枸橼酸杆菌中质粒介导喹诺酮耐药基因的分子生物学特征及qnrB24基因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     了解枸橼酸杆菌中质粒介导喹诺酮耐药基因(PMQR)阳性率,以期发现新型PMQR基因。
     掌握临床分离的PMQR阳性枸橼酸杆菌对临床常见药物的敏感性及耐药性。
     了解PMQR基因有无与ESBL及整合子共同传播,为临床合理使用喹诺酮类药物提供依据。
     了解新型质粒介导喹诺酮耐药基因(qnrB24)的耐药特性和旁侧序列。材料与方法菌株来源
     收集安徽医科大学第一附属医院检验科2009年临床分离的枸橼酸杆菌,采用全自动微生物分析仪对标本进行重新鉴定。
     方法
     用煮沸法提取细菌总DNA,聚合酶链反应(PCR)方法扩增qnr,aac(6,)-Ib-cr,qepA基因。PCR产物纯化测序法明确具体基因型别,测序结果在Genbank上比对。
     应用PFGE、ERIC-PCR技术分析PMQR阳性菌株克隆流行传播情况。
     对PMQR阳性的菌株进行转移接合实验。
     对收集的PMQR阳性枸橼酸杆菌及其接合子,根据2010年CLSI的标准,采用琼脂对倍稀释法进行临床常用抗菌药物的药物敏感实验。
     对PMQR阳性菌株进行整合子及ESBL的基因分型。
     对新发现的质粒介导喹诺酮耐药基因qnrB24基因阳性菌株克隆测序,同时进行转移接合实验,了解qnrB24对喹诺酮类药物的耐药性,碱裂解法提取接合子质粒,Southern blot明确质粒大小。
     采用热不对称交错PCR技术研究qnrB24基因5’端以及3’端未知侧翼碱基序列,结果通过GenBank比对进行DNA序列分析。在研究该耐药基因旁侧序列的基础上,初步预测该基因是否可能导致快速的水平或垂直传播。
     结果
     2009年安医大一附院收集的枸橼酸杆菌共31株,用特异性PMQR引物扩增后,8株弗劳地枸橼酸杆菌扩增结果阳性,经测序均为qnr基因型,qnr的阳性率是25.8%(8/31),qnrA1,qnrB1, qnrB2,qnrB4, qnrB10和qnrB24的阳性率分别是6.5%(2/31),3.2%(1/31),6.5%(2/31),3.2%(1/31),3.2%(1/31),3.2%(1/31),没有发现aac(6,)-Ib-cr,qepA基因。
     8株PMQR阳性菌株中的7株细菌对环丙沙星的MIC值在8-64μg/ml,其中一株细菌对环丙沙星耐药表型为敏感,MIC值为1μg/ml。qnr阳性菌株对喹诺酮类药物的耐药率在87.5%,对头孢噻肟、阿米卡星、头孢他啶、头孢吡肟和庆大霉素的耐药率分别为75.0%,37.5%,62.5%,37.5%和87.5%,所有PMQR阳性菌株对亚胺培南耐药表型为敏感。
     PFGE和ERIC-PCR结果显示菌株间没有一致条带,不属于同一血清型。
     4株qnr阳性的菌株的qnr基因(3,4,13,23号)成功地进行了转移接合,qnrA基因转移接合率是100%(2/2),qnrB基因转接合率33.3%(2/6)。与受体菌E.coilJ53相比较,qnr阳性的接合子对喹诺酮类药物的敏感性下降,环丙沙星的MIC值是0.125-1.0μg/ml,左氧氟沙星的MIC值是0.19-0.75μg/ml,qnr阳性接合子对喹诺酮药物的MIC值较受体菌升高了10-23倍,部分接合子也呈现出对其他抗菌药物的协同耐药性。
     3株qnr阳性枸橼酸杆菌携带ESBL基因,分别是CTX-M-3型、SHV-12型、CTX-M-27型。其中4号菌株同时携带有CTX-M-3和SHV-12型。
     qnr阳性菌株中I类整合酶阳性率是75.0%(6/8),其中3株qnr阳性菌株的I类整合子可变区扩增结果阳性,耐药基因盒排列为dfrA12-aadA2。
     测序分析显示一株qnr阳性的弗劳地枸橼酸杆菌有3个碱基位点发生有义突变,3个突变位点分别为139位C→A,257位C→T,670位A→G,相应的氨基酸发生变化,分别为47位亮氨酸→蛋氨酸,86位丙氨酸→缬氨酸,224位异亮氨酸→缬氨酸。这个突变基因命名为qnrB24(Genbank登录号:HM192542)。
     药敏结果显示携带qnrB24基因克隆表达株对环丙沙星,左氧氟沙星的MIC值均为0.25μg/mL。接合子对环丙沙星的MIC值为0.125μg/ml,左氧氟沙星MIC值为0.19μg/ml,表达株对常见氟喹诺酮类抗菌药物的敏感性较E.coil JM109受体菌下降约8倍,接合子对常见氟喹诺酮类抗菌药物的敏感性较E.coil J53受体菌下降约8-11倍,表达株及接合子耐药水平低于临床分离菌株。
     Southern blot显示该基因位于约60kb质粒上。
     热不对称交错PCR结果显示qnrB24基因5,端为假定的转座酶。
     结论
     本地区枸橼酸杆菌中qnr基因型的检出率较高,以qnrB基因型为主,没有发现aac(6,)-Ib-cr,qepA基因型。
     2009年安徽医科大学第一附属医院来源的的PMQR阳性枸橼酸杆菌流行病学上没有克隆相关性。
     qnr阳性菌株中部分携带ESBL基因,同时大都携带I类整合酶基因。
     qnr阳性枸橼酸杆菌对喹诺酮、头孢类、氨基糖甙类等常用抗菌药物耐药性较高,应加强耐药性监测和防治。
     在qnr阳性的枸橼酸杆菌中进行测序后发现一种新型质粒介导喹诺酮耐药基因,qnrB24(Genbank号:HM192542)。
     qnrB24基因通过质粒介导引起细菌对喹诺酮类药物的耐药性上升。
     qnr阳性菌株的喹诺酮耐药性可以通过质粒在不同菌株间传递。
     qnr基因的单独存在可以使细菌对喹诺酮药物的敏感性降低,但单独作用对喹诺酮类抗菌药物靶位点的保护作用相对比较低,临床菌株的耐药性可能是qnr基因与其他因素共同作用的结果。
Objectives
     This study was conducted to detect and analyse the presence of plasmid-mediatedquinolone resistance (PMQR) determinants [qnr, aac(6′)-Ib-cr and qepA] among clinicalisolates of Citrobacter freundii strains isolated from patients in Anhui, China. Thegenotyping of them was investigated. The I、II、III Class integron and ESBL gene wereinvestigated.
