
    24. Zoetendal E. G., Akkermans A. D. L., Akkermans-van Vliet W. M. et al. The Host Genotype Affects the Bacterial Community in the Human Gastronintestinal Tractgastrointestinal tract, Microbial Ecology in Health and Disease,2001,13:129-134.
    25. Briils T,Weissenbach J. The human metagenome:our other genome?.Hum Mol Genet,2011, 20:R142-148.
    26. Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science,2005,307:1915-1920.
    27. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science,2006,312:1355-1359.
    28. Possemiers S, Bolca S, Verstraete W, et al. The intestinal microbiome:a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia, 2011,82:53-66.
    29. Arumugam M,Raes J.Pelletier E,et al. Enterotypes of the human gut microbiome. Nature,2011, 473:174-180.
    30. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD:Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut,1988,29,1035-1041.
    31. Nugent SG, Kumar D, Rampton DS, Evans DF:Intestinal luminal pH in inflammatory bowel disease:possible determinants and implications for therapy with aminosalicylates and other drugs. Gut,2001,48,571-577.
    32. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K:Culture-independent analysis of gut bacteria:the pig gastrointestinal-tract microbiota revisited. Appl. Environ. Microbiol.,2002,68,673-690.
    33. Saif LJ, Ward LA, Yuan L, Rosen BI, To TL:The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses. Arch. Virol. Suppl.,1996, 12,153-161.
    34. Marteau P, Pochart P, Dore J, Bera-Maillet C, Bemalier A, Cormier G:Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol.,2001, 67,4939-4942.
    35. Misra SP, Dwivedi M, Misra Ⅴ:Ileoscopy in 39 hematochezia patients with normal colonoscopy. World J. Gastroenterol.,2006,12,3101-3104.
    36. Lepage P, Seksik P, Sutren M et al.:Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm. Bowel Dis.,2005,11,473-480.
    37. Seksik P, Lepage P, de la Cochetiere MF et al.:Search for localized dysbiosis in Crohn's disease ulcerations by temporal temperature gradient gel electrophoresis of 16S rRNA. J. Clin. Microbiol,2005,43,4654-4658.
    38. Wang X, Heazlewood SP, Krause DO, Florin TH:Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J. Appl. icrobiol.,2003,95,508-520.
    39. Wang M, Ahrne S, Jeppsson B, Molin G:Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol., 2005,54,219-231.
    40. Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y:Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol.,2005,54,1093-1101.
    41. Mukhopadhya, I., et al., IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol, 2012.9(4):p.219-230.
    42. Turroni, F., et al., Human gut microbiota and bifidobacteria:from composition to functionality. Antonie Van Leeuwenhoek,2008,94(1):p.35-50.
    43. Louis, P., et al., Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol,2010,12(2):p.304-314.
    44. Barcenilla, A., et al., Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol,2000,66(4):p.1654-1661.
    45. Louis, P. and H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett,2009,294(1):p.1-8.
    46. Duncan, S.H., P. Louis, and H.J. Flint, Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol,2004,70(10):p. 5810-5817.
    47. Mazmanian, S.K., Capsular polysaccharides of symbiotic bacteria modulate immune responses during experimental colitis. J Pediatr Gastroenterol Nutr,2008,46 Suppl 1:p. E11-12.
    1. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol,2010,7:691-701.
    2. Szabo G, Bala S, Petrasek J, et al. Gut-liver axis and sensing microbes. Dig Dis.,2010,28: 737-744.
    3. Basile AS, Jones EA. Ammonia and GABA-ergic neurotransmission:interrelated factors in the pathogenesis of hepatic encephalopathy. Hepatology,1997,25:1303-1305.
    4. Th alheimer U, Triantos CK, Samonakis DN et al. Infection, coagulation,and variceal bleeding in cirrhosis. Gut,2005,54:556-563.
    5. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. PNAS,2004,101:15718-15723.
    6. Kirsch R, Clarkson V, Verdonk RC e t al. Rodent nutritional model of steatohepatitis:effects of endotoxin (lipopolysaccharide) and tumor necrosis factor alpha deficiency. J Gastroenterol Hepatol,2006,21:174-182.
    7. Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Th er,1983,225:320-324.
    8. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature,2012,482:179-185.
    9. Guarner C, Soriano G. Spontaneous bacterial peritonitis. Semin Liver Dis,1997,17:203-217.
    10. Campillo B, Pernet P, Bories PN et al. Intestinal permeability in liver cirrhosis:relationship with severe septic complications. Eur J Gastroenterol Hepatol,1999,11:755-759.
    11. Husova L, Lata J, Husa P et al. Bacterial infection and acute bleeding from upper gastrointestinal tract in patients with liver cirrhosis. Hepatogastroenterology,2005,52: 1488-1490.
    12. Chen Y, Yang F, Lu H et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology,2011; 54:562-572.
    13. Bajaj JS, Ridlon JM, Hylemon PB et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol,2012,302:G168-175.
    14. Y.R. "Xie, S.L. Liu, X Liu, et al. Intestinal Microbiota and Innate Immunity-Related Gene Alteration in Cirrhotic Rats with Liver Transplantation, Transplant Proc,2011, 43(10):3973-3979.
    15. Nieuwenhuijs VB, Verheem A, van Duijvenbode-Beumer H, et al. The role of interdigestive small bowel motility in the regulation of gut microflora, bacterial overgrowth, and bacterial translocation in rats. Ann Surg,1998,228:188-193.
    16. Yang CY, Chang CS, Chen GH. Small-intestinal bacterial overgrowth in patients with liver cirrhosis, diagnosed with glucose H2 or CH4 breath tests. Scand J Gastroenterol,1998, 33:867-871.
