谷氨酰胺对烟雾吸入性肺损伤的保护效应及机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     大面积烧伤后,机体免疫功能下降,对微生物的易感性明显增加,呼吸道成为全身感染的重要途径,尤其针对于烧伤合并吸入性损伤的患者。吸入性损伤是热力和(或)烟雾所致的呼吸道及肺实质的疾病,发病率和死亡率都很高。多发生于大面积烧伤,尤其是伴有头面部烧伤的患者。吸入性损伤是烧伤的主要死亡原因之一,以往的资料显示,吸入性损伤患者病死率一般在50%-60%,重度吸入性损伤的死亡率可高达90%。重度吸入性损伤可引起严重的急性肺损伤进而诱发急性呼吸窘迫综合征(ARDS)。尽管采用了新的通气技术和其他治疗措施,ARDS的死亡率仍高达40%-60%。因此,如何防止吸入性损伤患者的肺损伤的发生和发展引起了人们的高度重视,对于降低烧伤患者的死亡率尤为关键。吸入性肺损伤导致的急性肺损伤(acute lung injury, ALI)是一种失控的炎症反应,以肺血管内皮细胞及肺泡上皮细胞广泛损伤为特征,同时伴有肺出血、水肿和过度的炎症细胞浸润等特点。近年来的研究显示热休克蛋白(heat shock protein, HSP)对损伤或应激状态下机体具有保护作用,对急性肺损伤有一定的保护作用,可以减轻因氧化应激、炎症和缺血再灌注对肺的损伤,诱导或增强机体HSP的表达可能成为临床预防和治疗ALI/ARDS的新策略。
     谷氨酰胺(Glutamine,GLN)是人体的条件必需氨基酸,也是人体内最丰富的游离氨基酸。在脓毒症和创伤等应激状态时,肠粘膜细胞以及快速增殖细胞(如免疫细胞),对谷氨酰胺的需求大大增加,而肺在短时间内释放出大量的谷氨酰胺。此后低浓度的谷氨酰胺,有可能导致肺的免疫功能失调和ARDS的发生。补充谷氨酰胺可以提高生存率、增强免疫功能、减少细菌感染、增强肠道屏障功能和防止肠道粘膜萎缩。最近研究显示用盲肠结扎手段造小鼠脓毒症模型后给予谷氨酰胺治疗,可明显降低TNF-α和IL-6的表达。研究显示静脉注射谷氨酰胺可使脓毒症大鼠的肺组织高度表达HSP70,起到抗内毒素休克的作用,降低了动物的死亡率。因此,谷氨酰胺可通过增强HSP70的表达多种类型的细胞损伤起到保护的作用。本研究通过建立大鼠烟雾吸入性损伤模型,同时给予谷氨酰胺来研究谷氨酰胺对大鼠烟雾吸入性肺损伤的保护效应及其机制。本研究分为三个部分。
     第一部分烟雾吸入性损伤模型的建立
     目的:烟雾吸入性损伤是严重烧伤患者引起急性呼吸衰竭的主要原因,在过去几年里烟雾吸入性损伤的治疗进展有限,为了进一步研究其发病机制,需要建立一种稳定、实用的烟雾吸入性损伤动物模型。
     方法:将36只SD大鼠随机分为3组:每组12只,烟雾致伤时间分别是9min、12min、15min,随后观察7d生存率情况。每12h观察1次,并详细记录大鼠的死亡时间。将54只SD大鼠随机为2组:正常组(暴露在空气中,6只),对照组(烟雾致伤9min,48只),对照组设8个时间点,分别为伤后2h、4h、6h、24h、48h、96h、7d、及28d,每个时间点6只。测定血气分析、炎症因子、支气管肺泡灌洗液蛋白浓度及肺W/D比值。致伤后24h、96h、7d和28d后肺组织病理改变。致伤后7d及28d Masson染色。
     结果:建立烟雾吸入性损伤模型,吸入浓烟造成缺氧和CO中毒。在我们的动物模型中发现肺组织明显的炎症反应,肺微血管通透性增强及中性粒细胞积聚。致伤24h后,HE染色显示:可见明显的肺水肿、弥漫性出血、肺泡间隔增宽和大量炎性细胞浸润,随着时间的延长,肺组织出现肺泡破裂,肺泡隔增厚,进一步损伤到肺实质。特别是致伤28d后肺组织胶原沉积,肺纤维化形成。
     结论:大鼠烟雾吸入性损伤模型是一种稳定、实用、重复性好的动物模型,可用于急性和慢性肺损伤的实验。第二部分谷氨酰胺对烟雾吸入性肺损伤的保护效应研究
     目的:烟雾吸入性损伤是与烧伤患者死亡率相关的一个重要原因。谷氨酰胺在危重患者和损伤中被认为是一种条件必需氨基酸,然而谷氨酰胺是否会对烟雾吸入性损伤起到保护作用仍然未知,本实验目的是探讨谷氨酰胺在烟雾吸入性肺损伤中的保护效应。
     方法:54只大鼠随机分为以下3组(每组18只):(1)正常组(吸入空气);(2)对照组(烟雾吸入性损伤+生理盐水);(3)实验组(烟雾吸入性损伤+谷氨酰胺)。将对照组和实验组的大鼠烟雾吸入造成吸入性肺损伤,实验组伤后30min经尾静脉注射谷氨酰胺溶液(750mg/kg),而对照组注射等体积的生理盐水。在伤后24h,3组各取6只大鼠,均过量麻醉(腹腔注射100mg/kg体重的戊巴比妥钠)后断头处死,取肺组织用于组织学及丙二醛(MDA)、超氧化物歧化酶(SOD)、TNF-α、IL-1β和IL-8的检测。每组剩余的12只大鼠用做生存率实验,观察周期为伤后4d,每12h观察1次,并详细记录大鼠的死亡时间。
     结果:实验组大鼠生存率明显高于对照组(P<0.05);烟雾吸入性损伤后大鼠肺组织MDA含量上升,而实验组肺组织MDA含量明显下降(P<0.01);烟雾吸入性损伤后大鼠肺组织SOD活力下降,而实验组肺组织SOD活力明显上升(P<0.01);同时,烟雾吸入性损伤后大鼠肺组织内TNF-α、IL-1β和IL-8含量分别上升,而实验组明显下降(P<0.01);病理结果显示:谷氨酰胺减轻了烟雾吸入引起的肺水肿,弥漫性出血和炎性细胞浸润。
     结论:谷氨酰胺可以明显减轻烟雾吸入导致的急性肺损伤,改善烟雾吸入性损伤的症状,改善肺的氧合功能,提高了大鼠的生存率,减轻了病理改变,防止肺水肿的发生,同时减轻了肺脏的氧化应激损伤和肺的急性炎症反应。证实了谷氨酰胺对烟雾吸入性肺损伤具有保护效应。
     第三部分谷氨酰胺对烟雾吸入性肺损伤保护效应的机制研究
     目的:探讨谷氨酰胺对烟雾吸入性肺损伤保护效应的可能机制。
     方法:54只大鼠随机分为以下3组(每组18只):(1)正常组(空气吸入,S组);(2)对照组(烟雾吸入性损伤+生理盐水,C组),(3)实验组(烟雾吸入性损伤+谷氨酰胺,G组)。烟雾吸入性损伤后30min经尾静脉给予谷氨酰胺(750mg/kg),远期观察每日给药。时间点设3个时相点12h、24h和28d。测定支气管肺泡灌洗液中蛋白浓度及IL-8水平,动脉血气分析,肺W/D比值,肺组织HE和Masson染色,行肺组织HSP70、HO-1免疫组化检查,Western blot测定肺组织P-HSF-1、HSP70、HO-1、IκB-β及P-NF-κB p65的表达,行肺组织TUNEL染色及肺组织羟脯氨酸含量测定。
     结果:动脉血气分析显示对照组和实验组的Pa02与正常组相比显著降低,而实验组的Pa02较对照组显著升高(P<0.01), PaCO2和pH值的变化实验组和对照组之间无显著差异;病理学评分显示实验组较对照组低(P<0.01);实验组较对照组能够显著降低肺W/D比值和BLAF内蛋白浓度(P<0.01);实验组较对照组肺组织TUNEL阳性细胞明显降低(P<0.01);实验组BALF内IL-8水平与对照组相比显著降低(P<0.01); Western blot结果显示实验组肺组织P-HSF-1、 HSP70、HO-1、IκB-β的表达较对照组显著增加(P<0.01),而实验组肺组织P-NF-κB p65的表达较对照组显著降低;Masson染色和羟脯氨酸含量测定显示,实验组肺组织胶原沉积较对照组显著降低(P<0.01)。
     结论:谷氨酰胺可以明显减烟雾吸入性肺损伤,减轻肺水肿,抑制炎症因子的释放,改善肺功能,减轻肺部病理改变,远期可抑制肺纤维化。谷氨酰胺可以减轻烟雾吸入所致的急性肺损伤,其保护作用机制可能与抑制炎症因子释放和提高热休克蛋白表达相关。
Background
     As a result of extensive burns, the immune function decreases when susceptibility to microorganism increases significantly, and the respiratory track becomes the important route of general infection, especially to patients suffering the burn combined with the inhalation injury. The inhalation injury is a respiratory and pulmonary parenchymal disease caused by heat and (or) smoke. It usually occurs to patients suffering the extensive burn and especially the facial burn. It is one of the major reasons for death caused by burn. As revealed by data in the past, the case fatality rate of patients suffering the inhalation injury is generally between50%-60%, and it can reach as high as90%for patients with the severe inhalation injury, which can lead to the serious acute lung injury (ALI) and further induce the acute respiratory distress syndrome (ARDS). Although new ventilation technologies and other treatment measures have been applied, the fatality rate of ARDS still reaches as high as40%-60%. Thus, great attention has been paid to how to prevent occurrence and development of lung injury to patients suffering the inhalation injury, which is especially key to reduce the fatality rate of burn sufferers. ALI caused by the inhalation injury is an inflammatory reaction out of control. It is characterized by extensive injury of pulmonary vascular endothelial cells and alveolar epithelial cells and accompanied by pulmonary hemorrhage, edema, excessive inflammatory cell infiltration and other features. According to the researches in recent years, heat shock proteins (HSP) has the protective effect on the injured or stressed body and certain protective effect on ALI, and can alleviate injury to lungs caused by oxidative stress, inflammation and ischemia reperfusion, so it may be a new strategy for clinical prevention and treatment of ALI to induce or enhance the body HSP.
