口服胰岛素聚合物纳米粒:制备及其结构—性能关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注射胰岛素是治疗胰岛素依赖的I型糖尿病的一种传统方法,具有血糖控制不稳、每日多次注射、病人顺应性差的缺点。口服胰岛素是一种病人适用性好、服用方便的给药方式,符合内生胰岛素的分泌模式。但胰岛素口服给药时面临胃肠道酶降解和膜通透性差等多重障碍。聚合物纳米粒用于口服胰岛素给药载体时,能防止胰岛素不被酶降解,同时可以促进胰岛素吸收,有效改善其口服生物利用度。聚合物纳米粒的性能不仅由载体材料、药物的组成决定,还由颗粒的结构特性决定。研究胰岛素聚合物纳米粒的制备及其结构-性能关系,对多肽和蛋白质药物口服给药系统的设计和开发具有重要的意义。
     采用改进的复乳溶剂挥发法,制备了载胰岛素的乳酸羟基乙酸共聚物/羟丙基甲基纤维素邻苯二甲酸酯(PLGA/HP55)纳米粒。通过改进复乳中油相溶剂组成以及正交实验设计,以粒径、包封率和突释程度为评价指标,优化了纳米粒的制备工艺。表征了纳米粒的形貌、粒径、胰岛素载药及体外释放,评价了胰岛素PLGA/HP55纳米粒的口服给药效果。结果表明,制得的纳米粒粒径为181nm,分散良好,为球形实体粒子;具有较好的pH敏感释放性能。糖尿病大鼠口服该纳米粒后1-8h,显示出快速和持续的降血糖效果,相对生物利用度达11.3%。
     设计和制备了一种两级载体给药系统。一级载体为HP55包衣胶囊,保护纳米粒通过胃部;二级载体为乳酸羟基乙酸共聚物/尤特奇树脂RS100(PLGA/RS)纳米粒,肠溶胶囊在肠上部区域溶解后释放纳米粒,纳米粒粘附在肠上皮细胞促进胰岛素吸收。载胰岛素的PLGA/RS纳米粒采用超声乳化的复乳溶剂挥发法制备。通过对包封率和粒径的影响因素分析,确定了胰岛素PLGA/RS纳米粒的制备工艺。研究了制备参数对包封率和粒径的影响,表征了纳米粒的物理化学性质,如形貌、粒径、电位、载药能力及纳米粒在模拟肠胃介质下的稳定性。对该二级载体给药系统的体外释放性能和糖尿病大鼠口服后的体内生物活性进行了评价。PLGA/RS纳米粒粒径285nm,分散良好;具有正的zeta电位42mV;包封率和载药量分别为73.9%和6.7%;药效利用度达到9.8%。
     利用聚乙二醇(PEG)分子修饰蛋白质多肽药物是延长药物在体内半衰期的一个有效途径,将修饰产物用pH敏感聚合物包载,制备成pH响应释放的聚合物纳米粒,可减少胃肠内蛋白酶对药物的降解作用,增加肠道的吸收。通过聚合物载体材料的筛选,选择分子量100000的聚乳酸(PLA)作为载体材料,复乳溶剂挥发法制备了载聚乙二醇化胰岛素的PLA/HP55纳米粒。性能表征结果表明,纳米粒粒径251nm,颗粒分散良好,包封率91%;在模拟胃酸下减少突释,模拟肠液中释放超过70%,pH敏感释放性能比较好。载聚乙二醇胰岛素的pH敏感纳米粒结合了药物半衰期长和纳米粒pH敏感释放的特性,是一种潜在的新型长效口服降血糖制剂。
     最后,以pH敏感纳米粒作为研究体系,探讨聚合物纳米粒的结构-性能关系。采用二甲基亚砜(DMSO)和丙酮/水两种溶剂,通过乳液溶剂扩散法制备胰岛素PLGA/HP55聚合物纳米粒。通过组分溶解度参数、DSC和FTIR的研究显示,两种溶剂下制备的胰岛素聚合物纳米粒中,混合聚合物发生相分离,胰岛素主要分布聚合物HP55相中。纳米粒孔隙度结果表明,采用DMSO作溶剂制备的PLGA/HP55纳米粒具有较多的介孔。胰岛素可以直接从介孔中释放出来,纳米粒不具有pH敏感性。丙酮/水作溶剂制备的较少介孔的纳米粒中,胰岛素释放具有pH敏感性,纳米粒在酸性条件下胰岛素释放少,而在碱性条件下,由于pH敏感聚合物的溶解,胰岛素有效释放出来。
     本文在化学产品设计的理论和方法的指导下,针对胰岛素口服给药过程中面临的障碍,提出了对聚合物纳米粒的结构进行设计与改进的方案,制备的聚合物纳米粒具有潜口服给药的潜在应用,对开发具有高生物利用度的胰岛素聚合物纳米粒具有指导作用。
Oral insulin delivery is the convenient way to diabetic patients as it is the mostphysiological and comfortable means. However, it is a tough task for orally deliveringbioactive macromolecules, due to the highly organized array of barriers existed in thegastrointestinal (GI) tract, such as rapid enzymatic degradation and the poor intestinalabsorption. The polymeric nanoparticles protect insulin against degradation and facilitate theuptake of insulin through a paracellular or a transcellular pathway. Insulin loadedpH-sensitive nanoparticles, mucoadhesiven nanoparticles and PEGylated insulin loadedpH-sensitive nanoparticles were prepared and investigated as oral delivery systems for insulindelivery. With pH-sensitive nanoparticle as a model nanoparticle, the structure-performancerelationship of nanoparticle with different preparation condition was also evaluated.