    17. Bosch J, Garcia-Pagan JC. Complications of cirrhosis. I. Portal hypertension. J Hepatol,2000, 32[1 Suppl]:141-156.
    18. Teltschik Z, Wiest R, Beisner J, et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology,2012, 55:1154-1163.
    19.魏晓、王雪松、邵长林,等,乙肝肝硬化患者肠道微生物宏基因组学的研究,军事医学,2011,35(7):489-493。
    20. Wexler, H. M. (2007). Bacteroides:the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20,593-621.
    21. Brook, I. (2010). The role of anaerobic bacteria in bacteremia. Anaerobe 16,183-189.
    22. Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., and Gordon, J. I. (2009). The effect of diet on the human gut microbiome:a metagen-omic analysis in humanized gnotobi-otic mice. Sci. Transl. Med.1,6ra14.
    23. Flint, H.J., et al., Interactions and competition within the microbial community of the human colon:links between diet and health. Environ Microbiol,2007.9(5):p.1101-1111.
    24. Louis, P. and H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett,2009.294(1):p.1-8.
    25. Duncan, S.H., P. Louis, and H.J. Flint, Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol,2004.70(10):p. 5810-5817.
    1. Bruls T, Weissenbach J. The human metagenome:our other genome?.Hum Mol Genet,2011, 20:R142-148.
    2. Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science,2005,307:1915-1920.
    3. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science,2006,312:1355-1359.
    4. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature,2010,464:59-65.
    5. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature,2012,486:207-214.
    6. Foxman B, Goldberg D, Murdock C, et al. Conceptualizing human microbiota:from multicelled organ to ecological community. Interdiscip Perspect Infect Dis,2008:613979.
    7. Possemiers S, Bolca S, Verstraete W, et al. The intestinal microbiome:a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia, 2011,82:53-66.
    8. Hayashi H, Sakamoto M, Benno Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol, 2002,46:535-548.
    9. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science,2005,308:1635-1638.
    10. Lane DJ, Pace B, Olsen GJ, et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A,1985,82:6955-6959.
    11. Muyzer G, de Waal EC, Uitterlinden GA. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol,1993,59:695-700
    12. Zoetendal E. G.; Akkennans A. D. L.; Akkermans-van Vliet W. M. et al. The Host Genotype Affects the Bacterial Community in the Human Gastronintestinal Tractgastrointestinal tract, Microbial Ecology in Health and Disease,2001,13:129-134.
    13. Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437:376-380.
    14. Human Microbiome Project Consortium. A framework for human microbiome research. Nature,2012,486:215-221.
    15. Gregory SG, Barlow KF, McLay KE, et al. The DN A sequence and biological annotation of human chromosome 1. Nature,2006,441:315-321.
    16. Edwards AO, Ritter R 3rd, Abel KJ, et al. Complement factor H polymorphism and age-related macular degeneration. Science,2005,308:421-424.
    17. Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products. Chem Biol,1998,5:R245-249.
    18. Weinstock GM. Genomic approaches to studying the human microbiota. Nature,2012,489: 250-256.
    19. NIH HMP Working Group. The NIH Human Microbiome Project. Genome Res,2009,19: 2317-2323.
    20. Meyer-Hoffert U, Hornef MW, Henriques-Normark B, et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut,2008,57:764-771.
    21. Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res,2007,14:169-181.
    22. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature, 2011,473:174-180.
    23. Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med,2009,1:6-14.
    24. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature,2006,444:1027-1031.
    25. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature,2008,455:1109-1113.
    26. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell,2007,131:33-45.
    27. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology:human gut microbes associated with obesity. Nature,2006,444:1022-1023.
    28. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science,2010,328:228-231.
    29. Blaut M, Klaus S. Intestinal microbiota and obesity. Handb Exp Pharmacol,2012,209: 251-273.
    30. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature,2009,457:480-484.
    31. son DA, Frank DN, Pace NR, et al. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe,2008,3:417-427.
    32. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut,2006,55:205-211.
    33. Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U SA,2007,104:13780-13785.
    34. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A,2008,105:16731-16736.
    35. Guarner F. What is the role of the enteric commensal flora in IBD?. Inflamm Bowel Dis,2008. 14 Suppl 2:S83-84.
    36. van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol, 2011,128:948-955.
    37. Penders J, Thijs C, van den Brandt PA, et al. Gut microbiota composition and development of atopic manifestations in infancy:the KOALA Birth Cohort Study. Gut,2007,56:661-667.
    38. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol,2004,70:6459-6465.
    39. Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe,2010,16:444-453.
    40. Day CP, James OF. Steatohepatitis:a tale of two "hits"?.Gastroenterology,1998,114: 842-845.
    41. Thuy S, Ladurner R, Volynets V, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr,2008,138:1452-1455.
    42. Li L, Chen L, Hu L, et al. Nuclear factor high-mobility group boxl mediating the activation of Toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology,2011,54:1620-1630.
    43. Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology,2009,49:1877-1887.
    44. Rivera CA, Adegboyega P, van Rooijen N, et al. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol.2007, 47:571-579.
    45. Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1 beta in mice. Gastroenterology,2010,139:323-334.
    46. Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol,2008,49:.821-830.
    47. Li Z, Soloski MJ, Diehl AM. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology,2005,42:880-885.
    48. Esposito E, Iacono A, Bianco G, et al. Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J Nutr,2009,139:905-911.
    49. Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology,2003,37:343-350.
    50. Malaguarnera M, Vacante M, Antic T, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci,2012,57: 545-553.
    51. Chen Y, Yang F, Lu H, et al, Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology,2011,54:562-572.
    52. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature,2007, 449:804-810.
    53. Nelson KE, Weinstock GM, Highlander SK, et al. A catalog of reference genomes from the human microbiome. Science,2010,328:994-999.
    54. Yang X, Xie L, Li Y, et al. More than 9,000,000 unique genes in human gut bacterial community:estimating gene numbers inside a human body. PLoS one,2009.4:e6074.