     GLN is the richest free amino acid within the human body. In the stress state of sepsis and trauma, etc., the demand for GLN by intestinal mucosal cells and rapidly-proliferated cells (e.g. immune cell) increases greatly, and lungs will release a large amount of GLN within a short time. Afterwards, the low-concentration GLN may lead to pulmonary immune dysfunction and occurrence of ARDS. GLN supplement can promote the survival rate, enhance the immune function, reduce the bacterial infection, enhance the gut barrier function, and prevent atrophy of intestinal mucosa. As revealed by the recent researches, after GLN treatment is applied on the mouse sepsis model made through the means of caecum ligation, the expression of TNF-α and IL-6is reduced significantly. According to relevant researches, through intravenous injection of GLN, the lung tissue of a rat with sepsis can highly express HSP70to resist the endotoxin shock. In our present study,we produced the acute lung injury model by smoke inhalation and using the glutamine to investigate the protective of glutamine on smoke inhalation induced acute lung injury and its underlying mechanism.Our research was divided ino three parts.
     Part One Building a rat model of smoke inhalation injury
     Objective:Smoke inhalation injury is the leading cause of acute respiratory failure in critical burn victims. Advances in the treatment of smoke inhalation injury have been limited in the past years. To further explore the pathogenesis, stable and practical animal models are necessary; develop a rat model of smoke inhalation injury.
     Methods:Part1,36rats were randomly divided into three groups:9,12, and15min based on the exposure time. The corresponding mortalities were recorded during the time exposure to smoke and the subsequent? days. Part2,54rats were randomly divided into two groups:normal group (ambient air exposure,6rats) and control group (9min time of smoke inhalation,48rats). After smoke inhalation, six rats were killed each time in the I group at2h,4h,6h,24h,48h,96h,7days and28days by overdosed pentobarbital sodium(100mg/kg body weight).The blood gas values, pro-inflammatory and protein concentration in bronchoalveolar lavage fluid and lung wet to dry weight ratio were assayed. Pathological evaluations of pulmonary were performed at24h,96h,7days and28days post-injury. Masson-Goldner trichrome staining was performed on day7and28post-injury.
     Results:In our present animal model, smoke inhalation caused a significant hypoxemia and CO poisoning. A surge of pro-inflammatory response and microvascular hyperpermeability with neutrophils accumulations were also found in our animal model. At24h post-smoke inhalation, the hematoxylin and eosin results exhibited that there were inflammatory exudates and diffuse hemorrhage in the lung tissue with significant edema. With the time going, the lung injuries appeared at alveolar collapse and alveolar septum thickening, which indicated that smoke inhalation further induced damage to lung parenchyma. Specially, the markedly collagen deposition appeared at28days post-injury indicated that pulmonary fibrosis happened.
     Conclusion:Rats model of smoke inhalation injury recommended in this article is a convenient, useful, stable and reduplicated animal model. Smoke generator could be used for acute and chronic lung injury experiments.
     Part Two The therapeutic efficacy of glutamine for smoke inhalation-induced lung injury in rat
     Objective:Smoke inhalation injury represents a major cause of mortality in burn patients and associated with a high incidence of pulmonary complications. Glutamine (GLN) is considered a conditionally essential amino acid during critical illness and injury. However, whether GLN could attenuate lung injury caused by smoke inhalation is still unknown. The purpose of this study is to investigate whether GLN has a beneficial effect on smoke inhalation induced lung injury.
     Methods:Fifty-four rats were randomized into3groups:normal group (Sham operation), control group (Smoke inhalation injury+physiological saline) and experiment group (Smoke inhalation injury+Glutamine).The rat in control and experiment group were induced ALI by Smoke inhalation injury. The rats in the experiment groups were given glutamine solution750mg/kg body weight and the rats in control group were given saline at the same volume. At24h post-injury,6rats in each group were killed and their lung tissues were isolated and assayed for malonaldehyde (MDA), super oxide dismutase activity(SOD), TNF-α, IL-1β, IL-8and histological examination. The remained12rats in each group were used for monitoring the survival rate of mice every12h for4days
     Results:Our experiments exhibited that the survival rate of experiments group was higher than control group (P<0.05).After Smoke inhalation injury, MDA content in the lung tissues was increased in the control group,whereas it was decreased in the glutamine treatment group (P<0.01). After Smoke inhalation injury, SOD activity in the lung tissues was decreased in the control group,whereas it was increased in the glutamine treatment group (P<0.01). After Smoke inhalation injury, TNF-α, IL-1β and IL-8content in the lung tissues was increased in the control group, whereas they were decreased in the glutamine treatment group. Glutamine treatment further attenuated lung edema inflammatory cell infiltrations, widened alveolar septum, and diffuse hemorrhage.
