肠浒苔多糖结构及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用蒸馏水和稀碱溶液依次提取肠浒苔水溶性多糖,通过不同方法对两种粗多糖进行分级,研究多糖的化学结构、抗肿瘤和免疫活性,并探讨多糖的结构与生物活性的关系。
     用95%的乙醇回流后,用蒸馏水以浸提比为1:20提取多糖,常规干燥后得到肠浒苔水溶性粗多糖WE;残渣洗净、干燥后,用0.5 M NaOH室温下提取,盐酸中和,离心,常规干燥后得碱提水溶性粗多糖AE。WE经冻融分级、脱蛋白、离子交换层析和分子筛凝胶层析纯化后得到中性糖WEA和酸性糖WEB;AE经冻融分级、脱蛋白、超滤分级和分子筛凝胶层析后得到DAEA(过膜部分)和DAEB(膜上部分)。HPLC检测WEA、WEB、DAEA和DAEB均为单一峰,平均分子量分别为72.03kDa、60.12kDa、18.21kDa和46.80kDa。
     GC分析、间羟联苯法及离子色谱检测表明(摩尔百分含量,以下同):WE中含有鼠李糖(58.00%)、葡萄糖(20.25%)、木糖(13.54%)、半乳糖(2.27%)、甘露糖(2.26%)和葡萄糖醛酸(3.43%);WEA含有葡萄糖(55.24%)、鼠李糖(23.76%)、木糖(17.11%)、甘露糖(2.21%)及半乳糖(1.67%);WEB含有鼠李糖(68.81%)、木糖(9.40%)、半乳糖(4.89%)和葡萄糖醛酸(16.89%),硫酸根19.98%。AE含有鼠李糖(15.93%)、甘露糖(18.04%)、半乳糖(13.09%)、葡萄糖(11.96%)阿拉伯糖(10.94%)、核糖(8.89%)、木糖(5.29%)和葡萄糖醛酸(15.86%);DAEA含有葡萄糖(33.69%)、鼠李糖(11.44%)、半乳糖(9.64%)、甘露糖(7.92%)、木糖(2.79%)、阿拉伯糖(7.58%)和葡萄糖醛酸(29.65%);DAEB含有鼠李糖(69.20%)、木糖(12.90%)、葡萄糖(8.20%)、半乳糖(7.40%)及葡萄糖醛酸(2.30%),硫酸根9.6%。
     对肠浒苔多糖各级分免疫活性研究表明:WE、WEA、WEB、AE和DAEB能够增强淋巴细胞的增殖和腹腔巨噬细胞的吞噬作用,促进巨噬细胞分泌NO,增强诱导型一氧化氮合酶(iNOS)活性,促进肿瘤坏死因子-α(TNF-α)的分泌。其中水提多糖中WEB的免疫活性优于WEA和WE;碱提多糖中DAEB的免疫活性优于AE,而DAEA活性不明显。
     对肠浒苔多糖各级分进行体外抗肿瘤实验研究表明:WE、WEA、WEB、AE、DAEA及DAEB对S 180、Hela、HepG2细胞均没有抑制作用。
     根据上述结果,选择WEA、WEB和DAEB进行抗肿瘤实验研究。结果表明:WEA、WEB和DAEB均能抑制小鼠体内移植性肿瘤S180的生长。WEB抗肿瘤活性优于WEA和DAEB,WEB在400 mg/kg时抑瘤率最高,为74.57%。并且WEA、WEB和DAEB均能增加荷瘤小鼠的相对脾重和相对胸腺重,增加血清中TNF-α的含量。
     采用部分酸水解、高碘酸氧化、Smith降解、甲基化及IR、GC、GC-MS、13C-NMR等方法对WEB和DAEB进行结构分析。WEBD和WEBD-R甲基化结果比较表明WEB中Rha以(1→4)键型为主,还有(1→2),(1→2,4)、(1→4)、和(1→3)连接键型;Xyl和Gal的连接键型均为(1→),同时含有(1→4)-GlcA及少量(1→)-GlcA;该糖中每5个(1→4)-Rha中就有一个分支,分支点在O-2。通过WEB和WEBD的13C-NMR结果比较发现,WEB中硫酸根位于鼠李糖的O-3。DAEB甲基化分析结果表明DAEB由(1→)、(1→4)、(1→2,4)-Rha;(1→)、(1→2,3)、(1→3)-Xyl;(1→4)-Glc及(1→3)-Gal组成;每6个(1→4)-Rha中就有一个分支,分支点在O-2。另外,通过对DAEB和DAEB-D的甲基化结果比较表明,大部分硫酸根位于(1→4)-Rha的O-3,还有一少部分硫酸根位于(1→3)-Xyl的O-2位。
     最后,本论文检测了硫酸根离子对WEB免疫活性的影响。结果表明,WEBD对淋巴细胞转化的促进作用,以及对巨噬细胞的激活作用明显减弱。可见,硫酸根与酸性多糖WEB的免疫活性密切相关。
The polysaccharides were isolated sequently from Enteromorpha intestinalis by hot water, diluted alkali solution. Purification, immunostimulation and antitumor activities and the structure of these polysaccharides were studied in this paper. The relationship between the structure and activities of the polysaccharides was also discussed.