    1. Eckburg PB. Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science,2005,308:1635-1638.
    2. Backhed F, Ley RE, Sonnenburg JL,et al. Host-bacterial mutualism in the human intestine.. Science,2005,307:1915-1920.
    3. Cummings, J.H., and Macfarlane, GT. Colonic microflora:nutrition and health. Nutrition,1997, 13:476-478.
    4. Palmer, C., Bik, E.M., DiGiulio, D.B., et al. Development of the human infant intestinal microbiota. PLoS Biol,2007 (5):e177.
    5. Dominguez-Bello, M.G., Costello, E.K., Contreras, M., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA,2010 (107):11971-11975.
    6. Favier, C.F., de Vos, W.M., and Akkermans, A.D.L. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe,2003(9):219-229.
    7. Penders, J., et al., Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics,2006,118(2):p.511-21.
    8. Morowitz, M.J., Denef, V.J., Costello, E.K., et al. Strainresolved community genomic analysis of gut microbial colonization in a premature infant. Proc Natl Acad Sci USA,2011 (108): 1128-1133.
    9. Zhang, H., Dibaise, J.K., Zuccolo, A., et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA.2009(106):2365-2370.
    10. Koenig, J.E., Spor, A., Scalfone, N., et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA,2011,108:4578-4585.
    11. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature,2010,464:59-65
    12. Ley RE, Peterson DA, Gordon JI, Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell,2006, Feb 24,124(4):837-48.
    13. Zoetendal, E.G., Akkermans, A.D.L., Akkermans-van Vliet, W.M., et al. The host genotype affects the bacterial community in the human gastronintestinal tract. Micro.Ecol. Health Dis., 2001 (13):129-134.
    14. Frank, D.N., Spiegelman, GB., Davis, W., et al. Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J. Clin. Microbiol.,2003(41):295-303.
    15. Ley, R.E., Backhed, F., Turnbaugh, P. Obesity alters gut microbial ecology. Proc. Natl.Acad. Sci. USA.2005 (102):11070-11075.
    16. Claesson, M.J., Cusack, S., O'Sullivan, O., E., et al.Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA,2011,108: 4586-4591.
    17. Biagi, E., Nylund, L., Candela, M., et al. Through ageing, and beyond:gut microbiota and inflammatory status in seniors and centenarians.PLoS ONE,2010,5:e10667.
    18. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature,2011,473,174-180.
    19. Ley RE, Lozupone CA, Hamady M, et al. Worlds within worlds:evolution of the vertebrate gut microbiota. Nat Rev Microbiol,2008,6:776-788.
    20. Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes. Science, 2008,320:1647-1651.
    21. Baldy-Chudzik K, Mackiewicz P, Stosik M. Phylogenetic background, virulence gene profiles, and genomic diversity in commensal Escherichia coli isolated from ten mammal species living in one zoo. Vet Microbiol,2008,131:173-184.
    22. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA,2012,107,14691-14696.
    23. Ramirez-Farias, C. et al. Effect of inulin on the human gut microbiota:stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr.,2009,101,541-550.
    24. Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia,2007,50,2374-2383.
    25. Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J.,2010,5,220-230.
    26. Robertson, M. D., Bickerton, A. S., Dennis, A. L., Vidal, H.& Frayn, K. N. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am. J. Clin. Nutr.,2005,82,559-567.
    27. Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology,2009,137,1716-1724.
    28. Turnbaugh, P. J., Backhed, F., Fulton, L.& Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe,2008, 3,213-223.
    29. Smith K, McCoy KD, Macpherson AJ.Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol,2007,19:59-69.
    30. Wostmann BS.The germfree animal in nutritional studies. Annu Rev Nutr,1981,1:257-279.
    31. O'HaraAM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep,2006,7:688-693.
    32. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol,2009,9:313-323.
    33.-Macpherson AJ, UhrT:Induction of protective IgA by intestinal dendritic cells carrying 'commensal bacteria. Science 2004,303:1624-1625.
    34. Johansen FE, Pekna M, Norderhaug IN, et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 1999,190:915-922.
    35. Fagarasan S, Muramatsu M, Suzuki K, et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science,2002,298:1424-1427.
    36. Suzuki K, Meek B, Doi Y, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA,2004,101:1981-1986.
    37. Obata T, Goto Y, Kunisawa J, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci USA,2010,107:7419-7424.
    38. Talham GL, Jiang HQ, Bos NA, Cebra JJ:Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 1999, 67:1992-2000.
    39. Umesaki Y, Setoyama H:Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. Microbes Infect,2000,2:1343-1351.
    40. Macpherson AJ, Gatto D, Sainsbury E, Harriman GR,Hengartner H, Zinkernagel RM:A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science,2000,288:2222-2226.
    41. Peterson DA, McNulty NP, Guruge JL, Gordon JI:IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe,2007,2:328-339.
    42. Hooper LV, Macpherson AJ:Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol,2010,10:159-169.
    43. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science,2010; 328:228-231.
    44. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell,2007; 131:33-35.
    45. Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol,2010, 135:1-11.
    46. Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota:a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol,2007, 19:70-83.
    47. Meyer-Hoffert U, Hornef MW, Henriques-Normark B, et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 2008; 57:764-771
    48. Salzman NH, Hung K, Haribhai D, et al.Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol,2010,11:76-83.
    49. Ouellette AJ, Bevins CL. Paneth cell defensins and innate immunity of the small bowel. Inflamm Bowel Dis,2001,7:43-50.
    50. Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal alphadefensin activation by the metalloproteinase matrilysin in innate host defense.Science,1999,286:113-117.
    51. Salzman NH, Ghosh D, Huttner KM, et al. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature,2003,422:522-526.
    52. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th 17 cells by segmented filamentous bacteria. Cell,2009,139:485-498.
    53. Karlsson FH, Nookaew I, Petranovic D, et al. Prospects for systems biology and modeling of the gut microbiome. Trends Biotechnol,2011,29:251-258.
    54. Nakamura N, Lin HC, McSweeney CS, et al. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu Rev Food Sci Technol,2010, 1:363-395.
    55. Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev,1990,70:567-590.
    56. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function:roles of resistant starch and nonstarch polysaccharides. Physiol Rev,2001,81:1031-1064.