     According to the principle of multiple emulsions solvent evaporation method, theinsulin-loaded poly (lactic-co-glycolic acid)/hydroxypropyl methylcellulose phthalate(PLGA/HP55) nanoparticles were prepared. The physicochemical characteristics, in vitrorelease of insulin and in vivo efficacy in diabetic rats of the nanoparticles were evaluated. Thenanoparticles showed the size of181nm, encapsulation efficiency of94%and goodpH-sensitive release property. When administered orally to diabetic rats, the nanoparticles candecrease rapidly the blood glucose level with a maximal effect between1and8h. Therelative bioavailability compared with subcutaneous injection (5IU/kg) in diabetic rats was11.3%.
     By filling of the mucoadhesive nanoparticles into the enteric capsule, we design andprepared a two-stage carrier delivery system. The stage-1carrier is the hard gelatin capsulescoated with pH sensitive enteric polymer, hydroxypropyl methylcellulose phthalate (HP55),which used to protect the nanoparticles through the stomach. The stage-2carrier is theinsulin-loaded cationic nanoparticles composed of the poly (lactic-co-glycolic acid)(PLGA)and Eurdragit RS (RS).The cationic nanoparticles aim to open the tight junction andenhance the absorption of released insulin. The nanoparticles were prepared with the multipleemulsions solvent evaporation method via ultrasonic emulsification. The optimizednanoparticles have a mean size of285nm, a positive zeta potential of42mV. The encapsulation efficiency was up to73.9%. In vitro results revealed that the initial burst releaseof insulin from nanoparticles was markedly reduced at pH1.2, which mimics the stomachenvironment. In vivo effects of the capsule containing insulin PLGA/RS nanoparticles werealso investigated in diabetic rat models. The oral delivered capsules induced a prolongedreduction in blood glucose levels. The pharmacological availability was found to beapproximately9.2%.
     PEGylation is an effective method to prolong the circulation half-life of insulin in vivo,recogition by the immune system and degradation by proteolytic enzymes. We designed andevaluated the feasibility combining insulin PEGylated insulin (PEG-ins) with pH-sensitivenanoparticles for oral insulin delivery. As we introduced the PLA (Mw=100000) as the carriermaterials, the pH-sensitive release of PEG-ins from the nanoparticles was improved. Morethan70%of insulin could be released from the PLA/HP55nanoparticles with the91%ofencapsulation efficiency. All the results of in vitro indicated that the integration of PLA/HP55nanoparticles with PEG-ins may be a promising approach for oral delivery of insulin withhighly potential bioavailability.
     At last, with pH-sensitive nanopartice as a model nanoparticle, thestructure-performance relationship of nanoparticle with different preparation condition wasalso evaluated. The PLGA/HP55nanoparticles were prepared via the emulsions solventdiffusion method with two different solvents, namely, DMSO and acetone/water. Themicrostructures of the nanoparticles were studied by the solubility parameters theory, DSC,FTIR, and the nitrogen adsorption technique. Phase-separated PLGA domains were observedfrom the nanoparticles prepared with both types of solvents. Mesopores were observed fromthe nanoparticles prepared with DMSO as the solvent and almost didn’t exist withacetone/water. The formation of mesopores accelerated the release of insulin, leading to noobvious pH-sensitivity of the nanoparticles prepared with DMSO. However, for thenanoparticles prepared with acetone/water, the release of insulin was pH-dependent.