     Conclusion:Our data demonstrated that Glutamine can relieve the acute lung injury induced by smoke inhalation, improve the symptoms of the lung injury induced by smoke inhalation and the oxygenation function of the lung, raise the survival rate of the rats, alleviate the pathologic change, prevent the development of pulmonary edema and alleviate the oxidative stress injury of the lungs as well as the acute inflammatory reaction of the lung. It proves that glutamine can exert protective effects on the lung injury induced by smoke inhalation.
     Part Three The protective of glutamine on smoke inhalation induced lung injury and its underlying mechanism
     Objective:The purpose of this study is to investigate the protective effects of glutamine treatment on smoke inhalation induced lung injury.
     Methods:In our present work,54rats were equally randomized into three groups: normal group (Sham operation, ambient air inhalation), Control group (Smoke inhalation plus physiological saline) and experiment group (Smoke inhalation injury plus GLN treatment). At sampling, bronchoalveolar lavage fluid was performed to determine total protein concentration and pro-inflammatory cytokine levels. Lung tissues were collected for wet/dry ratio, histopathology, hydroxyproline and western blotting measurement.
     Results:According to the arterial blood gas analysis, the PaO2of control group and experimental group is much lower than that of the normal group and the PaO2of the experimental group is much higher that of the control group (P<0.01). In terms of the changes of PaCO2and pH value, there is no obvious difference between the experimental group and control group. The pathological score of the experimental group is much lower than that of the control group (P<0.01). Comparing with the control group, the experimental group can reduce the W/D ratio and the protein concentration of BLAF significantly (P<0.01). The positive cell TUNEL of the lung tissue of the experimental group reduced obviously compared with the control group (P<0.01). The IL-8level in BALF of the experimental group is much lower than that of the control group (P<0.01). As the results of Western blot indicates, the P-HSF-1、HSP70、HO-1and IκB-β expression of the lung tissue of the experimental group increased evidently compared with that of the control group while the NF-κB expression of the lung tissue of the former reduced obviously compared with that of the latter(P<0.01). Masson stain and the hydroxyproline assaying show that the collagen deposition of lung tissue of the experimental group reduced evidently compared with that of the control group(P<0.01).
     Conclusion:Glutamine can relieve the lung injury induced by smoke inhalation, mitigated pulmonary edema, obviously curb the release of the inflammatory factor, improve the pulmonary function, alleviate the pathologic change and curb the pulmonary fibrosis in long term. Our data demonstrated that GLN protected rats against smoke inhalation-induced lung injury and its protective mechanism seems to involve in inhibition inflammatory response and enhancing HSPs expression.
引文
[1]Rehberg S, Maybauer MO, Enkhbaatar P, Maybauer DM, Yamamoto Y, Traber DL.Pathophysiology, management and treatment of smoke inhalation injury. Expert Rev Respir Med.2009;3:283-97.
    [2]Shirani KZ, Pruitt Jr BA, Mason Jr AD. The influence of inhalation injury and pneumonia on burn mortality. Ann Surg.1987;205:82-7.
    [3]Suzuki M, Aikawa N, Kobayashi K, Higuchi R. Prognostic implications of inhalation injury in burn patients in Tokyo. Burns.2005;31:331-6.
    [4]Alcorta R. Smoke inhalation & acute cyanide poisoning. Hydrogen cyanide poisoning proves increasingly common in smoke-inhalation victims. JEMS.2004;29:6-15.
    [5]Sterner JB, Zanders TB, Morris MJ, Cancio LC.Inflammatory mediators in smoke inhalation injury. Inflamm Allergy Drug Targets.2009;8(1):63-9.
    [6]Traber DL, Hawkins HK, Enkhbaatar P, Cox RA, Schmalstieg FC, Zwischenberger JB, Traber LD.The role of the bronchial circulation in the acute lung injury resulting from burn and smoke inhalation. Pulm Pharmacol Ther.2007;20(2):163-6.
    [7]Hamahata A, Enkhbaatar P, Kraft ER, Lange M, Leonard SW, Traber MG, et al.gamma-Tocopherol nebulization by a lipid aerosolization device improves pulmonary function in sheep with burn and smoke inhalation injury. Free Radic Biol Med. 2008;45:425-33.
    [8]Syrkina OL, Quinn DA, Jung W, Ouyang B, Hales CA. Inhibition of JNK activation prolongs survival after smoke inhalation from fires. Am J Physiol Lung Cell Mol Physiol.2007;292:L984-91.
    [9]Laffon M, Pittet JF, Modelska K, Matthay MA, Young DM. Interleukin-8 mediates injury from smoke inhalation to both the lung endothelial and the alveolar epithelial barriers in rabbits. Am J Respir Crit Care Med.1999; 160:1443-9.
    [10]Murakami K, Traber DL. Pathophysiological basis of smoke inhalation injury.News Physiol Sci.2003;18:125-9.
    [11]Sterner JB, Zanders TB, Morris MJ, Cancio LC. Inflammatory mediators in smoke inhalation injury. Inflamm Allergy Drug Targets.2009;8:63-9.
    [12]Bhavsar TM, Cantor JO, Patel SN, Lau-Cam CA.Attenuating effect of taurine on lipopolysaccharide-induced acute lung injury in hamsters. Pharmacol Res. 2009;60(5):418-28.
    [13]Liaudet L, Pacher P, Mabley JG, Virag L, Soriano FG, Hasko G, Szabo C.Activation of poly(ADP-Ribose) polymerase-1 is a central mechanism of lipopolysaccharide-induced acute lung inflammation. Am J Respir Crit Care Med.2002;165(3):372-7.
    [14]Pulido EJ, Shames BD, Selzman CH, Barton HA, Banerjee A, Bensard DD, Mclntyre RC Jr. Inhibition of PARS attenuates endotoxin-induced dysfunction of pulmonary vasorelaxation. Am J Physiol.1999;277(4 Pt 1):L769-76.
    [15]de Perrot M, Liu M, Waddell TK, Keshavjee S.Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med.2003;167(4):490-511.
    [16]Cao Q, Jing C, Tang X, Yin Y, Han X, Wu W.Protective effect of resveratrol on acute lung injury induced by lipopolysaccharide in mice. Anat Rec (Hoboken).2011;294(3):527-32.
    [17]Lee WL,Downey GP.Neutrophil activation and acute lung injury.Curr Opin Crit Care.2001;7:1-7.
    [18]Repine JE.Scientific perspectives on adult respiratory distress syndrome.Lancet.1992;339:466-9.
    [19]Dong HP, Chen HW, Hsu C, Chiu HY, Lin LC, Yang RC.Previous heat shock treatment attenuates lipopolysaccharide-induced hyporesponsiveness of platelets in rats.Shock.2005;24(3):239-44.
    [20]Horowitz M, Robinson SD.Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions. Prog Brain Res. 2007;162:433-46.
    [21]Ellis S, Killender M, Anderson RL.Heat-induced alterations in the localization of HSP72 and HSP73 as measured by indirect immunohistochemistry and immunogold electron microscopy. J Histochem Cytochem.2000;48(3):321-32.
    [22]Wischmeyer PE, Kahana M, Wolfson R, Ren H, Musch MM, Chang EB.Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol. 2001;90(6):2403-10.
    [23]Ganter MT, Ware LB, Howard M, Roux J, Gartland B, Matthay MA, Fleshner M, Pittet JF.Extracellular heat shock protein 72 is a marker of the stress protein response in acute lung injury. Am J Physiol Lung Cell Mol Physiol.2006;291(3):L354-61.
    [24]Wischmeyer PE, Riehm J, Singleton KD, Ren H, Musch MW, Kahana M, Chang EB.Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition.2003;19(1):1-6.