    57. Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab.,2011,13,517-526.
    58. Backhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA,2007,104:979-984.
    59. Thibault R, Blachier F, Darcy-Vrillon B, et al. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases:a transport deficiency. Inflamm Bowel Dis.,2010,16:684-695.
    60. Thibault R, De Coppet P, Daly K, et al. Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation. Gastroenterology,2007, 133:1916-1927.
    61. Hamer HM, Jonkers D, Venema K, et al. Review article:the role of butyrate on colonic function. Aliment Pharmacol Ther,2008,27,104-119.
    62. Le Poul E, Loison C, Struyf Si et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem,2003, 278:25481-25489.
    63. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem, 2003,278:11312-11319.
    64. Xiong Y, Miyamoto N, Shibata K, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA,2004, 101:1045-1050.
    65. Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA,2008,105:16767-16772.
    66. Maslowski KM, Vieira-AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature,2009,461:1282-1286.
    67. Sina C, Gavrilova O, Forster M, et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol,2009,183:7514-7522.
    68. Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes,2012,61:364-371.
    69. Wolever TM, Spadafora P, Eshuis H. Interaction between colonic acetate and propionate in humans. Am J Clin Nutr,1991,53:681-687.
    70. Wolever TM, Brighenti F, Royall D, et al. Effect of rectal infusion of short chain fatty acids in human subjects. Am J Gastroenterol,1989,84:1027-1033.
    71. Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res.,2010,51,1101-1112.
    72. Backhed, F., Manchester, J. K., Semenkovich, C. F.& Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA,2007,104, 979-984.
    73. Martin, F.P., et al., A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol,200,3:p.112.
    74. Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA,2010,108,4523-4530.
    75. Gustafsson, B. E., Bergstrom, S., Lindstedt, S.& Norman, A. Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid-24-14C; bile acids and steroids 41. Proc. Soc. Exp. Biol. Med.,1957,94,467-471.
    76. Prawitt, J. et al. Famesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes,2011,60,1861-1871.
    77. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab., 2009,10,167-177.
    78. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature,2006,439,484-489.
    79. Sato H, Genet C, Strehle A,et al, Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun.,2007,362(4):793-798.
    80. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature,2012,482,179-185.
    81. Spencer, M. D. et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology,2011,140, 976-986.
    82. Dumas, M. E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA,2006,103,12511-12516.
    83. Abrams GD, Bauer H, Sprinz H:Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab Invest 1963,12:355-364.
    84. Pull SL, Doherty JM, Mills JC, et al. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA,2005,102:99-104.
    85. Abreu MT:Toll-like receptor signalling in the intestinal epithelium:how bacterial recognition shapes intestinal function. Nat Rev Immunol,2010,10:131-144.
    86. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell,2004,118:229-241.
    87. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI:Molecular analysis of commensal host-microbial relationships in the intestine. Science,2001,291:881-884.
    88. Cario E, Gerken G, Podolsky DK:Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology,2004,127:224-238.
    89. Gibson DL, Ma C, Rosenberger CM, et al,Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell Microbiol,2008, 10:388-403.
    90. Bouskra D, Brezillon C, Berard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature,2008,456:507-510.
    91. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity,2010, 18,190-195.
    92. Creely, S. J. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab.,2007,292, E740-E747.
    93. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes,2007, 56,1761-1772.
    94. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn's disease patients. Proc Natl Acad SciUSA,2008; 105:16731-16736.
    95. Ye J, Lee JW, Presley LL, et al. Bacteria and bacterial rRNA genes associated with the development of colitis in IL-10(/) mice. Inflamm Bowel Dis,2008,14:1041-1050.
    96. Wohlgemuth S, Haller D, Blaut M, Loh G Reduced microbial diversity and high numbers of one single Escherichia coli strain in the intestine of colitic mice. Environ Microbiol,2009, 11:1562-1571
    97. Takaishi H, Matsuki T, Nakazawa A, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol 2008; 298:463-472.
    98. Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2bD phylogenetic group in inflammatory bowel disease. Gut,2007, 56:669-675.
    99. Nishikawa J, Kudo T, Sakata S, et al. Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis. Scand J Gastroenterol,2009,44:180-186.
    100. Andoh A, Tsujikawa T, Sasaki M, et al. Fecal microbiota profile of Crohn's disease determined by terminal restriction fragment length polymorphism (T-RFLP) analysis. Aliment Pharmacol Ther,2009,29:75-82.
    1. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature,2006,444:1027-1031.
    2. Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature,2010,464:U59-U70.
    3. Clemente JC, Ursell LK, Parfrey LW, K et al. The impact of the gut microbiota on human health:an integrative view. Cell,2012,148:1258-1270.
    4. Fraher MH, O'Toole PW, Quigley EMM. Techniques used to characterise the intestinal microbiota:a guide for the clinician. Nat Rev Gastroenterol,2012,9:312-322.
    5. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol,2007,5:1556-1573.
    6. Claesson MJ, Cusack S, O'Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. PNAS,2011,108:4586-4591.
    7. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature,2012,488:178-184.
    8. Marques TM, Wall R, Ross RP, et al. Programming infant gut microbiota:influence of dietary and environmental factors. Curr Opin Biotechnol,2010,21:149-156.
    9. Fouhy F, Ross RP, Fitzgerald GF, et al. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 2012;3:203-220. [11] Backhed F. Programming of host metabolism by the gut microbiota. Ann Nutr Metab 2011;58:44-52
    10. Hoefert B. U ber die baktenenbefunde im duodenalsaft von gesunden und kranken. Zschr Klin Med,1921,92:221-235.
    11. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science,2005,308:1635-1638.
    12. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. PNAS,2011,108:4578-4585.
    13. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature, 2011,473:174-180.
    14. Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol,2009,9:123.
    15. O'Toole PW, Claesson MJ. Gut microbiota:changes throughout the lifespan from infancy to elderly. Int Dairy J,2010,20:281-291.