引文
[1] Favre E., Marchal-Heusler L., Kind M. Chemical product engineering: research andeducational challenges [J]. Chemical Engineering Research and Design,2002,80(1):65-74
    [2] Bird R.B. Transport phenomena [J]. Applied Mechanics Reviews,2002,55: R1
    [3] Hill M. Chemical product engineering-the third paradigm [J]. Computers&ChemicalEngineering,2009,33(5):947-953
    [4] Costa R., Moggridge G.D., Saraiva P.M. Chemical product engineering: an emergingparadigm within chemical engineering [J]. AIChE Journal,2006,52(6):1976-1986
    [5]郭新东.化学产品设计中的结构-性能关系:药物控释系统[D],华南理工大学,广州,2010
    [6]钱宇,钱吉铮,江燕斌, et al.化学产品工程的理论和技术[J].化工进展,2003,22(003):217-223
    [7] Cussler E.L., Wagner A., Marchal-Heussler L. Designing chemical products requiresmore knowledge of perception [J]. AIChE Journal,2010,56(2):283-288
    [8] Banholzer W.F., Watson K.J., Jones M.E. How might biofuels impact the chemicalindustry?[J]. Chemical Engineering Progress,2008,104(3): S7-S14
    [9] Douglas J.M. Conceptual design of chemical processes [M], McGraw-Hill New York,1988
    [10] Wei J. Product engineering: molecular structure and properties [M], Oxford UniversityPress, USA,2007
    [11] Cussler E.L., Moggridge G. Chemical product design [M], Cambridge Univ Pr,2001
    [12] Wibowo C., Ng K.A. Product-centered processing: manufacture of chemical-basedconsumer products [J]. AIChE Journal,2002,48(6):1212-1230
    [13] Edwards M. The importance of chemical engineering in delivering products withcontrolled microstructure to customers [M], Institution of Chemical Engineers,1998
    [14] Smith B.V., Ierapepritou M.G. Integrative chemical product design strategies:Reflecting industry trends and challenges [J]. Computers&Chemical Engineering,2010,34(6):857-865
    [15] Skyler J. Prediction and prevention of type1diabetes: progress, problems, andprospects [J]. Clinical Pharmacology&Therapeutics,2007,81(5):768-771
    [16]项坤三.糖尿病的病因异质性及分型[J].中华内分泌代谢杂志,2005,21(004):397-401
    [17] Shaw J.E., Sicree R.A., Zimmet P.Z. Global estimates of the prevalence of diabetes for2010and2030[J]. Diabetes Research and Clinical Practice,2010,87(1):4-14
    [18] Gowthamarajan K., Kulkarni G. Oral insulin: fact or fiction?[J]. Resonance,2003,8(5):38-46
    [19] Beith J.L., Alejandro E.U., Johnson J.D. Insulin stimulates primary {beta}-cellproliferation via Raf-1kinase [J]. Endocrinology,2008,149(5):2251
    [20] Sabetsky V., Ekblom J. Insulin: A new era for an old hormone [J]. PharmacologicalResearch,2010,61(1):1-4
    [21] Daneman D. Type1diabetes [J]. The Lancet,2006,367(9513):847-858
    [22] Zambanini A., Newson R.B., Maisey M., et al. Injection related anxiety ininsulin-treated diabetes [J]. Diabetes research and clinical practice,1999,46(3):239-246
    [23] Pillai O., Panchagnula R. Insulin therapies-past, present and future [J]. DrugDiscovery Today,2001,6(20):1056-1061
    [24] Owens D.R., Zinman B., Bolli G. Alternative routes of insulin delivery [J]. DiabeticMedicine,2003,20(11):886-898
    [25] Veronese F.M., Pasut G. PEGylation, successful approach to drug delivery [J]. DrugDiscovery Today,2005,10(21-24):1451-1458
    [26] Flood T. Advances in insulin delivery systems and devices: beyond the vial andsyringe [J]. Insulin,2006,1(3):99-108
    [27] Arbit E., Kidron M. Oral insulin: the rationale for this approach and currentdevelopments [J]. Journal of Diabetes Science and Technology,2009,3(3):562-567
    [28] Shishko P., Kovalev P., Goncharov V., et al. Comparison of peripheral and portal (viathe umbilical vein) routes of insulin infusion in IDDM patients [J]. Diabetes,1992,41(9):1042
    [29] Katsuragi I., Okeda T., Yoshimatsu H., et al. Transplantation of normal islets into theportal vein of Otsuka Long Evans Tokushima Fatty rats prevents diabetic progression[J]. Experimental Biology and Medicine,2001,226(7):681
    [30] Guan J., Zucker P., Behme M., et al. Insulin resistance prevented by portal delivery ofinsulin in rats with renal subcapsular islet grafts [J]. Diabetes,1997,46(3):372