     First, the air dried algae was extracted with 95% ethanol at 60°C for 2 h to remove pigment and micromolecular substance. Then the residues were extracted with distilled water at 90°C for 2 h, the solid-liquid ratio was 1:20, the progress was repeated twice. After combination, concentration and lyophillization, we obtained the crude polysaccharide WE. The water unextractable solid was washed, dried and extracted with 0.5 M NaOH solution which contained 0.3% (w/w) KBH4 at room temperature for 2 h, and the green slurry was filtered through line cloth. The suspension was neutralized with hydrochloric acid (1 M) and filtered. The supernatant containing water-soluble polysaccharide was dialyzed, concentrated, lyophilized and then dried, yielding the crude polysaccharide AE.
     The water-extracted polysaccharide WE was fractionated by frozen-thawed, deproteinated by Sevag method, and purified by anion-exchange chromatography on a column of DEAE-Sepharose CL-6B and gel filtration chromatography on a column of Sepharose CL-6B. Then two fractions were obtained and named as WEA (the neutral polysaccharide) and WEB ( the acid polysaccharide), respectively. WEA and WEB appeared as single symmetrical peak on HPLC, and the average molecular weights were 72.03kDa and 60.12kDa which were caculated through calculation from dextran standard. The alkali-extracted polysaccharide AE was fractionated by frozen-thawed, deproteinated by Sevag method, and purified ultrafiltration and gel filtration chromatography on a column of Sepharose CL-6B. Then two fractions were obtained and named as DAEA and DAEB, respectively. DAEA and DAEB appeared as single symmetrical peak on HPLC, and the average molecular weights were 18.21kDa and 46.80kDa.
     GC analysis showed that WE was composed of Rha (58.00%), Glc (20.50%), Xyl (13.54%), Gal (2.27%), Man (2.26%), and small content of glucuronic acid (3.43%); WEA was composed of Glc (55.24%), Rha (23.76%), Xyl (17.11%), Man (2.21%) and Gal (1.67%); the acid fraction WEB was composed of Rha (68.81%), Xyl (9.40%), Gal (4.89%) and Glucuronic acid (16.89%), the sulfate content of WEB was 19.98%. AE was composed of Rha (15.93%), Man (18.04%), Gal (13.09%), Glc (11.96%), Ara (10.94%), Rib (8.89%), Xyl (5.29%), and glucuronic acid (15.86%); DAEA consisted of Glc (33.69%), Rha (11.44%), Gal (9.64%), Man (7.92%), Ara (7.58%) and Xyl (2.79%); DAEB consisted of Rha (69.20%), Xyl (12.90%), Glc (8.20%), Gal (7.40%) and small content of glucuronic acid (2.30%), the sulfate content of WEB was 9.6%.
     WE, WEA, WEB, AE, DAEA and DAEB was cultivated with lymphocyte cells or peritoneal macrophages. Among the six polysaccharides, WEA, WEB and DAEB could induce lymphoctes proliferation, increase the production of TNF-αin macrophages, and dose-dependently stimulate macrophages to produce NO through the up-regulation of inducible NO synthase (iNOS) activity. The activity of WEB was better than that of WEA and WE. After desulfation, the immunostimulation activities of the polysaccharide WEB was strongly decreased, or even completely disappeared. It was indicated the sulfate group was indispensable for immunostimulation of WEB. Among the alkali-extracted polysaccharides, DAEB showed the better immunostimulation activity.