    16. Kosloske AM. Pathogenesis and prevention of necrotizing enterocolitis- a hypothesis based on personal observation and a review of the literature. Pediatrics,1984,74:1086-1092.
    17. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology-human gut microbes associated with obesity. Nature,2006,444:1022-1023.
    18. Kassinen A, Krogius-Kurikka L, Makivuokko H, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology,2007, 133:24-33.
    19. Peterson DA, Frank DN, Pace NR, et al. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe,2008,3:417-427.
    20. Flint HJ, O'Toole PW, Walker AW. Special issue:the human intestinal microbiota. Microbiology,2010,156:3203-3204.
    21. Jeffery IB, Quigley EM, Ohman L, et al. The microbiota link to Irritable Bowel Syndrome:an emerging story. Gut Microbes,2012:3, [Epub ahead of print].
    22. Shanahan F. The gut microbiota in 2011:translating the microbiota to medicine. Nat Rev Gastroenterol Hepatol,2011,9:72-74.
    23. Phillips GB, Schwartz R, Gabuzda Jr GJ, et al. The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N Engl J Med,1952, 247:239-246.
    24. Martini GA, Phear EA, Ruebner B, et al. The bacterial content of the small intestine in normal and cirrhotic subjects:relation to methionine toxicity. Clin Sci,1957,16:35-51.
    25. Phear EA, Ruebner B, Sherlock S, et al. Methionine toxicity in liver disease and its prevention by chlortetracycline. Clin Sci,1956,15:93-117.
    26. Szabo G, Bala S, Petrasek J, et al. Gut-liver axis and sensing microbes. Dig Dis.,2010,28: 737-744.
    27. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol,2010,7:691-701.
    28. Quigley EMM, Marsh MN, Shaffer JL, et al. Hepatobiliary complications of total parenteral nutrition. Gastroenterology,1993,104:286-301.
    29. Terjung B, Spengler U. Atypical p-ANCA in PSC and AIH:a hint toward a"leaky gut"? Clin Rev Allergy Immunol 2009;36:40-51.
    30. Nieuwenhuijs VB, Verheem A, van Duijvenbode-Beumer H, et al. The role of interdigestive small bowel motility in the regulation of gut microflora, bacterial overgrowth, and bacterial translocation in rats. Ann Surg,1998,228:188-193.
    31. Husebye E. Gastrointestinal motility disorders and bacterial overgrowth. J Intern Med,1995, 237:419-427.
    32. Yang CY, Chang CS, Chen GH. Small-intestinal bacterial overgrowth in patients with liver cirrhosis, diagnosed with glucose H2 or CH4 breath tests. Scand J Gastroenterol,1998, 33:867-871.
    33. Abu Shanab A, Scully P, Crosbie O, et al. Small intestinal bacterial overgrowth in non-alcoholic steato-hepatitis; association with toll-like receptor 4 expression and plasma levels of interleukin 8. Dig Dis Sci,2011,56:1524-1534.
    34. Gupta A, Dhiman RK, Kumari S, et al Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy. J Hepatol, 2010,53:849-855.
    35. Quigley EMM. The liver and gastrointestinal disease. In:Schiff ER, Sorrell MF, Maddrey WC, editors. Schiff's diseases of the liver. Philadelphia:Lippincott Raven; 2002.
    36. Quigley EMM. Gastrointestinal dysfunction in liver disease-gut-liver interactions revisited. Dig Dis Sci,1996,41:557-561.
    37. Teltschik Z, Wiest R, Beisner J, et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology,2012, 55:1154-1163.
    38. Purohit V, Bode JC, Bode C, et al. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences:summary of a symposium. Alcohol,2008,42: 349-361.
    39. Terjung B, Sohne J, Lechtenberg B, et al. P-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut,2010,59: 808-816.
    40. Thalheimer U, Triantos CK, Samonakis DN, et al. Infection, coagulation and variceal bleeding in cirrhosis. Gut,2005,54:556-563.
    41. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem, 2003,72:137-174.
    42. Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol,1995, 3:149-154.
    43. Inagaki T, Moschetta A, Lee YK et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA,2006,103,3920-3925.
    44. Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology,2011,54:562-572.
    45. Bajaj JS, Ridlon JM, Hylemon PB, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol,2012,302:G168-G175.
    46. Lu H, Wu Z, Xu W, et al. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol,2011, 61:693-703.
    47. Xu M, Wang B, Fu Y, et al. Changes of fecal Bifidobacterial species in adult patients with hepatitis B-Virus-induced chronic liver diseases. Microb Ecol,2012,63:304-313.
    48. Younossi ZM, Diehl AM, Ong JP. Nonalcoholic fatty liver disease:an agenda for clinical research. Hepatology,2002,35,746-752.
    49. Younossi ZM, Stepanova M, Afendy M e t al. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol,2011,9:524-30 el.
    50. Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science,2005,307:1915-1920.
    51. Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. PNAS,2005, 102:11070-11075.
    52. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subject. Obesity,2010,18:190-195.
    53. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. PNAS,2004,101:15718-15723.
    54. Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. PNAS,2006,103:12511-12516.
    55. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature,2011,472:57-63.
    56. Rak K, Rader DJ. Cardiovascular disease:the diet-microbe morbid union. Nature,2011, 472:40-41.
    57. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature,2012,482:179-185.
    58. Li Z, Yang S, Lin H et al. Probiotics and antibodies to TNF inhibit infl ammatory activity and improve nonalcoholic fatty liver disease. Hepatology,2003,37:343-350.
    59. Kirsch R, Clarkson V, Verdonk RC e t al. Rodent nutritional model of steatohepatitis:eff ects of endotoxin (lipopolysaccharide) and tumor necrosis factor alpha defi ciency. J Gastroenterol Hepatol,2006,21,174-182.
    60. Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Th er,1983,225,320-324.