    [31] De Vos P., De Haan B., Vegter D., et al. Insulin levels after portal and systemic insulininfusion differ in a dose-dependent fashion [J]. Hormone and Metabolic Research,1998,30:721-725
    [32] Staehr P., Hother-Nielsen O., Levin K., et al. Assessment of hepatic insulin action inobese type2diabetic patients [J]. Diabetes,2001,50(6):1363
    [33] Peppas N.A., Kavimandan N.J. Nanoscale analysis of protein and peptide absorption:Insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles[J]. European Journal of Pharmaceutical Sciences,2006,29(3-4):183-197
    [34] Hamman J.H., Enslin G.M., Kotze A.F. Oral delivery of peptide drugs: barriers anddevelopments [J]. BioDrugs,2005,19(3):165-177
    [35] Carino G.P., Mathiowitz E. Oral insulin delivery [J]. Advanced drug delivery reviews,1999,35(2-3):249-257
    [36] Aoki Y., Morishita M., Takayama K. Role of the mucous/glycocalyx layers in insulinpermeation across the rat ileal membrane [J]. International Journal of Pharmaceutics,2005,297(1-2):98-109
    [37] Stoll B.R., Batycky R.P., Leipold H.R., et al. A theory of molecular absorption fromthe small intestine [J]. Chemical Engineering Science,2000,55(3):473-489
    [38] Bai J.P.F., Chang L. Effects of enzyme inhibitors and insulin concentration ontransepithelial transport of insulin in rats [J]. Journal of Pharmacy and Pharmacology,1996,48(10):1078-1082
    [39] Aoki Y., Morishita M., Asai K., et al. Region-dependent role of the mucous/glycocalyxlayers in insulin permeation across rat small intestinal membrane [J]. PharmaceuticalResearch,2005,22(11):1854-1862
    [40] Shao Z., Li Y., Krishnamoorthy R., et al. Differential effects of anionic, cationic,nonionic, and physiologic surfactants on the dissociation, α-chymotryptic degradation,and enteral absorption of insulin hexamers [J]. Pharmaceutical Research,1993,10(2):243-251
    [41] Powell D. Barrier function of epithelia [J]. American Journal ofPhysiology-Gastrointestinal and Liver Physiology,1981,241(4): G275
    [42] Milstein S.J., Leipold H., Sarubbi D., et al. Partially unfolded proteins efficientlypenetrate cell membranes--implications for oral drug delivery [J]. Journal ofControlled Release,1998,53(1-3):259-267
    [43] Joshi S.R., Parikh R.M., Das A. Insulin-history, biochemistry, physiology andpharmacology [J]. Journal-Association of physicians of India,2007,55(L):19-25
    [44]胡玉田,赵海龙,孙波, et al.胰岛素治疗糖尿病的研究现状[J].河北医药,2010,32(014):1943-1945
    [45] Vajo Z., Fawcett J., Duckworth W.C. Recombinant DNA technology in the treatmentof diabetes: insulin analogs [J]. Endocrine Reviews,2001,22(5):706
    [46] Lee E., Lee J., Jon S. A novel approach to oral delivery of insulin by conjugating withlow molecular weight chitosan [J]. Bioconjugate Chemistry,2010,21(10):1720-1723
    [47] Calceti P., Salmaso S., Walker G., et al. Development and in vivo evaluation of an oralinsulin-PEG delivery system [J]. European Journal of Pharmaceutical Sciences,2004,22(4):315-323
    [48] Asada H., Douen T., Waki M., et al. Absorption characteristics of chemicallymodified‐insulin derivatives with various fatty acids in the small and large intestine[J]. Journal of Pharmaceutical Sciences,1995,84(6):682-687
    [49] Gordon Still J. Development of oral insulin: progress and current status [J].Diabetes/Metabolism Research and Reviews,2002,18(S1): S29-S37
    [50] Wong T.W. Design of oral insulin delivery systems [J]. Journal of Drug Targeting,2010,18(2):79-92
    [51]谭惠文,余叶蓉.口服胰岛素制剂载体材料研究进展[J].生物医学工程学杂志,2010,27(6):6-9
    [52]席延卫,王娟,翟光喜.胰岛素口服制剂的研究现状[J].中国生化药物杂志,2006,27(01):58-60
    [53] Singh R., Singh S., Lillard J.W. Past, present, and future technologies for oral deliveryof therapeutic proteins [J]. Journal of Pharmaceutical Sciences,2008,97(7):2497-2523
    [54] Galindo-Rodriguez S.A., Allemann E., Fessi H., et al. Polymeric nanoparticles for oraldelivery of drugs and vaccines: a critical evaluation of in vivo studies [J]. Criticalreviews in therapeutic drug carrier systems,2005,22(5):419-463