     Materials and Methods
     Isolates
     In2009,31Citrobacter strains were collected from the first affiliated hospital of Anhuimedical university.
     Method
     PCR was used to detect PMQR genes. The class I, II and III integrons as well asExtended-spectrum β-lactamase were also detected by PCR, and their contribution toresistance of antimicrobial agents were analysed.
     Conjugation experiments were conducted to determine whether the qnr-carrying plasmidswere self-transferable.
     The relatedness of PMQR positive isolates was analysis by PFGE, ERIC-PCR.
     The susceptibility of the positive isolates and transconjugants were tested by agar dilutionmethod according to CLSI guidelines. The minimum inhibitory concentrations (MICs) ofciprofloxacin and levofloxacin were determined by Etest strips according to themanufacturer's instructions.
     The qnrB24PCR product was purified by double-enzyme cleavage method, cloned intoPHSG398, and expressed in E. coli JM109competent cells. The plasmid DNA oftransformant was extracted, then the recombinant plasmid was comfirmed by restrictionenzyme analysis and sequenced.
     Southern blotting was used to reveal that the novel gene located on a plasmid.
     The TAIL-PCR was used to understand the genetic environment of the qnrB24gene.
     Result
     The qnr genes were detected in eight isolates, whereas aac(6′)-Ib-cr and qepA were notidentified in these isolates. qnrA1, qnrB1, qnrB2, qnrB4, qnrB10and qnrB24werepresent in6.5%,3.2%,6.5%,3.2%,3.2%and3.2%of Citrobacter freundii isolatesrespectively. Sequence analysis identified one novel qnrB variant (qnrB24).
     The results of PFGE, ERIC-PCR showed that PMQR positive isolates were not clonerelated.
     87.5%qnr-positive clinical isolates were resistant to quinolone resistance. Most of themwere also resistant to various antibiotics, including aminoglycosides, β-lactams, et al. The qnr genes were transferred from four clinical isolates to their transconjugants. All MICs oftransconjugants showed reduced susceptibility to fluoroquinolones.
     The ESBL gene and I class integron were found in almost qnr positive isolates.
     Sequence analysis revealed that the qnrB24gene had a maximal identity of98.7%to theqnrB10gene. Three nucleotide changes were observed. The C→A at nucleotide position139resulted in Leu→Met, the C→T at position257produced a Ala→Val change, and theA→G at position670produced a Ile→Val change.
     Susceptibility results showed that the MIC of transformant carrying qnrB24gene againstciprofloxacin, levofloxacin was both0.25μg/ml. The transconjugant of carrying qnrB24gene against ciprofloxacin, levofloxacin was0.125μg/ml,0.19μg/ml respectively. Thesensitivity of the transformant and transconjugant was lower than the recipient starin, butthe drug resistance was lower than the clinical isolate.
     Southern hybridization of plasmid DNA from transconjugant of qnrB24revealed thatthe gene was located on about60kb plasmid.
     The quinolone resistance of qnrB24could be transferred by conjugation.
     There was putative transposase adjust to5’flank of qnrB24gene.
     Conclusion
     Our study shows that qnr gene has occurred in Citrobacter freundii isolates from AnhuiProvince, China.
     qnr gene was therefore present in both quinolone-resistant and-susceptible isolates andsome of them could be transferred by conjugation experiments.
     qnr positive isolates strains showed multi-resistance and no clone was spread found inthese isolates.
     Class I integrons and ESBL genes were prevalence among PMQR positive isolates.
     Meanwhile, The qnrB24gene was discovered firstly. qnrB24gene could increase the drugresistance to fluoroquinolones slightly. The qnrB24could be transferred by plasmid.
     PMQR provide the low-level quinolone resistance shown in vitro to facilitate theemergence of higher-level resistance in the presence of quinolones at therapeutic levels.
     Our study suggests that surveillance for PMQR determinants should be undertaken on aregular basis.