    61. Basile AS, Jones EA. Ammonia and GABA-ergic neurotransmission:interrelated factors in the pathogenesis of hepatic encephalopathy. Hepatology,1997,25:1303-1305.
    62. Guarner C, Soriano G. Spontaneous bacterial peritonitis. Semin Liver Dis,1997:17:203-217.
    63. Campillo B, Pernet P, Bories PN et al. Intestinal permeability in liver cirrhosis:relationship with severe septic complications. Eur J Gastroenterol Hepatol,1999,11:755-759.
    64. Th alheimer U, Triantos CK, Samonakis DN et al. Infection, coagulation, and variceal bleeding in cirrhosis. Gut,2005,54:556-563.
    65. Husova L, Lata J, Husa P et al. Bacterial infection and acute bleeding from upper gastrointestinal tract in patients with liver cirrhosis. Hepatogastroenterology,2005,52, 1488-1490.
    66. Williams R. Review article:bacterial fl ora and pathogenesis in hepatic encephalopathy. Aliment Pharmacol Th er,2007,25 (Suppl 1):17-22.
    67. Bajaj JS, Gillevet PM, Patel NR, Ahluwalia V et al. A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy. Metab Brain Dis 2012; 27:205-15.
    68. Schaffert CS, Duryee MJ, Hunter CD, et al. Alcohol metabolites and lipopolysaccharide:roles in the development and/or progression of alcoholic liver disease. World J Gastroenterol, 2009,15:1209-1218.
    69. Almeida J, Galhenage S, Yu J, et al. Gut flora and bacterial translocation in chronic liver disease. World J Gastroenterol,2006,12:1493-1502.
    70. Cohen MJ, Sahar T, Benenson S, et al. Antibiotic prophylaxis for spontaneous bacterial peritonitis in cirrhotic patients with ascites, without gastro-intestinal bleeding. Cochrane Database Syst Rev,2009,2:CD004791.
    71. Chavez-Tapia NC, Barrientos-Gutierrez T, Tellez-Avila FI, et al. Antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding. Cochrane Database Syst Rev,2010,9: CD002907.
    72. Rasaratnam B, Connelly N, Chin-Dusting J. Nitric oxide and the hyperdynamic circulation in cirrhosis:is there a role for selective intestinal decontamination? Clin Sci,2004,107:425-434.
    73. Bass NM, Mullen KD, Sanyal A, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med,2010,362:1071-1081.
    74. Sidhu SS, Goyal O, Mishra BP, et al. Rifaximin improves psychometric performance and health-related quality of life in patients with minimal hepatic encephalopathy (the RIME Trial). Am J Gastroenterol,2011,106:307-316.
    75. Carter BA, Karpen SJ. Intestinal failure-associated liver disease:management and treatment strategies past, present, and future. Semin Liver Dis,2007,27:251-258.
    76. Barclay AR, Beattie LM, Weaver LT, et al. Systematic review:medical and nutritional interventions for the management of intestinal failure and its resultant complications in children. Aliment Pharmacol Ther,2011,33:175-184.
    77. Lata J, Jurankova J, Kopacova M, et al. Probiotics in hepatology. World J Gastroenterol,2011, 17:2890-2896.
    78. Gratz SW, Mykkanen H, El-Nezami HS. Probiotics and gut health:a special focus on liver diseases. World J Gastroenterol,2010,16:403-410.
    79. Zhao HY, Wang HJ, Lu Z, et al. Intestinal microflora in patients with liver cirrhosis. Chin J Dig Dis,2004,5:64-67.
    80. Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol,2008,49:821-830.
    81. Velayudham A, Dolganiuc A, Ellis M, et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology,2009,49:989-997.
    82. Xu RY, Wan YP, Fang QY, et al. Supplementation with probiotics modifies gut flora and attenuates liver fat accumulation in rat nonalcoholic fatty liver disease model. J Clin Biochem Nutr,2012,50:72-77.
    83. Wall R, Ross RP, Shanahan F, et al. Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr,2009, 89:1393-1401.
    84. Wall R, Marques TM, O'Sullivan O, et al. Contrasting effects of Bifidobacterium breve DPC 6330 and Bifidobacterium breve NCIMB 702258 on fatty acid metabolism and gut microbiota composition. Am J Clin Nutr,2012,95:1278-1287.
    85. Nagao K, Inoue N, Wang YM, et al. Dietary conjugated linoleic acid alleviates nonalcoholic fatty liver disease in Zucker (fa/fa) rats. J Nutr,2005,135:9-13.
    86. Ewaschuk JB, Walter JW, Diaz H, et al. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr,2006,136:1483-1487.
    87. Cani PD, Possemiers S, Van den Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut,2009,58:1091-1103.
    88. [94] Parnell JA, Raman M, Rioux KP, et al. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int 2012;32:701-711.
    89. Lirussi F, Mastropasqua E, Orando S, et al. Probiotics for non-alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database Syst Rev,2007, 1:CD005165.
    90. Aller R, De Luis DA, Izaola O, et al. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients:a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci,2011,15:1090-1095.
    91. Vajro P, Mandato C, Licenziati MR, et al. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr,2011,52:740-743.
    92. Forsyth CB, Farhadi A, Jakate SM, et al. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol,2009,43:163-172.
    93. Wang Y, Liu Y, Sidhu A, et al. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol,2012,303:G32-G41.
    94. Wang Y, Kirpich I, Liu Y, et al. Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. Am J Pathol,2011,179:2866-2875.
    95. Kirpich IA, Solovieva NV, Leikhter SN, et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury:a pilot study. Alcohol,2008,42:675-682.
    96. Wiest R, Chen F, Cadelina G, et al. Effect of Lactobacillus-fermented diets on bacterial translocation and intestinal flora in experimental prehepatic portal hypertension. Dig Dis Sci, 2003,48:1136-1141.
    97. Adawi D, Kasravi FB, Molin G, et al. Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat. Hepatology,1997,25:642-647.
    98. Jia L, Zhang MH. Comparison of probiotics and lactulose in the treatment of minimal hepatic encephalopathy in rats. World J Gastroenterol,2005,11:908-911.