    [55] Jung T., Kamm W., Breitenbach A., et al. Biodegradable nanoparticles for oraldelivery of peptides: is there a role for polymers to affect mucosal uptake?[J].European Journal of Pharmaceutics and Biopharmaceutics,2000,50(1):147-160
    [56] Des Rieux A., Fievez V., Garinot M., et al. Nanoparticles as potential oral deliverysystems of proteins and vaccines: A mechanistic approach [J]. Journal of ControlledRelease,2006,116(1):1-27
    [57] Lin Y.H., Chen C.T., Liang H.F., et al. Novel nanoparticles for oral insulin delivery viathe paracellular pathway [J]. Nanotechnology,2007,18(10):-
    [58] Damge C., Reis C.P., Maincent P. Nanoparticle strategies for the oral delivery ofinsulin [J]. Expert Opinion on Drug Delivery,2008,5(1):45-68
    [59] Chen M.C., Sonaje K., Chen K.J., et al. A review of the prospects for polymericnanoparticle platforms in oral insulin delivery [J]. Biomaterials,2011,32(36):9826-9838
    [60] Damge C., Michel C., Aprahamian M., et al. Nanocapsules as carriers for oral peptidedelivery [J]. Journal of Controlled Release,1990,13(2-3):233-239
    [61] Damge C., Vranckx H., Balschmidt P., et al. Poly (alkyl cyanoacrylate) nanospheresfor oral administration of insulin [J]. Journal of Pharmaceutical Sciences,1997,86(12):1403-1409
    [62] Lowe P.J., Temple C.S. Calcitonin and insulin in isobutylcyanoacrylate nanocapsules:protection against proteases and effect on intestinal absorption in rats [J]. Journal ofPharmacy and Pharmacology,1994,46(7):547-552
    [63] Chalasani K.B., Russell-Jones G., Yandrapu S.K., et al. A novel vitaminB12-nanosphere conjugate carrier system for peroral delivery of insulin [J]. Journal ofControlled Release,2007,117(3):421-429
    [64] Zhang N., Ping Q., Huang G., et al. Lectin-modified solid lipid nanoparticles ascarriers for oral administration of insulin [J]. International Journal of Pharmaceutics,2006,327(1-2):153-159
    [65] Krauland A.H., Alonso M.J. Chitosan/cyclodextrin nanoparticles as macromoleculardrug delivery system [J]. International Journal of Pharmaceutics,2007,340(1-2):134-142
    [66] Woitiski C., Neufeld R., Veiga F., et al. Pharmacological effect of orally deliveredinsulin facilitated by multilayered stable nanoparticles [J]. European Journal ofPharmaceutical Sciences,2010,41(3):556-563
    [67] Sarmento B., Ribeiro A., Veiga F., et al. Alginate/Chitosan nanoparticles are effectivefor oral insulin delivery [J]. Pharmaceutical Research,2007,24(12):2198-2206
    [68] Hinds K.D., Kim S.W. Effects of PEG conjugation on insulin properties [J]. AdvancedDrug Delivery Reviews,2002,54(4):505-530
    [69] Yang C., Lu D., Liu Z. How PEGylation enhances the stability and potency of insulin:a molecular dynamics simulation [J]. Biochemistry,2011,50(13):2585-2593
    [70] Shelma R., Paul W., Sharma C.P. Development and characterization of self-aggregatednanoparticles from anacardoylated chitosan as a carrier for insulin [J]. CarbohydratePolymers,2010,80(1):285-290
    [71] Yin L.C., Ding J.Y., He C.B., et al. Drug permeability and mucoadhesion properties ofthiolated trimethyl chitosan nanoparticles in oral insulin delivery [J]. Biomaterials,2009,30(29):5691-5700
    [72] Damge C., Socha M., Ubrich N., et al. Poly(epsilon-Caprolactone)/Eudragitnanoparticles for oral delivery of aspart-insulin in the treatment of diabetes [J]. Journalof Pharmaceutical Sciences,2010,99(2):879-889
    [73] Deutel B., Greindl M., Thaurer M., et al. Novel insulin thiomer nanoparticles: In vivoevaluation of an oral drug delivery system [J]. Biomacromolecules,2008,9(1):278-285
    [74] Pan Y., Li Y.J., Zhao H.Y., et al. Bioadhesive polysaccharide in protein deliverysystem: chitosan nanoparticles improve the intestinal absorption of insulin in vivo [J].International Journal of Pharmaceutics,2002,249(1-2):139-147
    [75] Jintapattanakit A., Junyaprasert V.B., Kissel T. The role of mucoadhesion of trimethylchitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake [J].Journal of Pharmaceutical Sciences,2009,98(12):4818-4830