     At the dose of 100, 200, and 400mg/kg, WEA, WEB and DAEB could inhibit tumor growth in S180 tumor-bearing mice, WEB had better activity than WEA and DAEB, the maximal tumor inhibition rate was 74.70% at the does of 400 mg/kg. Meanwhile, they increased in the relative spleen and thymus weight and expression of tumor necrosis factor-alpha (TNF-α) in serum.
     However, WE, WEA, WEB, AE, DAEA and DAEB at the concentration up to 800μg/ml did not affect the growth of S180, Hela and HepG2 tumor cells. These results indicated that the tumor inhibitory activity of the three fractions was not due to their cytotoxicities on tumor cells, but may be related to the stimulation of immune system, which has a great significance in therapeutics of the tumor growth.
     On the basis of the methylation analysis applied for native polysaccharide, desulfated polysaccharide and desulfated-reduced polysaccharide, partial acid hydrolysis, periodate oxidation and 13C NMR analysis suggested that WEB was mainly contained (1→4)-linked-rhamnose, and other linkages as (1→2), (1→2, 4) and (1→3)-rhamnose, and with a branch at the O-2 position every five (1→4)-linked-rhamnose residues. It also had nonreducing terminal Xyl and Gal; amount of (1→4)-linked-GlcA, and small content of (1→)-linked-GlcA. The O-3 of (1→4)-linked-rhamnose was the sites of sulfation. DAEB was branched and contained principally terminal, (1→4), (1→2,4)-linked-rhamnose; terminal, (1→3)-linked-xylose, (1→4)-linked-glucose, and (1→3)-linked-galactose. Desulfaction of DAEB demonstrated that the O-3 of rhamnose and O-2 of xylose were the sites of sulfation.
引文
[1]Borchers A T, Stern J S, Hackman R M, et al. Mushrooms, tumors and immunity[J]. Proc Soc Exp Biol Med,1999,221:281–293.
    [2] Li X L, Zhou A G, Han Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum invitro[J].Carbohydr Polym, 2006, 66: 34-42.
    [3]Li X, Jiao L L, Zhang Xu,et al. Anti-tumor and immunomodulating activities of proteoglycans from mycelium of Phellinus nigricans and culture medium[J].Int Immunopharmaco,2008,8: 909-915.
    [4]Sun Y G, Wang S S, Li T B, et al. Purification, structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) Teng[J]. Bioresour Technol, 2008, 99: 900-904
    [5] Anti-tumor and immunomodulating activities of protegoglycans from mycelium of Phellinus nigricans and culture medium[J]. Int Immunopharmacol, 2008, 8: 909-915
    [6]Schaeffer D J, Krylov V S. Anti-HIV activity of extracts and compounds from algae and cyanobacteria[J]. Ecotoxicol Environ Saf, 2000, 45: 208―227.
    [7]徐静,谢蓉桃,林强,等.海洋生物多糖的种类及其生物活性[J].中国热带医学,2006,6(7):1277―1279.
    [8]候纪明.海藻化学研究的进展[J].海洋与湖沼. 1986,3: 306-328.
    [9]张维杰糖复合物生化研究技术[M].浙江大学出版社,1999,348-349.
    [10]Falshaw R, Bixler H J, Johndro K. Structure and performance of commercialkappa-2 carrageenan extracts: I. Structure analysis[J]. Food Hyd, 2001, 15: 441-452.
    [11]Watt D K, S A. O'Neill, Percy A E, Brasch D J. Isolation and characterisation of a partically methylated galacto-glucurono-cyl-glycan, a unique polysaccharide from the red seaweed. Apophloea lyallii [J]. Carbohydr. Polym,2002, 50: 283-294.
    [12]Chiovitti A, Bacic A, Ctaik D J,et al. A nearly idealized 6’-O-methylatedη-carrageenan from the Australian red alga Claviclonium ovatum(Acrotylaceae, Gigartinales)[J]. Carbohydr Res, 2004, 339:1459-1466.
    [13]Kolender A A, Matulewicz M C. Sulfated polysaccharides from the red seaweed Georgiella confluens[J]. Carbohydr Res, 2002, 337: 57-68.
    [14]Cardoso M A, Noseda M D, Fujii M T, et al. Sulfated xylomannans isolated from red seaweeds Chondrophycus papillosus and C. flagelliferus (Ceramiales) from Brazil[J]. Carbohydra. Res,2007, 342: 2766-2775.