    99. [105] Shawcross D, Jalan R. Dispelling myths in the treatment of hepatic encephalopathy. Lancet 2005;365:431-3.
    100. Sharma BC, Sharma P, Agrawal A et al. Secondary prophylaxis of hepatic encephalopathy:an open-label randomized controlled trial of lactulose versus placebo. Gastroenterology,2009, 137:885-91,891 el.
    101.Flamm SL. Rifaximin treatment for reduction of risk of overt hepatic encephalopathy recurrence. Th erap Adv Gastroenterol,2011,4:199-206.
    102. Bajaj JS, Sanyal AJ, Bell D et al. Predictors of the recurrence of hepatic encephalopathy in lactulose-treated patients. Aliment Pharmacol Th er,2010,31:1012-1017.
    103. Rishi P, Bharrhan S, Singh G, et al. Effect of Lactobacillus plantarum and Larginine against endotoxin-induced liver injury in a rat model. Life Sci,2011,89:847-853.
    104. Sharma S, Chaturvedi J, Chaudhari BP, et al. Probiotic Enterococcus lactis IITRHR1 protects against acetaminophen-induced hepatotoxicity. Nutrition,2012,28:173-181.
    105. Li YT, Wang L, Chen Y, et al. Effects of gut microflora on hepatic damage after acute liver injury in rats. J Trauma,2010,68:76-83.
    106. Ewaschuk J, Endersby R, Thiel D, et al. Probiotic bacteria prevent hepatic damage and maintain colonic barrier function in a mouse model of sepsis. Hepatology,2007,46:841-850.
    107. Osman N, Adawi D, Ahrne S, et al. Endotoxin- and Dgalactosamine-induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry. Dig Liver Dis, 2007,39:849-856.
    108. Wu J, Wang X, Cai W, et al. Bifidobacterium adolescentis supplementation ameliorates parenteral nutrition-induced liver injury in infant rabbits. Dig Dis Sci,2010,55:2814-2820.
    109. Pereg D, Kotliroff A, Gadoth N, et al. Probiotics for patients with compensated liver cirrhosis:a double-blind placebo-controlled study. Nutrition,2011,27:177-181.
    110. Vleggaar FP, Monkelbaan JF, van Erpecum KJ. Probiotics in primary sclerosing cholangitis:a randomized placebo-controlled crossover pilot study. Eur J Gastroenterol Hepatol,2008, 20:688-692.
    111. El-Nezami HS, Polychronaki NN, Ma J, et al. Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. Am J Clin Nutr,2006, 83:1199-1203.
    112. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science, 2012,336:1262-1267.
    113. Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis:crosstalk between the liver and gut. J Physiol,2012;590 (Pt 3):447-458.
    1. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature,2010,464:59-65.
    2. Human Microbiome Project Consortium. Strueture,function and diversity of the healthy human microbiome. Nature,2012,486:207-214.
    3. Yang X,Xie L,Li Y,et al. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS one,2009,4:e6074.
    4. Hayashi H, Sakamoto M, Benno Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol, 2002,46:535-548.
    5. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science,2005,308:1635-1638.
    6. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR:Molecular ecological analysis of the gastrointestinal microbiota:a review. J. Nutr.,2004,134,465-472.
    7. Bik EM, Eckburg PB, Gill SR et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA.,2006,103,732-737.
    8. Cummings, J.H., and Macfarlane, GT. Colonic microflora:nutrition and health. Nutrition,1997, 13:476-478.
    9. Kurokawa K,Itoh T,Kuwahara T,et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res,2007,14:169-181.
    10. Turnbaugh PJ,Ridaura VK,Faith JJ,et al. The effect of diet on the human gut microbiome:a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med,2009,1:6-14.
    11. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature,2006,444:1027-1031.
    12. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature,2008,455:1109-1113.
    13. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell,2007,131:33-45.
    14. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science,2010,328:228-231.
    15. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature,2009,457:480-484.
    16. Guarner F. What is the role of the enteric commensal flora in IBD?. Inflamm Bowel Dis,2008, 14 Suppl 2:S83-84.
    17. van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol, 2011,128:948-955.
    18. Finegold SM. Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe,2010,16:444-453.
    19. Li L, Chen L, Hu L, et al. Nuclear factor high-mobility group boxl mediating the activation of Toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology,2011,54:1620-1630.
    20. Kelly S, Yeo J, Robertson GM, Chapman B, Wells JE, Frizelle FA". Functional assessment of bacterial colonization in patients with ileal pouch-anal anastomosis and Brooke ileostomy. Dis. Colon Rectum,2004,47,1386-1389.
    21. Neut C, Bulois P, Desreumaux P et al.:Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn's disease. Am. J. Gastroenterol,2002,97,939-946.
    22. Santavirta J, Mattila J, Kokki M, Matikainen M:Mucosal morphology and fecal bacteriology after ileoanal anastomosis. Int. J. Colorectal Dis.,1991,6,38-41.
    23. Lane DJ, Pace B, Olsen GJ, et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA,1985,82:6955-6959.
    24. Zoetendal E. G, Akkermans A. D. L., Akkermans-van Vliet W. M. et al. The Host Genotype Affects the Bacterial Community in the Human Gastronintestinal Tractgastrointestinal tract, Microbial Ecology in Health and Disease,2001,13:129-134.
    25. Bruls T,Weissenbach J. The human metagenome:our other genome?.Hum Mol Genet,2011, 20:R142-148.
    26. Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science,2005,307:1915-1920.
    27. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science,2006,312:1355-1359.
    28. Possemiers S, Bolca S, Verstraete W, et al. The intestinal microbiome:a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia, 2011,82:53-66.
    29. Arumugam M,Raes J,Pelletier E,et al. Enterotypes of the human gut microbiome. Nature,2011, 473:174-180.
    30. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD:Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut,1988,29,1035-1041.