引文
1. Wang M, Tran J H, Jacoby G A, et al. Plasmid-mediated quinolone resistance inclinical isolates of Escherichia coli from Shanghai, China.[J]. Antimicrob AgentsChemother,2003,47(7):2242-2248.
    2. Jeong J Y, Yoon H J, Kim E S, et al. Detection of qnr in clinical isolates ofEscherichia coli from Korea.[J]. Antimicrob Agents Chemother,2005,49(6):2522-2524.
    3. Mammeri H, Van De Loo M, Poirel L, et al. Emergence of plasmid-mediatedquinolone resistance in Escherichia coli in Europe.[J]. Antimicrob Agents Chemother,2005,49(1):71-76.
    4. Collis C M, Hall R M. Expression of antibiotic resistance genes in the integratedcassettes of integrons.[J]. Antimicrob Agents Chemother,1995,39(1):155-162.
    5. Martinez-Martinez L, Pascual A, Garcia I, et al. Interaction of plasmid and hostquinolone resistance[J]. J Antimicrob Chemother,2003,51(4):1037-1039.
    6. Tran J H, Jacoby G A, Hooper D C. Interaction of the plasmid-encoded quinoloneresistance protein QnrA with Escherichia coli topoisomerase IV.[J]. Antimicrob AgentsChemother,2005,49(7):3050-3052.
    7.白莉,汪永禄,金东,等.37株枸橼酸杆菌的耐药性及PFGE分型分析[J].疾病监测,2009,24(5):316-318.
    8.李丽,童先丽,田磊,等.2007年中国CHINET肠杆菌属耐药性监测[J].中国感染与化疗杂志,2009,9(3):201-206.
    9.胡龙华,胡雪飞,熊建球,等.弗劳地枸橼酸杆菌的临床分布及耐药特性分析[J].中国微生态学杂志,2010,22(8):724-725.
    10. Ma J, Zeng Z, Chen Z, et al. High prevalence of plasmid-mediated quinoloneresistance determinants qnr, aac(6')-Ib-cr, and qepA among ceftiofur-resistantEnterobacteriaceae isolates from companion and food-producing animals[J].Antimicrob Agents Chemother,2009,53(2):519-524.
    11. Lockhart S R, Abramson M A, Beekmann S E, et al. Antimicrobial resistanceamong Gram-negative bacilli causing infections in intensive care unit patients in theUnited States between1993and2004[J]. J Clin Microbiol,2007,45(10):3352-3359.
    12.陈鸿波,马越,李景云,等.中国50家医院1994—2000年环丙沙星耐药性的变迁[J].中国抗感染化疗杂志,2002,2(1):43-45.
    13.文细毛,任南,徐秀华,等.全国医院感染监控网医院感染病原菌分布及耐药性分析[J].中华医院感染学杂志,2002,12(4):241-244.
    14.许建成,周琪,刘韶晖,等.连续5年临床分离弗劳地枸橼酸杆菌的耐药变迁[J].现代预防医学,2009,36(9):1741-1742.
    15.汪复,朱德妹,胡付品,等.2007年中国CHINET细菌耐药性监测[J].中国感染与化疗杂志,2008,8(05):325-333.
    16.汪复,朱德妹,胡付品,等.2008年中国CHINET细菌耐药性监测[J].中国感染与化疗杂志,2009,9(05):321-329.
    17.汪复,朱德妹,胡付品,等.2009年中国CHINET细菌耐药性监测[J].中国感染与化疗杂志,2010,10(5):325-334.
    18. Park Y J, Yu J K, Lee S, et al. Prevalence and diversity of qnr alleles inAmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundiiand Serratia marcescens: a multicentre study from Korea.[J]. J Antimicrob Chemother,2007,60(4):868-871.
    19. Wang M, Guo Q, Xu X, et al. New plasmid-mediated quinolone resistance gene,qnrC, found in a clinical isolate of Proteus mirabilis[J]. Antimicrob Agents Chemother,2009,53(5):1892-1897.
    20. Wang M, Sahm D F, Jacoby G A, et al. Activities of newer quinolones againstEscherichia coli and Klebsiella pneumoniae containing the plasmid-mediated quinoloneresistance determinant qnr.[J]. Antimicrob Agents Chemother,2004,48(4):1400-1401.
    21. Cambau E, Lascols C, Sougakoff W, et al. Occurrence of qnrA-positive clinicalisolates in French teaching hospitals during2002-2005.[J]. Clin Microbiol Infect,2006,12(10):1013-1020.
    22. Cattoir V, Poirel L, Rotimi V, et al. Multiplex PCR for detection ofplasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterialisolates.[J]. J Antimicrob Chemother,2007,60(2):394-397.
    23. Yang H, Chen H, Yang Q, et al. High prevalence of plasmid-mediated quinoloneresistance genes qnr and aac(6')-Ib-cr in clinical isolates of Enterobacteriaceae fromnine teaching hospitals in China[J]. Antimicrob Agents Chemother,2008,52(12):4268-4273.
    24. Minarini L A, Poirel L, Cattoir V, et al. Plasmid-mediated quinolone resistancedeterminants among enterobacterial isolates from outpatients in Brazil.[J]. J AntimicrobChemother,2008,62(3):474-478.
    25. Ferreira S, Paradela A, Velez J, et al. Carriage of qnrA1and qnrB2, blaCTX-M15,and complex class1integron in a clinical multiresistant Citrobacter freundii isolate[J].Diagn Microbiol Infect Dis,2010,67(2):188-190.