    [15]Chizhov A O, Dell A, Morris H R, et al. A study of fucoidan from the brown seaweed Chorda filum[J]. Carbohydr Res, 1999, 320:108-119.
    [16]Conchie J, Percival E G V. Fucoidan partⅡ. The hydrolysis of a methylated fucoidan prepared from Fucus versiculosus[J]. J Chem Soc, 1950:827-833.
    [17]Quemener B, Lahaye M, Dubigeon C B. Sugar determination in Ulvans by a chemical-enzymatic method coupled to high performance anion exchange chromatography[J]. J Appl Phycol, 1997, 9: 179-188.
    [18]Percival E, Wold J W. The acid polysaccharide from the green seaweed Ulva lactuca. PartⅡ.The site of the ester sulphate[J]. Ibid, 1963, 5459-5468.
    [19]Cassolato J E F, Noseda M D, Pujol C A, et al. Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma[J]. Carbohydr Res, 2008,343:3085-3095.
    [20]Love J, Percival E. The polysaccharides of the green seaweed codium fragile. PartⅡ.The water-soluble sulphated polysaccharides[J].J Chem Soc, 1964, 3348-3345.
    [21]Uehara T, Takeshita M, Maeda M. Study on anticoagulant-active arabinan sulfates from the green alga, Codium latum[J]. Carbohydr Res, 1992, 235: 309-311.
    [22]Matsubara K, Matsuura Y, Hori K, et al. An anticoagulant proteoglycan from the marine green alga, Codium pugniformis[J]. J Appl Phycol, 2000, 12: 9–14.
    [29]Matsubara K, Matsuura Y, Bacic A, Liao M L, Hori K and Miyazawa K. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum [J]. Int J Biol Macromol, 2001, 28: 395–399.
    [24]Bilan M I., Vinogradova E V., Shashkov A S, et al. Structure of a high lypyruvylated galactan sulfate from the Pacic green alga Codium yezoense (Bryopsidales,Chlorophyta)[J]. Carbohydr Res, 2007, 342:586-359.
    [25]White R C and Barber G A. An acidic polysaccharide from the cell wall of Chlorella pyrenoidosa[J]. Biochim. Biophys. Acta, 1972,264: 117–128.
    [26]Ogawa K, Yamaura M, et al. New Aldobiuronic Acid, 3-O-α-D-Glucopyranuronosyl-L-rhamnopyranose, from an Acidic Polysaccharide of Chlorella vulgaris. Biosci Biotechnol Biochem, 1998, 62:2030-2031.
    [27] Suarez E R, Kralovec J A, Noseda M D, et al. Isolation,characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa[J]. Carbohydr Res, 2005,340:1489-1498.
    [28]Shear M J,et al. Nat Cancer Inst, 1943,4:81.
    [29]Guven K C, Ozsoy Y, Ulutin O N. Anticoagulant,fbrinolytic and Antiaggregant activity of carrageenans and alginic acid[J]. Botanica Marina, 1991, 34: 429-432.
    [30]Zhang Q, Li N, Zhou G.. In vivo antioxidant activity of polysaccharide fraction from Porphyrahaitanesis (Rhodephyta) inagingmice [J]. Pharmacol Res, 2003, 48: 151-155.
    [31]Xu Z H, Li Z E, Zhang X J, et al. Application of Fucodian polysaccharides sulfate as a drug fortreating chronic renal failure[J]. CN Patent, 1995, 120,283, 7 16 December.
    [32]Fujihara M. Sugar consitituents of fucoidan from sorgasum ringgoldianum and their biological activity [J]. Carbohydr Res, 1984, 125: 97-99.
    [33]金R J B著,刘以川译.癌生物学[M].科学出版社.2002,5.
    [34]Zhou G F, Sun Y P , Xin H, et al. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus[J]. Pharmacological Research, 2004, 50: 47-53.
    [35]Zhou G F, Sheng W X,Yao W H, et al.Effect of low molecularλ-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu[J]. Pharmacological Research, 2006,53: 129-134.
    [36]Zhou G F, Xin H, Sheng W X, et al. In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular-carrageenan from Chondrusocellatus[J]. Pharmacological Research, 2005, 51: 153-157.
    [37] Marinho S E, Bourrent E. Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta)[J]. Bioresour Technol, 2005, 96: 379-382.
    [38] Sheng J C, Yu F, Xin Z H, et al. Preparation, identication and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa[J]. Food Chem, 2007, 105:533-539.