    31. Nugent SG, Kumar D, Rampton DS, Evans DF:Intestinal luminal pH in inflammatory bowel disease:possible determinants and implications for therapy with aminosalicylates and other drugs. Gut,2001,48,571-577.
    32. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K:Culture-independent analysis of gut bacteria:the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol.,2002,68,673-690.
    33. Saif LJ, Ward LA, Yuan L, Rosen BI, To TL:The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses. Arch. Virol. Suppl.,1996, 12,153-161.
    34. Marteau P, Pochart P, Dore J, Bera-Maillet C, Bemalier A, Corthier G:Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol.,2001, 67,4939-4942.
    35. Misra SP, Dwivedi M, Misra V:Ileoscopy in 39 hematochezia patients with normal colonoscopy. World J. Gastroenterol.,2006,12,3101-3104.
    36. Lepage P, Seksik P, Sutren M et al.:Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm. Bowel Dis.,2005,11,473-480.
    37. Seksik P, Lepage P, de la Cochetiere MF et al.:Search for localized dysbiosis in Crohn's disease ulcerations by temporal temperature gradient gel electrophoresis of 16S rRNA. J. Clin. Microbiol.,2005,43,4654-^658.
    38. Wang X, Heazlewood SP, Krause DO, Florin TH:Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J. Appl. icrobiol.,2003,95,508-520.
    39. Wang M, Ahrne S, Jeppsson B, Molin G:Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol., 2005,54,219-231.
    40. Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y:Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol.,2005,54,1093-1101.
    41. Mukhopadhya, I., et al., IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol, 2012.9(4):p.219-230.
    42. Turroni, F., et al., Human gut microbiota and bifidobacteria:from composition to functionality. Antonie Van Leeuwenhoek,2008,94(1):p.35-50.
    43. Louis, P., et al., Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol,2010,12(2):p.304-314.
    44. Barcenilla, A., et al., Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol,2000,66(4):p.1654-1661.
    45. Louis, P. and H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett,2009,294(1):p.1-8.
    46. Duncan, S.H., P. Louis, and H.J. Flint, Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol,2004,70(10):p. 5810-5817.
    47. Mazmanian, S.K., Capsular polysaccharides of symbiotic bacteria modulate immune responses during experimental colitis! J Pediatr Gastroenterol Nutr,2008,46 Suppl 1:p. E11-12.
    48. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol,2010,7:691-701.
    49. Szabo G, Bala S, Petrasek J, et al. Gut-liver axis and sensing microbes. Dig Dis.,2010,28: 737-744.
    50. Basile AS, Jones EA. Ammonia and GABA-ergic neurotransmission:interrelated factors in the pathogenesis of hepatic encephalopathy. Hepatology,1997,25:1303-1305.
    51. Th alheimer U, Triantos CK, Samonakis DN et al. Infection, coagulation,and variceal bleeding in cirrhosis. Gut,2005,54:556-563.
    52. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. PNAS,2004,101:15718-15723.
    53. Kirsch R, Clarkson V, Verdonk RC e t al. Rodent nutritional model of steatohepatitis:effects of endotoxin (lipopolysaccharide) and tumor necrosis factor alpha deficiency. J Gastroenterol Hepatol,2006,21:174-182.
    54. Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Th er,1983,225:320-324.
    55. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature,2012,482:179-185.
    56. Guarner C, Soriano G. Spontaneous bacterial peritonitis. Semin Liver Dis,1997,17:203-217.
    57. Campillo B, Pernet P, Bories PN et al. Intestinal permeability in liver cirrhosis:relationship with severe septic complications. Eur J Gastroenterol Hepatol,1999,11:755-759.
    58. Husova L, Lata J, Husa P et al. Bacterial infection and acute bleeding from upper gastrointestinal tract in patients with liver cirrhosis. Hepatogastroenterology,2005,52: 1488-1490.
    59. Chen Y, Yang F, Lu H et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology,2011; 54:562-572.
    60. Bajaj JS, Ridlon JM, Hylemon PB et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol,2012,302:G168-175.
    61. Y.R. Xie, S.L. Liu, X Liu, et al. Intestinal Microbiota and Innate Immunity-Related Gene Alteration in Cirrhotic Rats with Liver Transplantation, Transplant Proc.,2011, 43(10):3973-3979.
    62. Nieuwenhuijs VB, Verheem A, van Duijvenbode-Beumer H, et al. The role of interdigestive small bowel motility in the regulation of gut microflora, bacterial overgrowth, and bacterial translocation in rats. Ann Surg,1998,228:188-193.
    63. Yang CY, Chang CS, Chen GH. Small-intestinal bacterial overgrowth in patients with liver cirrhosis, diagnosed with glucose H2 or CH4 breath tests. Scand J Gastroenterol,1998, 33:867-871.
    64. Bosch J, Garcia-Pagan JC. Complications of cirrhosis. I. Portal hypertension. J Hepatol,2000, 32[1 Suppl]:141-156.
    65. Teltschik Z, Wiest R, Beisner J, et al. Intestinal bacterial translocatron in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology,2012, 55:1154-1163.
    66.魏晓、王雪松、邵长林,等,乙肝肝硬化患者肠道微生物宏基因组学的研究,军事医学,2011,35(7):489-493。
    67. Wexler, H. M. (2007). Bacteroides:the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20,593-621.
    68. Brook, I. (2010). The role of anaerobic bacteria in bacteremia. Anaerobe 16,183-189.
    69. Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., and Gordon, J. I. (2009). The effect of diet on the human gut microbiome:a metagen-omic analysis in humanized gnotobi-otic mice. Sci. Transl. Med.1,6ra14.
    70. Flint, H.J., et al., Interactions and competition within the microbial community of the human colon:links between diet and health. Environ Microbiol,2007.9(5):p.1101-1111.
    71. Louis, P. and H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett,2009.294(1):p.1-8.
    72. Duncan, S.H., P. Louis, and H.J. Flint, Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol,2004.70(10):p. 5810-5817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700