    26. Bae I K, Park I, Lee J J, et al. Novel variants of the qnrB gene, qnrB22and qnrB23,in Citrobacter werkmanii and Citrobacter freundii[J]. Antimicrob Agents Chemother,2010,54(7):3068-3069.
    27.胡芳,马佳毓,付英梅. Ⅰ类整合子在革兰阴性菌中分布的初步探讨[J].齐齐哈尔医学院学报,2005,26(9):993-994.
    28.郑宇琼,陈淑贞,姚芬,等. Ⅰ类整合子与产ESBLs肺炎克雷伯菌多重耐药关系的研究[J].中国微生态学杂志,2009,21(2):116-117.
    29. Clinical and Laboratory Standards Institute sixteenth informational supplementM100-S20Performance standards for antimicrobial susceptibility testing. Wayne, PA:CLSI,2010.[J].
    30. Tenover F C, Arbeit R D, Goering R V, et al. Interpreting chromosomal DNArestriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterialstrain typing.[J]. J Clin Microbiol,1995,33(9):2233-2239.
    31. Jacoby G, Cattoir V, Hooper D, et al. qnr Gene nomenclature.[J]. AntimicrobAgents Chemother,2008,52(7):2297-2299.
    32. Cavaco L M, Hasman H, Xia S, et al. qnrD, a novel gene conferring transferablequinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificansstrains of human origin.[J]. Antimicrob Agents Chemother,2009,53(2):603-608.
    33. Robicsek A, Strahilevitz J, Jacoby G A, et al. Fluoroquinolone-modifying enzyme: anew adaptation of a common aminoglycoside acetyltransferase.[J]. Nat Med,2006,12(1):83-88.
    34. Perichon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosidesby methylation of G1405in16S rRNA and to hydrophilic fluoroquinolones byQepA-mediated efflux in Escherichia coli[J]. Antimicrob Agents Chemother,2007,51(7):2464-2469.
    35. Yamane K, Wachino J, Suzuki S, et al. Plasmid-mediated qepA gene amongEscherichia coli clinical isolates from Japan[J]. Antimicrob Agents Chemother,2008,52(4):1564-1566.
    36. Wu J J, Ko W C, Tsai S H, et al. Prevalence of plasmid-mediated quinoloneresistance determinants QnrA, QnrB, and QnrS among clinical isolates ofEnterobacter cloacae in a Taiwanese hospital.[J]. Antimicrob Agents Chemother,2007,51(4):1223-1227.
    37. Bagel S, Hullen V, Wiedemann B, et al. Impact of gyrA and parC mutations onquinolone resistance, doubling time, and supercoiling degree of Escherichia coli.[J].Antimicrob Agents Chemother,1999,43(4):868-875.
    38. Fang H, Huang H, Shi Y, et al. Prevalence of qnr determinants amongextended-spectrum beta-lactamase-positive Enterobacteriaceae clinical isolates insouthern Stockholm, Sweden.[J]. Int J Antimicrob Agents,2009,34(3):268-270.
    39. Pantel A, Petrella S, Veziris N, et al. Extending GyrB QRDR definition inMycobacterium tuberculosis DNA gyrase for assessing FQ resistance in M.tuberculosis.[J]. Antimicrob Agents Chemother,2012.
    40. Robicsek A, Strahilevitz J, Sahm D F, et al. qnr prevalence in ceftazidime-resistantEnterobacteriaceae isolates from the United States.[J]. Antimicrob Agents Chemother,2006,50(8):2872-2874.
    41. Gay K, Robicsek A, Strahilevitz J, et al. Plasmid-mediated quinolone resistance innon-Typhi serotypes of Salmonella enterica.[J]. Clin Infect Dis,2006,43(3):297-304.
    42. Wang H, Chen M. Surveillance for antimicrobial resistance among clinical isolatesof gram-negative bacteria from intensive care unit patients in China,1996to2002.[J].Diagn Microbiol Infect Dis,2005,51(3):201-208.
    43. Hata M, Suzuki M, Matsumoto M, et al. Cloning of a novel gene for quinoloneresistance from a transferable plasmid in Shigella flexneri2b.[J]. Antimicrob AgentsChemother,2005,49(2):801-803.
    44.熊自忠,李涛,徐元宏,等.3株含qnr基因肺炎克雷伯菌中超广谱β-内酰胺酶的检测[J].中国药理学通报,2006,22(3):325-328.
    45. Xu X, Wu S, Ye X, et al. Prevalence and expression of the plasmid-mediatedquinolone resistance determinant qnrA1.[J]. Antimicrob Agents Chemother,2007,51(11):4105-4110.
    46. Tamang M D, Seol S Y, Oh J Y, et al. Plasmid-mediated quinolone resistancedeterminants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae in aKorean hospital[J]. Antimicrob Agents Chemother,2008,52(11):4159-4162.
    47. Martinez-Freijo P, Fluit A C, Schmitz F J, et al. Class I integrons in Gram-negativeisolates from different European hospitals and association with decreased susceptibilityto multiple antibiotic compounds.[J]. J Antimicrob Chemother,1998,42(6):689-696.
    48. Kim H B, Park C H, Kim C J, et al. Prevalence of plasmid-mediated quinoloneresistance determinants over a9-year period.[J]. Antimicrob Agents Chemother,2009,53(2):639-645.