    [25]Chen HW, Kuo HT, Wang SJ, Lu TS, Yang RC.In vivo heat shock protein assembles with septic liver NF-kappaB/I-kappaB complex regulating NF-kappaB activity. Shock. 2005;24(3):232-8.
    [26]Tang D, Kang R, Xiao W, Jiang L, Liu M, Shi Y, Wang K, Wang H, Xiao X.Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release.J Immunol.2007;178(11):7376-84.
    [27]Macario AJ, Brocchieri L, Shenoy AR, Conway de Macario E.Evolution of a protein-folding machine:genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene. J Mol Evol.2006;63(1):74-86.
    [28]Lacey J M, Crouch J B, Benfell K, Ringer S A, Wilmore CK, Maguire D, Wilmore D W. The effects of glutaminesupplemented parenteral nutrition in premature infants JPEN J Parenter Enteral Nutr.1996; 20:74-80.
    [29]Flaring UB, Rooyackers OE, Wernerman J, and Hammarqvist F.Glutamine attenuates post-traumatic glutathione depletion in human muscle. Clin Sci (Lond).2003.104:275-282.
    [30]Novak F, Heyland DK, Avenell A, Drover JW, Su X.Glutamine supplementation in serious illness:a systematic review of the evidence. Crit Care Med.2002;30(9):2022-9.
    [31]Singleton KD, Serkova N, Beckey VE, Wischmeyer PE.Glutamine attenuates lung injury and improves survival after sepsis:role of enhanced heat shock protein expression. Crit Care Med. 2005;33(6):1206-13.
    [32]Singleton KD, Wischmeyer PE.Glutamine attenuates inflammation and NF-kappaB activation via Cullin-1 deneddylation. Biochem Biophys Res Commun.2008;29;373(3):445-9.
    [33]Singleton KD, Serkova N, Banerjee A, Meng X, Gamboni-Robertson F, Wischmeyer PE.Glutamine attenuates endotoxin-induced lung metabolic dysfunction:potential role of enhanced heat shock protein 70. Nutrition.2005;21(2):214-23.
    [34]Kwon WY, Suh GJ, Kim KS, Jo YH, Lee JH, Kim K, Jung SK.Glutamine attenuates acute lung injury by inhibition of high mobility group box protein-1 expression during sepsis. Br J Nutr.2010;103(6):890-8.
    [1]Rehberg S, Maybauer MO, Enkhbaatar P, Maybauer DM, Yamamoto Y, Traber DL. Pathophysiology, management and treatment of smoke inhalation injury. Expert Rev Respir Med.2009;3(3):283-297.
    [2]David P, Dunsford D, Lu J, Moochhala S. Animal models of smoke inhalation induced injuries.Front Biosci.2009;14:4618-30.
    [3]Lange M, Hamahata A, Traber DL, Esechie A, Jonkam C, Bansal K, Nakano Y, Traber LD, Enkhbaatar P. A murine model of sepsis following smoke inhalation injury. Biochem Biophys Res Commun.2010;391(3):1555-60.
    [4]Enkhbaatar P, Traber DL. Pathophysiology of acute lung injury in combined burn and smoke inhalation injury. Clin Sci (Lond).2004;107(2):137-43.
    [5]Lange M, Hamahata A, Traber DL, Esechie A, Jonkam C, Bansal K, Nakano Y, Traber LD, Enkhbaatar P. A murine model of sepsis following smoke inhalation injury. Biochem Biophys Res Commun.2010;391(3):1555-60.
    [6]da Cunha AA, Nunes FB, Lunardelli A, et al. Treatment with N-methyl-D-aspartate receptor antagonist (MK-801) protects against oxidative stress in lipopolysaccharide-induced acute lung injury in the rat. Int Immunopharmacol.2011;11(6):706-11.
    [7]Kawamura T, Huang CS, Tochigi N, Lee S, Shigemura N, Billiar TR, Okumura M, Nakao A, Toyoda Y. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats. Transplantation.2010;90(12):1344-51.
    [8]Wei W, Ma B, Li HY, Jia Y, Lv K, Wang G, Zhang J, Zhu S, Tang H, Sheng Z, Xia Z. Biphasic effects of selective inhibition of transforming growth factor betal activin receptor-like kinase on LPS-induced lung injury. Shock.2010;33(2):218-24.
    [9]Shi H, Dong L, Zhang Y, Bai Y, Zhao J, Zhang L. Protective effect of a coffee preparation (Nescafe pure) against carbon tetrachloride-induced liver fibrosis in rats. Clin Nutr. 2010;29(3):399-405.
    [10]Ballard-Croft C, Sumpter LR, Broaddus R, Alexander J, Wang D, Zwischenberger JB. Ovine smoke/burn ARDS model:a new ventilator-controlled smoke delivery system. J Surg Res. 2010;164(1):e155-62.
    [11]Lange M, Cox RA, Enkhbaatar P, Whorton EB, Nakano Y, Hamahata A, Jonkam C, Esechie A, von Borzyskowski S, Traber LD, Traber DL. Predictive role of arterial carboxyhemoglobin concentrations in ovine burn and smoke inhalation-induced lung injury. Exp Lung Res. 2011;37(4):239-45.
    [12]Boehm J, Fischer K, Bohnert M. Putative role of TNF-alpha, interleukin-8 and ICAM-1 as indicators of an early inflammatory reaction after burn:a morphological and immunohistochemical study of lung tissue of fire victims.. J Clin Pathol.2010 Nov;63(11):967-71.
    [13]Sterner JB, Zanders TB, Morris MJ, Cancio LC. Inflammatory mediators in smoke inhalation injury. Inflamm Allergy Drug Targets.2009;8(1):63-9.
    [14]Hamahata A, Enkhbaatar P, Kraft ER, Lange M, Leonard SW, Traber MG, Cox RA, Schmalstieg FC, Hawkins HK, Whorton EB, Horvath EM, Szabo C, Traber LD, Herndon DN, Traber DL. gamma-Tocopherol nebulization by a lipid aerosolization device improves pulmonary function in sheep with burn and smoke inhalation injury. Free Radic Biol Med. 2008;45(4):425-33.
    [15]Esechie A, Kiss L, Olah G, Horvath EM, Hawkins H, Szabo C, Traber DL. Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin Sci (Lond).2008;115(3):91-7.
    [16]Nakazawa H, Gustafsson TO, Traber LD, Herndon DN, Traber DL. alpha-Trinositol decreases lung edema formation after smoke inhalation in an ovine model. J Appl Physiol. 1994;76(1):278-82.
    [17]Qiu X, Li H, Tang H, Jin Y, Li W, YuSun, PingFeng, Sun X, Xia Z.Hydrogen inhalation ameliorates lipopolysaccharide-induced acute lung injury in mice.lnt Immunopharmacol. 2011;11(12):2130-7.
    [18]David P, Dunsford D, Lu J, Moochhala S. Animal models of smoke inhalation induced injuries. Front Biosci.2009; 14:4618-30.
    [19]Adamson IY, Prieditis HL. Response of mouse lung to carbon deposition during injury and repair. Environ Health Perspect.1995;103(1):72-6.
    [20]Phelps DS, Umstead TM, Mejia M, Carrillo G, Pardo A, Selman M. Increased surfactant protein-A levels in patients with newly diagnosed idiopathic pulmonary fibrosis. Chest. 2004;125(2):617-25.
    [1]Cancio, L.C. Current concepts in the pathophysiology and treatment of inhalation injury. Trauma.2005,7 19-35.