    [39] Koyanagi S, Tanigawa N, Nakagawa H, et al.Ocersulfation of fucoidan enhances its anti-angiogenic and antitumor activities [J]. Biochem Pharmacol, 2003, 65: 173-179.
    [40]杨小林.褐藻糖胶有丝分裂原效应.中华微生物学和免疫学杂志[J].1991,11:282-283.
    [41]Itoh H, Noda H, Amano H, er al. Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae[J]. Anticancer Res,1993,13: 2045-52.
    [42]Ren D L, Wang J Z, Noda H,et al. The effects of an algal polysaccharide Gloiopeltis tenax on transplantable tumors and immune activities in mice [J]. Planta Med, 1995, 61: 120.
    [43]Yoshizawa Y, Tsunehiro J, Nomura K, et al. In vivo macrophage-stimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa)[J]. Biosci, Biotechnol Biochem, 1996, 60: 1667-1671.
    [44]Yoshizawa Y, Enomoto A, Todoh H, et al. Activation of murine macrophages by polysaccharide fractions from marine algae (Porphyra yezoensis)[J]. Biosci Biotechnol Biochem, 1993, 57: 1862-1866.
    [45] Leiro J M, Castro R, Arranz J A, et al. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol, 2007, 7: 879-988.
    [46]卞俊,储智勇,鲍蕾蕾,等.孔石莼多糖对小鼠免疫功能的影响[J].中国生化药物杂志,2006,27(5):276―279.
    [47] Pugh N, Ross S A, ElSohly HN, et al. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa, Planta Med, 2001, 67 : 737–742.
    [48]Huleihe1 M,Talyshinsky M,SouPrun Y,et al. Evaluation of the effeet of a red mieroalgal Polysaeeharide on herpes-infeeted Vero cells[J]. Appl Speetrosc,2003,57: 390-395.
    [49]王安利,胡俊荣.海藻多糖生物活性研究进展[J].海洋科学,2002,26:36-39.
    [50]Witvrouw M, Clercq E D. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs[J].Gen Pharmac, 1997,29: 497-511.
    [51]Damonte E, Neyts J, Pujol C A, et al. Polysaccharides as antiviral agents:antiviral activity of Carrageenan[J]. Biochem Pharmacol, 1994, 47: 2187-2192.
    [52]魏文清,王明霞,丛剑波等.海藻硫酸多糖抗乙型肝炎病毒的实验研究[J].中华肝脏病杂志,2002,10:112.
    [53]Speiier R. Seaweed compound compoud anti-HIV efficacy will be tested in southern Africa[J]. Lancet. 2002, 359: 1675.
    [54]于红.PSP对HSV-1糖蛋白gGmRNAb表达的抑制作用[J].青岛大学医学院学报,2002,3:239-241.
    [55]Cassolato J E F, Noseda M D, Pujol C A, et al. Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma[J]. Carbohydr Res, 2008,343:3085-3095.
    [56] Muto S, Niimura K, Oohara M, et al. Polysaccharides and antiviral drugs containing the same as active ingredient.US Patent, 1994,5089481.
    [57]Pereira M G, Benevides N M B, Melo M R S, et al. Structure and anticoagulantactivity of a sulfated galactan from the red alga,Gelidium crinale.Is there a specific structural requirement for the anticoagulant action[J]. Carbohydr Res, 2005, 340(12): 2015―2023.
    [58]Chemical characteristics and anticoagulant activities of a sulfated polysaccharide and its fragments from Monostroma latissimum[J]. Caobohydr Polym,2008,71: 428-434.
    [59]Matsubara K, Matsuura Y, Bacic A, et al. Anticoagulant properties of a sulfated galactan preparation from a Marine green alga, Codium cylindricum. Int J Biolo Macromol,2001,28:395-399.
    [60]Hayakawa Y, Hayashi T, Lee J, et al. Inhibition of thrombin by sulfated polysaccharides isolated from green algae[J]. Biochica et Biophysica Acta, 2000, 1543(1): 86-94.
    [61]Li X L, Zhou A G. Preparation of polysaccharides from Acanthopanax senticosus and its inhibition against irradiation-induced injury of rat[J]. Carbohydr Polym, 2007, 67 :219-226.
    [62]沈业寿,郑媛,李赓等.亮菌多糖抗小鼠辐射损伤作用的研究[J].中华放射医学与防护杂志, 2007, 27: 340-342.