    49. Martinez-Martinez L, Pascual A, Jacoby G A. Quinolone resistance from atransferable plasmid.[J]. Lancet,1998,351(9105):797-799.
    50. Jacoby G A, Gacharna N, Black T A, et al. Temporal appearance ofplasmid-mediated quinolone resistance genes.[J]. Antimicrob Agents Chemother,2009,53(4):1665-1666.
    51. Poirel L, Van De Loo M, Mammeri H, et al. Association of plasmid-mediatedquinolone resistance with extended-spectrum beta-lactamase VEB-1.[J]. AntimicrobAgents Chemother,2005,49(7):3091-3094.
    52. Han C, Yang Y, Wang M, et al. The prevalence of plasmid-mediated quinoloneresistance determinants among clinical isolates of ESBL or AmpC-producingEscherichia coli from Chinese pediatric patients.[J]. Microbiol Immunol,2010,54(3):123-128.
    53. Wang M, Sahm D F, Jacoby G A, et al. Emerging plasmid-mediated quinoloneresistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in theUnited States.[J]. Antimicrob Agents Chemother,2004,48(4):1295-1299.
    54. Lavilla S, Gonzalez-Lopez J J, Sabate M, et al. Prevalence of qnr genes amongextended-spectrum beta-lactamase-producing enterobacterial isolates in Barcelona,Spain.[J]. J Antimicrob Chemother,2008,61(2):291-295.
    55. Poirel L, Pitout J D, Calvo L, et al. In vivo selection of fluoroquinolone-resistantEscherichia coli isolates expressing plasmid-mediated quinolone resistance andexpanded-spectrum beta-lactamase.[J]. Antimicrob Agents Chemother,2006,50(4):1525-1527.
    56. Jacoby G A, Walsh K E, Mills D M, et al. qnrB, another plasmid-mediated gene forquinolone resistance.[J]. Antimicrob Agents Chemother,2006,50(4):1178-1182.
    57. Tran J H, Jacoby G A. Mechanism of plasmid-mediated quinolone resistance.[J].Proc Natl Acad Sci U S A,2002,99(8):5638-5642.
    58. Lautenbach E, Strom B L, Bilker W B, et al. Epidemiological investigation offluoroquinolone resistance in infections due to extended-spectrumbeta-lactamase-producing Escherichia coli and Klebsiella pneumoniae.[J]. Clin InfectDis,2001,33(8):1288-1294.
    59. Cheung T K, Chu Y W, Chu M Y, et al. Plasmid-mediated resistance tociprofloxacin and cefotaxime in clinical isolates of Salmonella enterica serotypeEnteritidis in Hong Kong.[J]. J Antimicrob Chemother,2005,56(3):586-589.
    60. Nazic H, Poirel L, Nordmann P. Further identification of plasmid-mediatedquinolone resistance determinant in Enterobacteriaceae in Turkey.[J]. AntimicrobAgents Chemother,2005,49(5):2146-2147.
    61. Corkill J E, Anson J J, Hart C A. High prevalence of the plasmid-mediatedquinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae fromblood cultures in Liverpool, UK.[J]. J Antimicrob Chemother,2005,56(6):1115-1117.
    62. Rodriguez-Martinez J M, Velasco C, Pascual A, et al. Correlation of quinoloneresistance levels and differences in basal and quinolone-induced expression from threeqnrA-containing plasmids.[J]. Clin Microbiol Infect,2006,12(5):440-445.
    63. Robicsek A, Jacoby G A, Hooper D C. The worldwide emergence ofplasmid-mediated quinolone resistance.[J]. Lancet Infect Dis,2006,6(10):629-640.
    64. Hawkey P M. Mechanisms of quinolone action and microbial response.[J]. JAntimicrob Chemother,2003,51Suppl1:29-35.
    65. Sader H S, Biedenbach D J, Jones R N. Global patterns of susceptibility for21commonly utilized antimicrobial agents tested against48,440Enterobacteriaceae in theSENTRY Antimicrobial Surveillance Program (1997-2001).[J]. Diagn Microbiol InfectDis,2003,47(1):361-364.
    66. Streit J M, Jones R N, Sader H S, et al. Assessment of pathogen occurrences andresistance profiles among infected patients in the intensive care unit: report from theSENTRY Antimicrobial Surveillance Program (North America,2001).[J]. Int JAntimicrob Agents,2004,24(2):111-118.
    67.王艳艳.泛耐药肺炎克雷伯菌株的耐药机制与播散特点研究[D].2011.
    1. Ball P. Quinolone generations: natural history or natural selection?[J]. J AntimicrobChemother,2000,46Suppl T1:17-24.
    2. Paton J H, Reeves D S. Fluoroquinolone antibiotics. Microbiology,pharmacokinetics and clinical use.[J]. Drugs,1988,36(2):193-228.
    3. Deguchi T, Yasuda M, Ishihara S, et al. In-vitro antimicrobial activity of HSR-903,a new fluoroquinolone, against clinical isolates of Neisseria gonorrhoeae with quinoloneresistance-associated alterations in GyrA and ParC.[J]. J Antimicrob Chemother,1997,40(3):437-439.
    4. Jacoby G A, Gacharna N, Black T A, et al. Temporal appearance ofplasmid-mediated quinolone resistance genes.[J]. Antimicrob Agents Chemother,2009,53(4):1665-1666.