    [2]Maybauer MO, Rehberg S, Traber DL, Herndon DN, Maybauer DM.Pathophysiology of acute lung injury in severe burn and smoke inhalation injury. Anaesthesist.2009;58(8):805-12.
    [3]Murakami K, Traber DL.Pathophysiological basis of smoke inhalation injury. News Physiol Sci. 2003; 18:125-9.
    [4]周济宏,李幼生,黎介寿.谷氨酰胺在感染状态下的代谢[J].肠外与肠内营养,2004,11(2):105-107.
    [5]朱维铭,李宁.特殊营养物质在肿瘤病人的应用[J].中国实用外科杂志,2002,22(11):16-18.
    [6]Abraham E. Neutrophils and acute lung injury. Crit Care Med.2003;31:S195.
    [7]Valenca SS, Silva Bezerra F, Lopes AA, Romana-Souza B, Marinho Cavalcante MC, Lima AB, Goncalves Koatz VL, Porto LC. Oxidative stress in mouse plasma and lungs induced by cigarette smoke and lipopolysaccharide. Environ Res.2008;108:199-204.
    [8]Macdonald J, Galley HF, Webster NR. Oxidative stress and gene expression in sepsis. Br J Anaesth.2003;90:221.
    [9]Bhattacharyya J, Biswas S, Datta AG. Mode of action of endotoxin:Role of free radicals and antioxidants. Curr Med Chem.2004;11:359
    [10]Danielsen PH, Loft S, Jacobsen NR, Jensen KA, Autrup H, Ravanat JL, Wallin H, Moller P. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter. Toxicol Sci.2010;118:574-585.
    [11]Suntres ZE, Shek PN. Prophylaxis against lipopolysaccharideinduced acute lung injury by a-tocopherol liposomes. Crit Care Med.1998;26:723.
    [12]Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med.2003; 167:1600
    [13]Perng WC, Huang KL, Li MH, Hsu CW, Tsai SH, Chu SJ, Chang DM.Glutamine attenuates hyperoxia-induced acute lung injury in mice. Clin Exp Pharmacol Physiol. 2010;37(1):56-61.
    [14]Zhang F, Wang X, Pan L, Wang W, Li N, Li J.Glutamine attenuates lipopolysaccharide induced acute lung injury. Nutrition.2009;25(6):692-8.
    [15]Perng DW, Chang TM, Wang JY, Lee CC, Lu SH, Shyue SK, Lee TS, Kou YR.Inflammatory role of AMP-activated protein kinase signaling in an experimental model of toxic smoke inhalation injury. Crit Care Med.2013;41(1):120-32.
    [16]Qiu X, Ji S, Wang J, Li H, Xia T, Pan B, Xiao S, Xia Z.The therapeutic efficacy of Ulinastatin for rats with smoking inhalation injury. Int Immunopharmacol.2012;14(3):289-95.
    [17]Lange M, Hamahata A, Traber DL, Connelly R, Nakano Y, Traber LD, Schmalstieg FC, Herndon DN, Enkhbaatar P.Pulmonary microvascular hyperpermeability and expression of vascular endothelial growth factor in smoke inhalation- and pneumonia-induced acute lung injury. Burns.2012;38(7):1072-8.
    [18]Davis CS, Janus SE, Mosier MJ, Carter SR, Gibbs JT, Ramirez L, Gamelli RL, Kovacs EJ. Inhalation Injury Severity and Systemic Immune Perturbations in Burned Adults. Ann Surg. 2012 Nov 15.
    [19]Giebelen IA, van Westerloo DJ, LaRosa GJ, de Vos AF, van der Poll T.Local stimulation of alpha7 cholinergic receptors inhibits LPS-induced TNF-alpha release in the mouse lung. Shock.2007;28(6):700-3.
    [20]Carney DE, Lutz CJ, Picone AL, Gatto LA, Schiller HJ, Finck CM, Searles B, Paskanik AM, Snyder KP, Edwards C, Nieman GF.Soluble tumor necrosis factor receptor prevents post-pump syndrome. J Surg Res.1999 15;83(2):113-21.
    [21]Literat A, Su F, Norwicki M, Durand M, Ramanathan R, Jones CA, Minoo P, Kwong KY Regulation of pro-inflammatory cytokine expression by curcumin in hyaline membrane disease (HMD). Life Sci.2001;70(3):253-67.
    [22]Kunkel SL, Standiford T, Kasahara K, Strieter RM.Interleukin-8 (IL-8):the major neutrophil chemotactic factor in the lung. Exp Lung Res.1991;17(1):17-23.
    [23]Wessely-Szponder J. The influence of TNFa and IL-8 on secretory action of neutrophils isolated from heifers in the course of bovine respiratory disease. Acta Vet Hung.2008;56:187.
    [24]Wischmeyer PE, Kahana M, Wolfson R, Ren H, Musch MM, Chang EB.Glutamine reduces cytokine release, organ damage, and mortality in a rat model of endotoxemia. Shock. 2001;16(5):398-402.
    [25]Wischmeyer PE, Riehm J, Singleton KD, Ren H, Musch MW, Kahana M, Chang EB.Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition.2003; 19(1):1-6.
    [26]Coeffier M, Marion R, Ducrotte P, Dechelotte P. Modulating effect of glutamine on IL-1 beta-induced cytokine production by human gut. Clin Nutr.2003;22:407-413.
    [27]Singleton KD, Beckey VE, Wischmeyer PE. Glutamine prevents activation of NF-κB and stress kinase pathways, attenuates inflammatory cytokine release,and prevents acute respiratory distress syndrome (ARDS) following sepsis. Shock.2005; 24:583-589.
    [28]Yeh CL, Hsu CS, Yeh SL, Chen WJ.Dietary glutamine supplementation modulates Th1/Th2 cytokine and interleukin-6 expressions in septic mice. Cytokine.2005;31(5):329-34.
    [29]Singleton KD, Wischmeyer PE. Glutamine's protection against sepsis and lung injury is dependent on heat shock protein 70 expression. Am J Physiol Regul Integr Comp Physiol. 2007; 292(5):R1839-45
    [30]Wischmeyer PE. Glutamine and heat shock protein expression. Nutrition.2002;18(3):225-8.
    [31]Morrison AL, Dinges M, Singleton KD, Odoms K, Wong HR, Wischmeyer PE.Glutamine's protection against cellular injury is dependent on heat shock factor-1. Am J Physiol Cell Physiol.2006;290(6):C1625-32.
    [32]Wischmeyer PE.Glutamine:the first clinically relevant pharmacological regulator of heat shock protein expression? Curr Opin Clin Nutr Metab Care.2006;9(3):201-6.
    [33]Weitzel LR, Mayles WJ, Sandoval PA, Wischmeyer PE.Effects of pharmaconutrients on cellular dysfunction and the microcirculation in critical illness. Curr Opin Anaesthesiol. 2009;22(2):177-83.
    [34]Weiss YG, Bouwman A, Gehan B, Schears G, Raj N, Deutschman CS.Cecal ligation and double puncture impairs heat shock protein 70 (HSP-70) expression in the lungs of rats. Shock.2000;13(1):19-23.
    [35]Singleton KD, Serkova N, Beckey VE, Wischmeyer PE.Glutamine attenuates lung injury and improves survival after sepsis:role of enhanced heat shock protein expression. Crit Care Med. 2005;33(6):1206-13.
    [36]Kim HP, Wang X, Zhang J, Suh GY, Benjamin IJ, Ryter SW, Choi AM.Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide:involvement of p38 beta MAPK and heat shock factor-1. J Immunol.2005;175(4):2622-9.
    [37]McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ.Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury. Transplantation.2006;81(4):623-6.