    [76] Fasano A., Uzzau S. Modulation of intestinal tight junctions by Zonula occludenstoxin permits enteral administration of insulin and other macromolecules in an animalmodel [J]. Journal of Clinical Investigation,1997,99(6):1158-1164
    [77] Reis C.P., Ribeiro A.J., Veiga F., et al. Polyelectrolyte biomaterial interactions providenanoparticulate carrier for oral insulin delivery [J]. Drug Delivery,2008,15(2):127-139
    [78] Lin Y.H., Chen C.T., Liang H.F., et al. Novel nanoparticles for oral insulin delivery viathe paracellular pathway [J]. Nanotechnology,2007,18(10):1-11
    [79] Damge C., Maincent P., Ubrich N. Oral delivery of insulin associated to polymericnanoparticles in diabetic rats [J]. Journal of Controlled Release,2007,117(2):163-170
    [80] Lin Y.H., Sonaje K., Lin K.M., et al. Multi-ion-crosslinked nanoparticles withpH-responsive characteristics for oral delivery of protein drugs [J]. Journal ofControlled Release,2008,132(2):141-149
    [81] Cui F.Y., Qian F., Zhao Z.M., et al. Preparation, characterization, and oral delivery ofinsulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles[J]. Biomacromolecules,2009,10(5):1253-1258
    [82]张立强,崔福德,郑俊民.肠溶包衣胰岛素-壳聚糖复合物纳米粒的制备及体内外性质[J].沈阳药科大学学报,2006,23(2):65-69
    [83] Aprahamian M., Michel C., Humbert W., et al. Transmucosal passage ofpolyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine [J].Biology of the Cell,1987,61(1-2):69-76
    [84] Scott Swenson E., Curatolo W.J.(C) Means to enhance penetration::(2) Intestinalpermeability enhancement for proteins, peptides and other polar drugs: mechanismsand potential toxicity [J]. Advanced Drug Delivery Reviews,1992,8(1):39-92
    [85] Thanou M., Verhoef J., Junginger H. Oral drug absorption enhancement by chitosanand its derivatives [J]. Advanced drug delivery reviews,2001,52(2):117-126
    [86] Pinto-Alphandary H., Aboubakar M., Jaillard D., et al. Visualization of insulin-loadednanocapsules: in vitro and in vivo studies after oral administration to rats [J].Pharmaceutical Research,2003,20(7):1071-1084
    [87] Lin Y.H., Mi F.L., Chen C.T., et al. Preparation and characterization of nanoparticlesshelled with chitosan for oral insulin delivery [J]. Biomacromolecules,2007,8(1):146-152
    [88] Giannasca P.J., Giannasca K.T., Leichtner A.M., et al. Human intestinal M cellsdisplay the sialyl Lewis A antigen [J]. Infection and Immunity,1999,67(2):946-953
    [89] Woitiski C.B., Sarmento B., Carvalho R.A., et al. Facilitated nanoscale delivery ofinsulin across intestinal membrane models [J]. International Journal of Pharmaceutics,2011,412:123-131
    [90] Florence A.T. Nanoparticle uptake by the oral route: Fulfilling its potential?[J]. Drugdiscovery today: technologies,2005,2(1):75-81
    [91] Jani P., Halbert G.W., Langridge J., et al. Nanoparticle uptake by the ratgastrointestinal mucosa: quantitation and particle size dependency [J]. Journal ofPharmacy and Pharmacology,1990,42(12):821-826
    [92] Eldridge J.H., Hammond C.J., Meulbroek J.A., et al. Controlled vaccine release in thegut-associated lymphoid tissues. I. Orally administered biodegradable microspherestarget the Peyer's patches [J]. Journal of Controlled Release,1990,11(1-3):205-214
    [93] Tobio M., Sanchez A., Vila A., et al. The role of PEG on the stability in digestivefluids and in vivo fate of PEG-PLA nanoparticles following oral administration [J].Colloids and Surfaces B: Biointerfaces,2000,18(3-4):315-323
    [94] Hariharan S., Bhardwaj V., Bala I., et al. Design of estradiol loaded PLGAnanoparticulate formulations: a potential oral delivery system for hormone therapy [J].Pharmaceutical Research,2006,23(1):184-195
    [95] Hussain N. Ligand-mediated tissue specific drug delivery [J]. Advanced DrugDelivery Reviews,2000,43(2-3):95-100
    [96] Weissenbock A., Wirth M., Gabor F. WGA-grafted PLGA-nanospheres: preparationand association with Caco-2single cells [J]. Journal of Controlled Release,2004,99(3):383-392