    [64]黄明欣.1985年以来辐射防护剂研究进展[J].国外医学军事医学分册,1990,2:55-59.
    [63]庞启深,郭宝江,阮继红.螺旋藻抗辐射多糖的提纯和分析[J].生物化学与生物物理学报, 1989, 215: 445-449.
    [64]于志深.特殊营养学[M].北京:科学出版社, 1991.
    [65]Maisin J R, Topaloca S, et al. Radioprotection by polysaccharides[J]. Pharmac Ther, 1988, 39: 255-259.
    [66]顾宁炎,刘宇峰.紫球藻胞外多糖抗辐射的生物学活性研究[J].海洋科学,2002,26:53-56.
    [67]惠宏襄,赵小宁,金明等.自由基与细胞凋亡[J].生物化学与生物物理学进展,1996,23:12-15.
    [68]惠宏襄,赵小宁,金明等.自由基与细胞凋亡[J].生物化学与生物物理学进展,1996,23:12-15.
    [69]Qi H, Zhang Q, Zhao T, et al. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlophyta) in vitro. Int J Biol. Macromol, 2005, 37: 195-199.
    [70]Wang J, Zhang Q B, Zhang Z S, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica[J]. Int J Biol Macromol, 2008, 42:127-132.
    [71]Qi H M, Zhao T T, Zhang Q B, et al. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa(Chlorophyta)[J].J Appl Phycol,2005,17: 1573-1576.
    [72]周惠萍、蒋巡天、王淑如、陈琼华.浒苔多糖的降血脂及其对SOD活力和LPO含量的影响[J].生物化学杂志, 1995,11:161-165.
    [73]高福成编.新型海洋食品.轻工业出版社,1999,100-101.
    [74]Morales M A, Valdez M C, Dominguez S C, et al. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source[J]. J Food Compo Anal, 2005, 18: 79-88
    [75]徐大伦,黄晓春,杨文鸽,吴丹,曹卫庆.浒苔营养成分分析[J].浙江海洋学院学报, 2003,22:319-320.
    [76]Mckinnell J P, Perciral, E. Structure investigations on the water-soluble polysaccharide of the green seaweed Enteromorpha compressa[J]. J Chem Soc, 1962b, 3141-3148.
    [77]Ray B. Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features[J]. Carbohydr Polym, 2006, 66: 408-416.
    [78]Chattopadhyay K, Adhikari U, Lerouge P, et al. Polysaccharides from Caulerpa racemosa: Purification and structural features[J]. Carbohydr Polym, 2007b, 68: 407-415.
    [79]Noda H , Amano H, Arashima K,et al. Antitumor activity of marine algae[J]. Hydrobiologia, 1990, 204: 577- 584.
    [80]徐大伦,黄晓春,杨文鸽,薛长湖,王海洪.浒苔多糖的分离纯化及其对非特性免疫功能的体外实验研究[J].中国食品学报, 2006,6:17-21.
    [81]赵素芬、吉宏武、郑龙颂.三种绿藻多糖的提取及理化性质和活性比较[J].台湾海峡,2006,25:484-189.
    [82]Yasantha A, Ki-Wan L, Se-Kwon K, et al. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea[J]. 2007, Bioresour Technol, 98: 1711-1716.
    [1] Alum N, Gupta P C. Structure of a water-soluble polysaccharide from the seeds of Cassia angustifolia[J]. Planta Med, 1986, 50: 308-310.
    [2] Dubios M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Anal.Chem, 1956, 28: 350-356.
    [3] Tullia M C C, Filisetti C. Measurement of Uronic Acid without Interference from Neutral Sugars[J]. Anal. Biochem, 1991, 197: 157-62.
    [4] Nagasawa K, Inoue Y, Kamata T. Solvolytic desulfation of glycosaminoglycuronan sulfates with dimethyl sulfoxide containing water or methanol[J]. Carbohydr Res, 1977, 58: 47-55.
    [5] Oosterveld A, Beldman G, Schols H A, et al. Arabinose and ferulic acid rich pectic polysaccharides extracted from sugar beet pulp[J]. Carbohydr Res, 1996, 288: 143-53.
    [6] Ray B, Lahaye M. Cell-wall polysaccharides from marine green alga Ulva“rigida”(Ulvales, Chlorophyta)[J]. Carbohydr Res, 1995, 274: 313-318.