    [38]Morrison AL, Dinges M, Singleton KD, Odoms K, Wong HR, Wischmeyer PE.Glutamine's protection against cellular injury is dependent on heat shock factor-1. Am J Physiol Cell Physiol.2006;290(6):C1625-32.
    [39]吴琼,景亮.谷氨酰胺诱导大鼠热休克蛋白70mRNA的表达[J].国际麻醉学与复苏杂志,2006,27(2): 69-71.
    [40]Ziegler TR, Ogden LG, Singleton KD, Luo M, Fernandez-Estivariz C, Griffith DP, Galloway JR, Wischmeyer PE.Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Med.2005;31(8):1079-86.
    [41]冼乐武,李奇林,谢可兵.谷氨酰胺对呼吸机所致肺损伤中HSP70表达的影响[J].中国急救医学,2008,28(8):731-733.
    [42]DeMeester SL, Buchman TG, Cobb JP.The heat shock paradox:does NF-kappaB determine cell fate? FASEB J.2001;15(1)270-274.
    [43]Malhotra V, Wong HR.Interactions between the heat shock response and the nuclear factor-kappaB signaling pathway. Crit Care Med.2002;30(1 Supp):S89-S95.
    [44]Vreugdenhil HA, Haitsma JJ, Jansen KJ, Zijlstra J, Plotz FB, Van Dijk JE, Lachmann B, Van Vught H, Heijnen CJ.Ventilator-induced heat shock protein 70 and cytokine mRNA expression in a model of lipopolysaccharide-induced lung inflammation. Intensive Care Med. 2003;29(6):915-22.
    [45]Chen XG, Bai T, Wu BY, Wang JK.Effects of glutamine on changes of nuclear factor-kappa B in acute lipopolysaccharide lung injury:experiment with rats. Zhonghua Yi Xue Za Zhi. 2008;88(23):1648-50.
    [1]David P, Dunsford D, Lu J, Moochhala S. Animal models of smoke inhalation induced injuries. Front Biosci.2009;14:4618-30.
    [2]Ballard-Croft C, Sumpter LR, Broaddus R, Alexander J, Wang D, Zwischenberger JB. Ovine smoke/burn ARDS model:a new ventilator-controlled smoke delivery system. J Surg Res. 2010;164:e 155-62.
    [3]Thompson PB, Herndon DN, Traber DL, Abston S. Effect on mortality of inhalation injury. J Trauma.1986;26:163-5.
    [4]Barrow RE, Spies M, Barrow LN, Herndon DN. Influence of demographics and inhalation injury on burn mortality in children. Burns.2004;30:72-7.
    [5]Shirani KZ, Pruitt BA, Jr., Mason AD, Jr. The influence of inhalation injury and pneumonia on burn mortality. Ann Surg.1987;205:82-7.
    [6]Lange M, Hamahata A, Traber DL, Esechie A, Jonkam C, Bansal K. A murine model of sepsis following smoke inhalation injury. Biochem Biophys Res Commun.2010;391:1555-60.
    [7]Wernerman J, Hammarqvist F. Modulation of endogenous glutathione availability. Curr Opin Clin Nutr Metab Care.1999;2:487-92.
    [8]Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001;27:84-90.
    [9]Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC. Molecular mechanisms of glutamine action. J Cell Physiol.2005;204:392-401.
    [10]Kwon WY, Suh GJ, Kim KS, Jo YH, Lee JH, Kim K, Jung SK. Glutamine attenuates acute lung injury by inhibition of high mobility group box protein-1 expression during sepsis. Br J Nutr.2010;103:890-8.
    [11]Singleton KD, Serkova N, Beckey VE, Wischmeyer PE. Glutamine attenuates lung injury and improves survival after sepsis:role of enhanced heat shock protein expression. Crit Care Med. 2005;33:1206-13.
    [12]Singleton KD, Serkova N, Banerjee A, Meng X, Gamboni-Robertson F, Wischmeyer PE. Glutamine attenuates endotoxin-induced lung metabolic dysfunction:potential role of enhanced heat shock protein 70. Nutrition.2005;21:214-23.
    [13]Perng WC, Huang KL, Li MH, Hsu CW, Tsai SH, Chu SJ, Chang DM.Glutamine attenuates hyperoxia-induced acute lung injury in mice. Clin Exp Pharmacol Physiol.2010;37:56-61.
    [14]Peng CK, Huang KL, Wu CP, Li MH, Hu YT, Hsu CW, et al. Glutamine protects ischemia-reperfusion induced acute lung injury in isolated rat lungs. Pulm Pharmacol Ther. 2011;24:153-61.
    [15]Zhang F, Wang X, Pan L, Wang W, Li N, Li J. Glutamine attenuates lipopolysaccharide-induced acute lung injury. Nutrition.2009;25:692-8.
    [16]De Maio A. Heat shock proteins:facts, thoughts, and dreams. Shock.1999;11:1-12.
    [17]Kiang JG, Tsokos GC. Heat shock protein 70 kDa:molecular biology, biochemistry, and physiology. Pharmacol Ther.1998;80:183-201.
    [18]Yuan ZQ, Zhang Y, Li XL, Peng YZ, Huang YS, Yang ZC. HSP70 protects intestinal epithelial cells from Hypoxia/reoxygenation injury via a mechanism that involves the mitochondrial pathways. Eur J Pharmacol.2010;643:282-8.
    [19]Singleton KD, Wischmeyer PE. Glutamine attenuates inflammation and NF-kappaB activation via Cullin-1 deneddylation. Biochem Biophys Res Commun.2008;373:445-9.
    [20]Huang CS, Kawamura T, Peng X, Tochigi N, Shigemura N, Billiar TR. Hydrogen inhalationreduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involvingnuclear factor-kappa B activation[J]. Biochem Biophys Res Commun,2011, 408(2):253-258.
    [21]Wei W, Ma B, Li HY, Jia Y, Lv K, Wang G, Zhang J, Zhu S, Tang H, Sheng Z, Xia Z. Biphasic effects of selective inhibition of transforminggrowth factor betal activin receptor-like kinase on LPS-induced lung injury. Shock.2010;33:218-24.
    [22]Syrkina OL, Quinn DA, Jung W, Ouyang B, Hales CA. Inhibition of JNK activation prolongs survival after smoke inhalation from fires. Am J Physiol Lung Cell Mol Physiol. 2007;292:L984-91.
    [23]Liu PL, Chen YL, Chen YH, Lin SJ, Kou YR. Wood smoke extract indnces oxidative stress-mediated caspase-independent apoptosis in human lung endothelial cells:role of AIF and EndoG. Am J Physiol Lung Cell Mol Physiol.2005;289(5):L739-49.
    [24]Boehm J, Fischer K, Bohnert M. Putative role of TNF-alpha, interleukin-8 and ICAM-1 as indicators of an early inflammatory reaction after burn:a morphological and immunohistochemical study of lung tissue of fire victims J Clin Pathol.2010;63(11):967-971.
    [25]Sterner JB, Zanders TB, Morris MJ, Cancio LC. Inflammatory mediators in smoke inhalation injury. Inflamm Allergy Drug Targets.2009;8(1):63-69.
    [26]Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol.2006;290:L622-L45.
    [27]Fillmann H, Kretzmann NA, San-Miguel B, Llesuy S, Marroni N, Gonzalez-Gallego J. Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappaB pathway in an experimental model of colitis in the rat. Toxicology. 2007;236:217-26.
    [28]Peng CK, Huang KL, Wu CP, Li MH, Hu YT, Hsu CW, et al. Glutamine protects ischemia-reperfusion induced acute lung injury in isolated rat lungs. Pulm Pharmacol Ther. 2011;24:153-61.