    5. Machado E, Coque T M, Canton R, et al. Dissemination in Portugal of CTX-M-15-,OXA-1-, and TEM-1-producing Enterobacteriaceae strains containing the aac(6')-Ib-crgene, which encodes an aminoglycoside-and fluoroquinolone-modifying enzyme.[J].Antimicrob Agents Chemother,2006,50(9):3220-3221.
    6. Yamane K, Wachino J, Suzuki S, et al. New plasmid-mediated fluoroquinoloneefflux pump, QepA, found in an Escherichia coli clinical isolate[J]. Antimicrob AgentsChemother,2007,51(9):3354-3360.
    7. Jiang Y, Zhou Z, Qian Y, et al. Plasmid-mediated quinolone resistance determinantsqnr and aac(6')-Ib-cr in extended-spectrum beta-lactamase-producing Escherichia coliand Klebsiella pneumoniae in China.[J]. J Antimicrob Chemother,2008,61(5):1003-1006.
    8. Robicsek A, Strahilevitz J, Jacoby G A, et al. Fluoroquinolone-modifying enzyme: anew adaptation of a common aminoglycoside acetyltransferase.[J]. Nat Med,2006,12(1):83-88.
    9. Martinez-Martinez L, Pascual A, Jacoby G A. Quinolone resistance from atransferable plasmid.[J]. Lancet,1998,351(9105):797-799.
    10. Jacoby G, Cattoir V, Hooper D, et al. qnr Gene nomenclature.[J]. AntimicrobAgents Chemother,2008,52(7):2297-2299.
    11. Poirel L, Liard A, Rodriguez-Martinez J M, et al. Vibrionaceae as a possible sourceof Qnr-like quinolone resistance determinants.[J]. J Antimicrob Chemother,2005,56(6):1118-1121.
    12. Velasco C, Rodriguez-Martinez J M, Briales A, et al. Smaqnr, a newchromosome-encoded quinolone resistance determinant in Serratia marcescens.[J]. JAntimicrob Chemother,2010,65(2):239-242.
    13. Tran J H, Jacoby G A. Mechanism of plasmid-mediated quinolone resistance.[J].Proc Natl Acad Sci U S A,2002,99(8):5638-5642.
    14. Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones inEnterobacteriaceae.[J]. J Antimicrob Chemother,2005,56(3):463-469.
    15. Cambau E, Lascols C, Sougakoff W, et al. Occurrence of qnrA-positive clinicalisolates in French teaching hospitals during2002-2005.[J]. Clin Microbiol Infect,2006,12(10):1013-1020.
    16. Jacoby G A, Walsh K E, Mills D M, et al. qnrB, another plasmid-mediated gene forquinolone resistance.[J]. Antimicrob Agents Chemother,2006,50(4):1178-1182.
    17. Cattoir V, Poirel L, Rotimi V, et al. Multiplex PCR for detection ofplasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterialisolates.[J]. J Antimicrob Chemother,2007,60(2):394-397.
    18. Wu J J, Ko W C, Tsai S H, et al. Prevalence of plasmid-mediated quinoloneresistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobactercloacae in a Taiwanese hospital.[J]. Antimicrob Agents Chemother,2007,51(4):1223-1227.
    19. Robicsek A, Strahilevitz J, Sahm D F, et al. qnr prevalence in ceftazidime-resistantEnterobacteriaceae isolates from the United States.[J]. Antimicrob Agents Chemother,2006,50(8):2872-2874.
    20. Gay K, Robicsek A, Strahilevitz J, et al. Plasmid-mediated quinolone resistance innon-Typhi serotypes of Salmonella enterica.[J]. Clin Infect Dis,2006,43(3):297-304.
    21. Tamang M D, Seol S Y, Oh J Y, et al. Plasmid-mediated quinolone resistancedeterminants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae in aKorean hospital[J]. Antimicrob Agents Chemother,2008,52(11):4159-4162.
    22. Cattoir V, Nordmann P, Silva-Sanchez J, et al. ISEcp1-mediated transposition ofqnrB-like gene in Escherichia coli[J]. Antimicrob Agents Chemother,2008,52(8):2929-2932.
    23. Kehrenberg C, Friederichs S, de Jong A, et al. Novel variant of the qnrB gene,qnrB12, in Citrobacter werkmanii.[J]. Antimicrob Agents Chemother,2008,52(3):1206-1207.
    24. Sanchez-Cespedes J, Marti S, Soto S M, et al. Two chromosomally located qnrBvariants, qnrB6and the new qnrB16, in Citrobacter spp. isolates causing bacteraemia[J].Clin Microbiol Infect,2009,15(12):1132-1138.
    25. Bae I K, Park I, Lee J J, et al. Novel variants of the qnrB gene, qnrB22and qnrB23,in Citrobacter werkmanii and Citrobacter freundii[J]. Antimicrob Agents Chemother,2010,54(7):3068-3069.
    26. Hata M, Suzuki M, Matsumoto M, et al. Cloning of a novel gene for quinoloneresistance from a transferable plasmid in Shigella flexneri2b.[J]. Antimicrob AgentsChemother,2005,49(2):801-803.
    27. Torpdahl M, Hammerum A M, Zachariasen C, et al. Detection of qnr genes inSalmonella isolated from humans in Denmark.[J]. J Antimicrob Chemother,2009,63(2):406-408.
    28. Wang M, Guo Q, Xu X, et al. New plasmid-mediated quinolone resistance gene,qnrC, found in a clinical isolate of Proteus mirabilis[J]. Antimicrob Agents Chemother,2009,53(5):1892-1897.