    [7] Chattopadhyay K, Mandal P, Lerouge P, Driouich A, Ghosal P, Ray B. Sulphated polysaccharides from Indian samples of Enteromorpha compressa (Ulvales,Chlorophyta):Isolation and structural features [J]. Food Chem, 2007, 104: 928-935.
    [8] Ray B. Polysaccharides from Enteromorpha compressa:Isolation,purication and structural features[J]. Carbohydr Polym, 2006, 66: 408-416.
    [1]Chien C M, Cheng J L, Chang W T, et al. Polysaccharides of Ganoderma lucidum alter cell immunophenotypic expression and enhance CD56+NK-cell cytotoxicity in cord blood[J]. Bioorg Med Chem, 2004, 12: 5603-5609.
    [2]Weeks B A, Keisler A S, Myrvik Q N. Differential uptake of neutral red by macrophages from three species of estuarine fish[J]. Dev Comp Immunol, 1987, 11: 117-24.
    [3]Li W D, Ren L S, Lin Z B. Antitumor activity and immunopharmacological effects of Linglong liquidum extractum (LLE)[J]. Chin J New Drug, 2002, 11: 928–931.
    [4]PagèM, Bejaoui N, Cinq M B, et al. Optimization of the tetrazolium-based colorimetric assay for the measurement of cell number and cytotoxicity[J]. Int J Immunopharmacol, 1988, 10: 785–93.
    [5]Han S B, Kim Y H, Lee C W, et al. Characteristic immunostimulation by angelan isolated from Angelica gigas Nakai[J]. Immunopharmacology, 1998, 40: 39–48.
    [6]Kralovec J A, Metera K L, Kumar J R, et al. Immunostimulatory principles from Chlorella pyrenoidosa—Part 1:Isolation and biological assessment in vitro[J]. Phytomedicine, 2007, 14: 57-64.
    [7]卞俊,储智勇,鲍蕾蕾,成熙,梁小锋,刘先降,周翔.孔石莼多糖对小鼠免疫功能的影响[J].中国生化药物杂志, 2006,27:276-279.
    [8]Yoshizawa Y, Enomoto A, Todoh H, et al. Activation of murine macrophages by polysaccharide fractions from marine algae (Porphyrayezoensis)[J]. Biosci Biotechnol Biochem, 1993,57: 1862-1866.
    [9]Yoshizawa Y, Ametani A, Tsunehiro J, et al. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyrayezoensis):structure-function relationships and improved solubility[J]. Biosci Biotechnol Biochem, 1995 , 59: 1933-1937.
    [10]Yoshizawa Y, Tsunehiro J, Nomura K, et al. In vivo macrophage-stimulation activity of the enzyme- degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa)[J]. Biosci Biotechnol Biochem, 1996,60: 1667-1671.
    [11]Leiro J M, Castro R, Arranz J A, et al. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh[J]. Int Immunopharmacol, 2007, 7: 879-988.
    [12]Kurashige S A, Kuzawa Y E, Ndo F. Effects of Lentinus edodes, Grifola frondosa and Pleurotus ostreatus administration on cancer outbreak, and sctivities of macrophages and lymphocytes in mice treated with a carcinogen,N-buthy-N-butanolnitrosoamine[J]. Immunophar Immunot, 1997, 19: 75-83.
    [13]Schepetkin I A, Quinn M T. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential[J]. Int Immunopharmacol, 2006, 6: 317-333.
    [14]赵红卫.一氧化氮与免疫调节[J].上海免疫学杂志,1996,16:373.
    [15] Brune B. Nitric oxide: NO apoptosis or turning it ON?[J]. Cell Death Differ, 2003, 10: 864–869.
    [16] Lee H S, Lillehoj H S, Cho S M, et al.Immunostimulatory effects of oriental plum (Prunus salicina Lindl.)[J]. Comp Immunol Microbiol Infect Dis,2009,32: 407-417.
    [17]张灵芝,谭敦勇,周爱儒.组织细胞一氧化氮及合成酶测定的几种方法[J].北京医科大学学报, 1994,26:225-227.
    [18]郑永晨.一氧化氮与巨噬细胞的免疫调节[J].国外医学免疫学分册, 1995,4:204-206.
    [19]Faanes B, Merluzzi V J, Ralph P. International symposium on new trends in human immunology and cancer immunotherapy[M]. In: B. Serrou and C. Rosenfield (eds.). Doin, Paris. 1980, 953–64.