    [29]Inayama S, Shibata T, Ohtsuki J, Saito S. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. Keio J Med.1978; 27:43-46.
    [30]Okuno H, Hazama H, Murase T, Shiozaki Y, Sameshima Y. Drug metabolizing activity in rats with chronic liver injury induced by carbon tetrachloride:relationship with the content of hydroxyproline in the liver. Jpn J Pharmacol.1986;41:363-71.
    [31]Singleton KD, Serkova N, Beckey VE, Wischmeyer PE. Glutamine attenuates lung injury and improves survival after sepsis:role of enhanced heat shock protein expression. Crit Care Med. 2005;33:1206-13.
    [32]Wheeler DS, Wong HR. Heat shock response and acute lung injury. Free Radic Biol Med. 2007;42:1-14.
    [33]Perng WC, Huang KL, Li MH, Hsu CW, Tsai SH, Chu SJ, et al. Glutamine attenuates hyperoxia-induced acute lung injury in mice. Clin Exp Pharmacol Physiol.2010;37:56-61.
    [34]Huang KL, Wu CP, Chen YL, Kang BH, Lin YC. Heat stress attenuates air bubble-induced acute lung injury:a novel mechanism of diving acclimatization. J App1 Physiol. 2003;94:1485-90.
    [35]Villar J, Edelson JD, Post M, Mullen JB, Slutsky AS. Induction of heat stress proteins is associated with decreased mortality in an animal model of acute lung injury. Am Rev Respir Dis.1993;147:177-81.
    [36]Hiratsuka M, Yano M, Mora BN, Nagahiro I, Cooper JD, Patterson GA. Heat shock pretreatment protects pulmonary isografts from subsequent ischemia-reperfusion injury. J Heart Lung Transplant.1998;17:1238-46.
    [37]Chen JC, Huang KC, Lin WW. HMG-CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages via ERK, p38 MAPK and protein kinase G pathways. Cell Signal.2006;18(1):32-9.
    [38]Harada H, Sugimoto R, Watanabe A. Differential roles for Nrf2 and AP-1 in upregulation of HO-1 expression by arsenite in murine embryonic fibroblasts. Free Radic Res. 2008;42(4):297-304.
    [39]Raval CM, Lee PJ. Heme oxygenase-1 in lung disease. Curr Drug Targets.2010;11:1532-40.
    [40]Wischmeyer PE. Glutamine and heat shock protein expression. Nutrition.2002;18:225-228.
    [41]Morrison AL, Dinges M, Singleton KD, Odoms K,Wong HR, Wischmeyer PE. Glutamine's protection against cellular injury is dependent on heat shock factor- 1. Am J Physiol Cell Physiol.2006;290:C1625-C1632.
    [42]Wischmeyer PE. Glutamine:the first clinically relevant pharmacological regulator of heat shock protein expression? Curr Opin Clin Nutr Metab Care.2006;9:201-206.
    [43]Weitzel LR, Mayles WJ, Sandoval PA, Wischmeyer PE. Effects of pharmaconutrients on cellular dysfunction and the microcirculation in critical illness. Curr Opin Anaesthesiol 2009;22(2):177-183.
    [44]Pelham HR. Speculations on the functions of the major heat shock and glucose-regulated proteins.Cell.1986;46:959-961.
    [45]Weiss YG, Bouwman A, Gehan B, Schears G, Raj N, Deutschman CS. Cecal ligation and double puncture impairs heat shock protein 70 (HSP-70) expression in the lungs of rats. Shock.2000;13(1):19-23.
    [46]Singleton KD, Serkova N, Beckey VE, Wischmeyer PE. Glutamine attenuates lung injury and improves survival after sepsis:role of enhanced heat shock protein expression. Crit Care Med.2005;33(6):1206-13.
    [47]De Maio A. Heat shock proteins:facts, thoughts, and dreams. Shock.1999;11:1-12.
    [48]Ribeiro SP, Villar J, Slutsky AS. Induction of the stress response to prevent organ injury. New Horiz.1995; 3:301-311.
    [49]Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB. Glutamine protects intestinal epithelial cells:role of inducible HSP70. Am J Physiol.1997;272(4 Pt 1):G879-84.
    [50]Musch MW, Hayden D, Sugi K, Straus D, Chang EB.Cell-specific induction of hsp72-mediated protection by glutamine against oxidant injury in IEC18 cells. Proc Assoc Am Physicians.1998;110(2):136-139.
    [51]Wischmeyer PE, Kahana M, Wolfson R, Ren H, Musch MM, Chang EB.Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol. 2001;90(6):2403-2410.
    [52]Morrison AL, Dinges M, Singleton KD, Odoms K, Wong HR, Wischmeyer PE.Glutamine's protection against cellular injury is dependent on heat shock factor-1. Am J Physiol Cell Physiol.2006;290(6):C1625-32.
    [53]Singleton KD, Wischmeyer PE. Glutamine induces heat shock protein expression via O-glycosylation and phosphorylation of HSF-1 and Spl. JPEN J Parenter Enteral Nutr.2008;32(4):371-6.
    [54]Hamiel CR, Pinto S, Hau A, et al. Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity. Am J Physiol Cell Physiol.2009;297(6):C1509-19.
    [55]Singleton KD, Wischmeyer PE. Glutamine induces heat shock protein expression via O-glycosylation and phosphorylation of HSF-1 and Spl. JPEN J Parenter Enteral Nutr.2008;32(4):371-6.
    [56]Hamiel CR, Pinto S, Hau A, et al. Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity. Am J Physiol Cell Physiol.2009;297(6):C 1509-19.
    [57]Singleton KD, Beckey VE, Wischmeyer PE. Glutamine prevents activation of nfkappab
    and stress kinase pathways, attenuates inflammatory cytokine release,and prevents acute respiratory distress syndrome (ARDS) following sepsis.Shock.2005;24(6):583-9.
    [58]Evans ME, Jones DP, Ziegler TR. Glutamine inhibits cytokine-induced apoptosis in human colonic epithelial cells via the pyrimidine pathway. Am J Physiol Gastrointest Liver Physiol.2005;289(3):G388-96.
    [59]Paquette JC, Guerin PJ, Gauthier ER. Rapid induction of the intrinsic apoptoticpathway by L-glutamine starvation. J Cell Physiol.2005;202(3):912-21.
    [60]Hart fu,Hard HM.Molecular chaperones in the cytosol:from nascent chain to folded protein[J].Science.2002.295(5561):1852-1858.
    [61]Roth E. Nonnutritive effects of glutamine. J Nutr.2008; 138(10):2025S-31.
    [1]Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia.1962;18:571-573.
    [2]Ritossa, F. Discovery of the heat shock response. Cell Stress Chaperones.1996;1:97-98.
    [3]Kregel, K. C. Heat shock proteins:modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol.2002;92(5):2177-2186.
    [4]Wheeler, D. S,Wong, H. R. The heat shock response and transplantation immunology. Immunobiology of organ transplantation. Kluwer Academic/Plenum, New York; 2004.
    [5]De Maio, A. The heat shock response. New Horiz.1995;3:198-207.
    [6]Voellmy, R. Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression inhigher eukaryotes. Crit. Rev. Eukary. Gene Expr. 1994;4:375-401.
    [7]Balakrishnan K, De Maio A.Heat shock protein 70 binds its own messenger ribonucleic acid as part of a gene expression self-limiting mechanism.Cell Stress Chaperones.2006;11(1):44-50.
    [8]Gothard LQ, Ruffner ME, Woodward JG, Park-Sarge OK, Sarge KD.Lowered temperature set point for activation of the cellular stress response in T-lymphocytes. J Biol Chem. 2003;278(11):9322-6.