    29. Cavaco L M, Hasman H, Xia S, et al. qnrD, a novel gene conferring transferablequinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificansstrains of human origin.[J]. Antimicrob Agents Chemother,2009,53(2):603-608.
    30. Wang M, Tran J H, Jacoby G A, et al. Plasmid-mediated quinolone resistance inclinical isolates of Escherichia coli from Shanghai, China.[J]. Antimicrob AgentsChemother,2003,47(7):2242-2248.
    31. Wang M, Sahm D F, Jacoby G A, et al. Activities of newer quinolones againstEscherichia coli and Klebsiella pneumoniae containing the plasmid-mediated quinoloneresistance determinant qnr.[J]. Antimicrob Agents Chemother,2004,48(4):1400-1401.
    32. Martinez-Martinez L, Pascual A, Garcia I, et al. Interaction of plasmid and hostquinolone resistance[J]. J Antimicrob Chemother,2003,51(4):1037-1039.
    33. Minarini L A, Poirel L, Cattoir V, et al. Plasmid-mediated quinolone resistancedeterminants among enterobacterial isolates from outpatients in Brazil.[J]. J AntimicrobChemother,2008,62(3):474-478.
    34. Jacoby G A. Mechanisms of resistance to quinolones.[J]. Clin Infect Dis,2005,41Suppl2: S120-S126.
    35. Robicsek A, Sahm D F, Strahilevitz J, et al. Broader distribution ofplasmid-mediated quinolone resistance in the United States.[J]. Antimicrob AgentsChemother,2005,49(7):3001-3003.
    36. Rodriguez-Martinez J M, Velasco C, Garcia I, et al. Mutant preventionconcentrations of fluoroquinolones for Enterobacteriaceae expressing theplasmid-carried quinolone resistance determinant qnrA1.[J]. Antimicrob AgentsChemother,2007,51(6):2236-2239.
    37. Rodriguez-Martinez J M, Briales A, Velasco C, et al. Mutational analysis ofquinolone resistance in the plasmid-encoded pentapeptide repeat proteins QnrA, QnrBand QnrS.[J]. J Antimicrob Chemother,2009,63(6):1128-1134.
    38.罗燕萍,崔生辉,王英,等.携带质粒介导喹诺酮基因aac-(6,)-Ib-cr的大肠埃希菌遗传学特征分析[J].中华医院感染学杂志,2010,20(18):2721-2724.
    39. Alarcon T, Pita J, Lopez-Brea M, et al. High-level quinolone resistance amongstclinical isolates of Escherichia coli and Klebsiella pneumoniae from Spain.[J]. JAntimicrob Chemother,1993,32(4):605-609.
    40. Yamane K, Wachino J, Suzuki S, et al. Plasmid-mediated qepA gene amongEscherichia coli clinical isolates from Japan[J]. Antimicrob Agents Chemother,2008,52(4):1564-1566.
    41. Perichon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosidesby methylation of G1405in16S rRNA and to hydrophilic fluoroquinolones byQepA-mediated efflux in Escherichia coli[J]. Antimicrob Agents Chemother,2007,51(7):2464-2469.
    42. Perichon B, Bogaerts P, Lambert T, et al. Sequence of conjugative plasmid pIP1206mediating resistance to aminoglycosides by16S rRNA methylation and to hydrophilicfluoroquinolones by efflux.[J]. Antimicrob Agents Chemother,2008,52(7):2581-2592.
    43. Liu J H, Deng Y T, Zeng Z L, et al. Coprevalence of plasmid-mediated quinoloneresistance determinants QepA, Qnr, and AAC(6')-Ib-cr among16S rRNA methylaseRmtB-producing Escherichia coli isolates from pigs.[J]. Antimicrob Agents Chemother,2008,52(8):2992-2993.
    44. Tran J H, Jacoby G A, Hooper D C. Interaction of the plasmid-encoded quinoloneresistance protein QnrA with Escherichia coli topoisomerase IV.[J]. Antimicrob AgentsChemother,2005,49(7):3050-3052.
    45. Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pumpQepA2in an Escherichia coli isolate from France[J]. Antimicrob Agents Chemother,2008,52(10):3801-3804.
    46. Jeong J Y, Yoon H J, Kim E S, et al. Detection of qnr in clinical isolates ofEscherichiacoli from Korea.[J]. Antimicrob Agents Chemother,2005,49(6):2522-2524.
    47. Park C H, Robicsek A, Jacoby G A, et al. Prevalence in the United States ofaac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme[J]. Antimicrob AgentsChemother,2006,50(11):3953-3955.
    48. Park Y J, Yu J K, Lee S, et al. Prevalence and diversity of qnr alleles inAmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundiiand Serratia marcescens: a multicentre study from Korea.[J]. J Antimicrob Chemother,2007,60(4):868-871.
    49. Han C, Yang Y, Wang M, et al. The prevalence of plasmid-mediated quinoloneresistance determinants among clinical isolates of ESBL or AmpC-producingEscherichia coli from Chinese pediatric patients.[J]. Microbiol Immunol,2010,54(3):123-128.
    50. Sabtcheva S, Kaku M, Saga T, et al. High prevalence of the aac(6')-Ib-cr gene andits dissemination among Enterobacteriaceae isolates by CTX-M-15plasmids inBulgaria.[J]. Antimicrob Agents Chemother,2009,53(1):335-336.