    [20]Zhou G. F, Sun Y P, Xin H, et al. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus[J]. Pharm Res, 2004, 5: 47-53.
    [21]Ren D L, Wang J Z, Noda H,et al. The effects of an algal polysaccharide from Gloiopeltis tenax on transplantable tumors and immune activities in mice[J]. Planta Med, 1995, 61: 120-125.
    [22]龚非力,医学免疫学[M].科学出版社,2003.
    [23]Bohn J A, Bemiller J N. (1-3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships[J]. Carbohydr Polym, 1995, 28:3-14.
    [24]Carlucci M J, Pujol C A, Ciancia M, et al. Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized deterivatives:correlation between structure and biological activity[J]. Int J Biol Macromol, 1997, 20(4): 97-105.
    [25]Mazumder S, Ghosal P K, Carlos A, et al. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta)[J]. Int J Biol Macromol, 2002, 31: 87-95.
    [1]Chizhov A O, Dell A, Morris H R, et al. A study of fucoidan from the brown seaweed Chorda filum[J]. Carbohydr Res, 1999, 320: 108-119.
    [2]Bao X F, Wang X S, Dong Q, et al. Structural features of immonologically active polysaccharides from Ganoderma Lucidum[J]. Phytochemistry, 2002, 59: 175-181.
    [3]Fischer M H, Nanxiong Y, Gray G R, et al. The gel-forming polysaccharide of psyllium husk [J]. Carbohydr Res, 2004, 339: 2009-2017.
    [4]Taylor R L, Conrad H E. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups[J]. Biochemistry. 1972, 11: 1383–1388.
    [5]Swlvendran R R. Avoiding oxidative degradation during sodium hydroxydimethyloidine-mediared carbohydrate methylation in dimethyl sulfoxide[J]. Carbohydr Res, 1993, 245: 1-10.
    [6] Percival E, Word J K. The acidic polysaccharides from the green seaweed Ulva lactuca. Part. The sites of ester sulfate[J]. J Chem Soc, 1963,5459-5468.
    [7]Ray B, Lahaye M. Cell-wall polysaccharides from the marine green alga Ulva“rigida”(Ulvales, Chlorophyta).Chemical structure of ulvan[J]. Carbohydr Res, 1995, 274: 313-318.
    [8]KacurákováM, Capek P, SasinkováV, et al. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses[J]. Carbohydr Polym, 2000, 43: 195-203.
    [9]Lahaye M, Ray B. Cell-wall polysaccharides from the marine green alga Ulva“rigida”Ulvales, Chlorophyta)-NMR analysis of ulvan oligosaccharide Lahaye[J]. Carbohydr Res, 1996, 283: 161-173.
    [10]Arnab K. O, Debabrata M, Krishnendu C, et al. Structure assignment of a heteropolysaccharide isolated from the gum of Cochlospermum religiosum (Katira gum)[J]. Carbohydr Res, 2008, 343: 1222-1231.
    [11]Cassolato J E F, Noseda M D, Pujol C A, et al. Chemical structure and antiviral of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma[J]. Carbohydr Res, 2008, 343: 3085-3095.
    [12]Chattopadhyay K, Adhikari U, Lerouge P, et al. Polysaccharides from Caulerpa racemosa: Purification and structural features[J]. Carbohydr Polym, 2007b, 68: 407-415
    [1]Schaeffer D J, Krylov V S. Anti-HIV Activity of Extracts and Compounds from Algae and Cyanobacteria. Ecotoxicol Environ Saf, 2000, 45: 208-227.
    [2]Witvrouw M, Clercq E D. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs[J]. Gen Pharmac, 1997,29: 497-511.
    [3]焦中高,刘杰超,周红平等.硫酸化修饰对红枣多糖自由基和亚硝酸基清除活性的影响[J].中国食品学报,2007,7:17-22.
    [4]Teruya T, Konishi T, Uechi S, er al. Anti-proliferative activity of oversulfated fucoidan from commercially cultured Cladosiphon okamuranus TOKIDA in U937 cells[J]. Int J Biol Macromol, 2007, 41: 221-226.
    [5]Koyanagi S, Tanigawa N, Nakagawa H, et al. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities[J]. Biochem Pharmacol, 2003, 65: 173-179.
    [6]Leiro J M, Castro R, Arranz J A, et al. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh[J]. Int Immunopharmacol, 2007, 7: 879-988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700