    [9]Ostberg JR, Kaplan KC, Repasky EA.Induction of stress proteins in a panel of mouse tissues by fever-range whole body hyperthermia. Int J Hyperthermia.2002;18(6):552-62.
    [10]Sarge KD.Male germ cell-specific alteration in temperature set point of the cellular stress response. J Biol Chem.1995;270(32):18745-8.
    [11]Voellmy R.Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit Rev Eukaryot Gene Expr. 1994;4(4):357-401.
    [12]Sarge KD.Male germ cell-specific alteration in temperature set point of the cellular stress response. J Biol Chem.1995;270(32):18745-8.
    [13]Trotter EW, Kao CM, Berenfeld L, Botstein D, Petsko GA, Gray JV.Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem.2002;277(47):44817-25.
    [14]de Thonel A, Le Mouel A, Mezger V.Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol.2012;44(10):1593-612.
    [15]Christians ES, Yan LJ, Benjamin IJ.Heat shock factor 1 and heat shock proteins:Critical partners in protection against acute cell injury. Crit Care Med.2002;30(1 Supp):S43-S50.
    [16]Green M, Schuetz TJ, Sullivan EK, Kingston RE.A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol. 1995;15(6):3354-62.
    [17]Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K.HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol.1997;17(1):469-81.
    [18]Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi NF.Targeted disruption of hsfl leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem.2002;86(2):376-93.
    [19]Calabrese V, Lodi R, Tonon C, D'Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Butterfield DA.Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J Neurol Sci.2005;233(1-2):145-62.
    [20]Voellmy R.On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones.2004;9(2):122-33.
    [21]Khalil S, Luciano J, Chen W, Liu AYDynamic regulation and involvement of the heat shock transcriptional response in arsenic carcinogenesis.J Cell Physiol.2006;207(2):562-9.
    [22]Ehira S, Teramoto H, Inui M, Yukawa H.Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol.2009;191(9):2964-72.
    [23]Park J, Liu AY.JNK phosphorylates the HSF1 transcriptional activation domain:role of JNK in the regulation of the heat shock response. J Cell Biochem.2001;82(2):326-38.
    [24]Lee P, Cho BR, Joo HS, Hahn JS.Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsfl and Msn2/Msn4. Mol Microbiol. 2008;70(4):882-95.
    [25]Ding XZ, Tsokos GC, Kiang JG.Overexpression of HSP-70 inhibits the phosphorylation of HSF1 by activating protein phosphatase and inhibiting protein kinase C activity.FASEB J. 1998;12(6):451-9.
    [26]Raynes R, Pombier KM, Nguyen K, Brunquell J, Mendez JE, Westerheide SD.The SIRT1 modulators AROS and DBC1 regulate HSF1 activity and the heat shock response. PLoS One. 2013;8(1):e54364.
    [27]Heldens L, van Genesen ST, Hanssen LL, Hageman J, Kampinga HH, Lubsen NH.Protein refolding in peroxisomes is dependent upon an HSF1-regulated function.Cell Stress Chaperones.2012;17(5):603-13.
    [28]Macario AJ, Brocchieri L, Shenoy AR, Conway de Macario E. Evolution of a protein-folding machine:genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene.J Mol Evol.2006;63(1):74-86.
    [29]Bromberg Z, Raj N, Goloubinoff P, Deutschman CS, Weiss YG. Enhanced expression of 70-kilodalton heat shock protein limits cell division in a sepsis induced model of acute respiratory distress syndrome.Crit Care Med.2007;12(35):1-10.
    [30]Luh SP, Kuo PH, Kuo TF, Tsai TP, Tsao TC, Chen JY, Tsai CH, Yang PC. Effects of thermal preconditioning on the ischemia-reperfusion-induced acute lung injury in mini pigs. Shock.2007;28(5):615-22.
    [31]Lin HJ, Wang CT, Niu KC, Gao C, Li Z, Lin MT, Chang CP.Hypobaric hypoxia preconditioning attenuates acute lung injury during high-altitude exposure in rats via up-regulating heat-shock protein 70. Clin Sci (Lond).2011;121(5):223-31.
    [32]Hasegawa A, Iwasaka H, Hagiwara S, Noguchi T. Relationship Between HMGB1 and Tissue Protective Effects of HSP72 in a LPS-Induced Systemic Inflammation Model. J Surg Res.2011;169(1):85-91.
    [33]Hiratsuka M, Mora BN, Yano M, Mohanakumar T, Patterson GA.. Gene transfer of heat shock protein70 protects lung grafts from ischemia-reperfusion injury. Ann Thorac Surg.1999;67(5):1421-1427.
    [34]Weiss YG, Bromberg Z, Raj N, Raphael J, Goloubinoff P, Ben-Neriah Y, Deutschman CS..Enhanced heat shock protein 70 expression alters proteasomal degradation of I-kappaB kinase in experimental acute respiratory distress syndrome. Crit Care Med.2007;35(9):21-28.
    [35]Singleton KD, Serkova N, Beckey VE, Wischmeyer PE. Glutamine attenuates lung injury and improves survival after sepsis:role of enhanced heat shock protein expression. Crit Care Med.2005;33(6):1206-13.
    [36]Perng WC, Huang KL, Li MH, Hsu CW, Tsai SH, Chu SJ, Chang DM. Glutamine attenuates hyperoxia-induced acute lung injury in mice. Clin Exp Pharmacol Physiol.2010;37(1):56-61.
    [37]Kwon WY, Suh GJ, Kim KS, Jo YH, Lee JH, Kim K, Jung SK. Glutamine attenuates acute lung injury by inhibition of high mobility group box protein-1 expression during sepsis. Br J Nutr.2010;103(6):890-8.
    [38]Guiqi G. Pre-treatment with glutamine attenuates lung injury in rats subjected to intestinal ischemia-reperfusion. Injury.2010;41 (7):737-42.
    [39]Fujibayashi T, Hashimoto N, Jijiwa M, Hasegawa Y, Kojima T, Ishiguro N. Protective effect of geranylgeranylacetone, an inducer of heat shock protein 70, against drug-induced lung injury/fibrosis in an animal model. BMC Pulm Med.2009;9:45.
    [40]Tanaka K, Tanaka Y, Namba T, Azuma A, Mizushima T.Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice. Biochem Pharmacol.2010;80(6):920-31.
    [41]Daugaard M, Rohde M, Jaattela M. The heat shock protein 70 family:Highly homologous proteins with overlapping and distinct functions. FEBS Letters.2007;581(19):3702-10.
    [42]Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS. Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol.2000;164(10):5416-23.
    [43]Moretti Al, Rios EC, Soriano FG, de Souza HP, Abatepaulo F, Barbeiro DF, Velasco IT. Acute pancreatitis:hypertonic saline increases heat shock proteins 70 and 90 and reduces neutrophil infiltration in lung injury. Pancreas.2009;38(5):507-14.
    [44]Banerjee Mustafi S, Chakraborty PK, Dey RS, Raha S. Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress Chaperones.2009;14(6):579-89.
    [45]Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol.2000;20(19):7146-7159
    [46]Bienemann AS, Lee YB, Howarth J, Uney JB. HSP70 suppresses apoptosis in sympathetic neurones by preventing the activation of c-Jun. J Neurochem.2008;1(104):271-278.
    [47]Kim HP, Wang X, Zhang J, Suh GY, Benjamin IJ, Ryter SW, Choi AM. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide:involvement of p38 beta MAPK and heat shock factor-1.J Immunol.2005;175(4):2622-2629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700