    [97] Rieux A., Ragnarsson E.G.E., Gullberg E., et al. Transport of nanoparticles across anin vitro model of the human intestinal follicle associated epithelium [J]. EuropeanJournal of Pharmaceutical Sciences,2005,25(4-5):455-465
    [98] Gullberg E., Leonard M., Karlsson J., et al. Expression of specific markers andparticle transport in a new human intestinal M-cell model [J]. Biochemical andBiophysical Research Communications,2000,279(3):808-813
    [99] Ann Clark M., Blair H., Liang L., et al. Targeting polymerised liposome vaccinecarriers to intestinal M cells [J]. Vaccine,2001,20(1-2):208-217
    [100] Shakweh M., Besnard M., Nicolas V., et al. Poly (lactide-co-glycolide) particles ofdifferent physicochemical properties and their uptake by peyer's patches in mice [J].European Journal of Pharmaceutics and Biopharmaceutics,2005,61(1-2):1-13
    [101] Jung T., Kamm W., Breitenbach A., et al. Biodegradable nanoparticles for oraldelivery of peptides: is there a role for polymers to affect mucosal uptake?[J].European Journal of Pharmaceutics and Biopharmaceutics,2000,50(1):147-160
    [102] Carino G., Jacob J., Mathiowitz E. Nanosphere based oral insulin delivery [J]. Journalof Controlled Release,2000,65(1-2):261-269
    [103] Satheesh Kumar P., Ramakrishna S., Ram Saini T., et al. Influence ofmicroencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles [J]. Die Pharmazie-An InternationalJournal of Pharmaceutical Sciences,2006,61(7):613-617
    [104] Cui F.D., Tao A.J., Cun D.M., et al. Preparation of insulin loaded PLGA-Hp55nanoparticles for oral delivery [J]. Journal of Pharmaceutical Sciences,2007,96(2):421-427
    [105] Cui F., Shi K., Zhang L.Q., et al. Biodegradable nanoparticles loaded withinsulin-phospholipid complex for oral delivery: Preparation, in vitro characterizationand in vivo evaluation [J]. Journal of Controlled Release,2006,114(2):242-250
    [106] Ramachandran R., Paul W., Sharma C.P. Synthesis and Characterization of PEGylatedCalcium Phosphate Nanoparticles for Oral Insulin Delivery [J]. Journal of BiomedicalMaterials Research Part B-Applied Biomaterials,2009,88B(1):41-48
    [107] Prego C., Torres D., Fernandez-Megia E., et al. Chitosan-PEG nanocapsules as newcarriers for oral peptide delivery: effect of chitosan pegylation degree [J]. Journal ofControlled Release,2006,111(3):299-308
    [108] Xiong X.Y., Li Y.P., Li Z.L., et al. Vesicles from Pluronic/poly (lactic acid) blockcopolymers as new carriers for oral insulin delivery [J]. Journal of Controlled Release,2007,120(1-2):11-17
    [109] Morcol T., Nagappan P., Nerenbaum L., et al. Calcium phosphate-PEG-insulin-casein(CAPIC) particles as oral delivery systems for insulin [J]. International Journal ofPharmaceutics,2004,277(1-2):91-97
    [110] Lowman A.M., Morishita M., Kajita M., et al. Oral delivery of insulin usingpH-responsive complexation gels [J]. Journal of Pharmaceutical Sciences,1999,88(9):933-937
    [111] Nho Y.C., Park S.E., Kim H.I., et al. Oral delivery of insulin using pH-sensitivehydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid byradiation [J]. Nuclear Instruments&Methods in Physics Research Section B-BeamInteractions with Materials and Atoms,2005,236:283-288
    [112] Makhlof A., Tozuka Y., Takeuchi H. Design and evaluation of novel pH-sensitivechitosan nanoparticles for oral insulin delivery [J]. European Journal ofPharmaceutical Sciences,2010,42(5):445-451
    [113] Woitiski C.B., Carvalho R.A., Ribeiro A.J., et al. Strategies toward the improved oraldelivery of insulin nanoparticles via gastrointestinal uptake and translocation [J].Biodrugs,2008,22(4):223-237
    [114] Foss A.C., Goto T., Morishita M., et al. Development of acrylic-based copolymers fororal insulin delivery [J]. European journal of pharmaceutics and biopharmaceutics,2004,57(2):163-169
    [115] Sarmento B., Ferreira D.C., Jorgensen L., et al. Probing insulin's secondary structureafter entrapment into alginate/chitosan nanoparticles [J]. European Journal ofPharmaceutics and Biopharmaceutics,2007,65(1):10-17