    51. Touati A, Brasme L, Benallaoua S, et al. First report of qnrB-producingEnterobacter cloacae and qnrA-producing Acinetobacter baumannii recovered fromAlgerian hospitals[J]. Diagn Microbiol Infect Dis,2008,60(3):287-290.
    52. Kim E S, Jeong J Y, Choi S H, et al. Plasmid-mediated fluoroquinolone efflux pumpgene, qepA, in Escherichia coli clinical isolates in Korea[J]. Diagn Microbiol Infect Dis,2009,65(3):335-338.
    53. Ma J, Zeng Z, Chen Z, et al. High prevalence of plasmid-mediated quinoloneresistance determinants qnr, aac(6')-Ib-cr, and qepA among ceftiofur-resistantEnterobacteriaceae isolates from companion and food-producing animals[J].Antimicrob Agents Chemother,2009,53(2):519-524.
    54. Kim H B, Park C H, Kim C J, et al. Prevalence of plasmid-mediated quinoloneresistance determinants over a9-year period.[J]. Antimicrob Agents Chemother,2009,53(2):639-645.
    55. Gniadkowski M, Schneider I, Jungwirth R, et al. Ceftazidime-resistantEnterobacteriaceae isolates from three Polish hospitals: identification of three novelTEM-and SHV-5-type extended-spectrum beta-lactamases.[J]. Antimicrob AgentsChemother,1998,42(3):514-520.
    56.钟涛,许伟,徐元宏.临床分离枸橼酸杆菌qnr基因型检测[J].安徽医科大学学报,2010(2):261-265.
    57. Poirel L, Villa L, Bertini A, et al. Expanded-spectrum beta-lactamase andplasmid-mediated quinolone resistance[J]. Emerg Infect Dis,2007,13(5):803-805.
    58. Carattoli A. Resistance plasmid families in Enterobacteriaceae.[J]. AntimicrobAgents Chemother,2009,53(6):2227-2238.
    59. Wang M, Sahm D F, Jacoby G A, et al. Emerging plasmid-mediated quinoloneresistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in theUnited States.[J]. Antimicrob Agents Chemother,2004,48(4):1295-1299.
    60. Cheung T K, Chu Y W, Chu M Y, et al. Plasmid-mediated resistance tociprofloxacin and cefotaxime in clinical isolates of Salmonella enterica serotypeEnteritidis in Hong Kong.[J]. J Antimicrob Chemother,2005,56(3):586-589.
    61. Nazic H, Poirel L, Nordmann P. Further identification of plasmid-mediatedquinolone resistance determinant in Enterobacteriaceae in Turkey.[J]. AntimicrobAgents Chemother,2005,49(5):2146-2147.
    62. Corkill J E, Anson J J, Hart C A. High prevalence of the plasmid-mediatedquinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae fromblood cultures in Liverpool, UK.[J]. J Antimicrob Chemother,2005,56(6):1115-1117.
    63. Mammeri H, Van De Loo M, Poirel L, et al. Emergence of plasmid-mediatedquinolone resistance in Escherichia coli in Europe.[J]. Antimicrob Agents Chemother,2005,49(1):71-76.
    64. Poirel L, Van De Loo M, Mammeri H, et al. Association of plasmid-mediatedquinolone resistance with extended-spectrum beta-lactamase VEB-1.[J]. AntimicrobAgents Chemother,2005,49(7):3091-3094.
    65.韩晨曦,王爱华,杨永弘,等.儿科临床分离株中质粒介导喹诺酮类药物耐药基因qnr在产ESBLs或AmpC酶大肠埃希菌和肺炎克雷伯菌中的流行[J].中国感染与化疗杂志,2009,9(6):430-435.
    66. Pomba C, Da F J, Baptista B C, et al. Detection of the pandemic O25-ST131humanvirulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2andaac(6')-Ib-cr genes in a dog[J]. Antimicrob Agents Chemother,2009,53(1):327-328.
    67. Mushtaq S, Woodford N, Potz N, et al. Detection of CTX-M-15extended-spectrumbeta-lactamase in the United Kingdom.[J]. J Antimicrob Chemother,2003,52(3):528-529.
    68. Fihman V, Lartigue M F, Jacquier H, et al. Appearance of aac(6')-Ib-cr gene amongextended-spectrum beta-lactamase-producing Enterobacteriaceae in a Frenchhospital.[J]. J Infect,2008,56(6):454-459.
    69. Deng Y, He L, Chen S, et al. F33:A-:B-and F2:A-:B-plasmids mediatedissemination of rmtB-blaCTX-M-9group genes and rmtB-qepA in Enterobacteriaceaeisolates from pets in China.[J]. Antimicrob Agents Chemother,2011,55(10):4926-4929.
    70. Neuhauser M M, Weinstein R A, Rydman R, et al. Antibiotic resistance amonggram-negative bacilli in US intensive care units: implications for fluoroquinolone use[J].JAMA,2003,289(7):885-888.
    71.李涛,熊自忠,徐元宏.一个新qnr基因亚型的克隆表达及其多重耐药机制的研究[J].中华检验医学杂志,2006(06):546-549.
    72.王明贵,Johnh Tran,Georgea Jacoby,等.大肠埃希菌临床分离株对喹诺酮类抗菌药的质粒介导耐药[J].中国感染与化疗杂志,2006,6(4):217-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700