    [116] Sarmento B., Ribeiro A., Veiga F., et al. Oral bioavailability of insulin contained inpolysaccharide nanoparticles [J]. Biomacromolecules,2007,8(10):3054-3060
    [117] Sonaje K., Lin Y.H., Juang J.H., et al. In vivo evaluation of safety and efficacy ofself-assembled nanoparticles for oral insulin delivery [J]. Biomaterials,2009,30(12):2329-2339
    [118] Makhlof A., Tozuka Y., Takeuchi H. Design and evaluation of novel pH-sensitivechitosan nanoparticles for oral insulin delivery [J]. European Journal ofPharmaceutical Sciences,2011,42(5):445-451
    [119] Ma Z., Lim T.M., Lim L.Y. Pharmacological activity of peroral chitosan-insulinnanoparticles in diabetic rats [J]. International Journal of Pharmaceutics,2005,293(1-2):271-280
    [120] Sah H., Lee B. Development of new microencapsulation techniques useful for thepreparation of PLGA microspheres [J]. Macromolecular Rapid Communications,2006,27(21):1845-1851
    [121] Kawashima Y., Yamamoto H., Takeuchi H., et al. Pulmonary delivery of insulin withnebulized-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemiceffect [J]. Journal of Controlled Release,1999,62(1-2):279-287
    [122] Sarmento B., Martins S., Ferreira D., et al. Oral insulin delivery by means of solidlipid nanoparticles [J]. International Journal of Nanomedicine,2007,2(4):743-749
    [123] Vauthier C., Bouchemal K. Methods for the preparation and manufacture of polymericnanoparticles [J]. Pharmaceutical Research,2009,26(5):1025-1058
    [124] Jintapattanakit A., Junyaprasert V.B., Mao S., et al. Peroral delivery of insulin usingchitosan derivatives: a comparative study of polyelectrolyte nanocomplexes andnanoparticles [J]. International Journal of Pharmaceutics,2007,342(1-2):240-249
    [125] Bayat A., Dorkoosh F.A., Dehpour A.R., et al. Nanoparticles of quaternized chitosanderivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies [J].International Journal of Pharmaceutics,2008,356(1-2):259-266
    [126] Simon M., Wittmar M., Kissel T., et al. Insulin containing nanocomplexes formed byself-assembly from biodegradable amine-modified poly(vinylalcohol)-graft-poly(L-lactide): Bioavailability and nasal tolerability in rats [J].Pharmaceutical Research,2005,22(11):1879-1886
    [127] Packhaeuser C.B., Kissel T. On the design of in situ forming biodegradable parenteraldepot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyIalcohol)-g-poly (lactide-co-glycolide) nanoparticles [J]. Journal of Controlled Release,2007,123(2):131-140
    [128] Reis C., Ribeiro A., Houng S., et al. Nanoparticulate delivery system for insulin:design, characterization and in vitro/in vivo bioactivity [J]. European Journal ofPharmaceutical Sciences,2007,30(5):392-397
    [129] Sajeesh S., Sharma C.P. Cyclodextrin-insulin complex encapsulated polymethacrylicacid based nanoparticles for oral insulin delivery [J]. International Journal ofPharmaceutics,2006,325(1-2):147-154
    [130]杨彩哲.胰岛素口服给药的实验研究及其口服吸收机理的探讨[D],第四军医大学,西安,1997
    [131]潘研.口服胰岛素纳米粒的研究[D],沈阳药科大学,沈阳,2002
    [132]张立强.肠溶包衣胰岛素—壳聚糖复合物纳米粒的研究[D],沈阳药科大学,沈阳,2005
    [133]崔福英.用于胰岛素口服给药和肿瘤靶向的壳聚糖衍生物接枝纳米粒[D],复旦大学,上海,2008
    [134] Xu X.L., Fu Y., Hu H.Y., et al. Quantitative determination of insulin entrapmentefficiency in triblock copolymeric nanoparticles by high-performance liquidchromatography [J]. Journal of Pharmaceutical and Biomedical Analysis,2006,41(1):266-273
    [135] Sarmento B., Ribeiro A., Veiga F., et al. Development and validation of a rapidreversed‐phase HPLC method for the determination of insulin from nanoparticulatesystems [J]. Biomedical Chromatography,2006,20(9):898-903
    [136] Govender T., Stolnik S., Garnett M.C., et al. PLGA nanoparticles prepared bynanoprecipitation: drug loading and release studies of a water soluble drug [J]. Journalof Controlled Release,1999,57(2):171-185
    [137] Huggins M.L. The viscosity of dilute solutions of long-chain molecules. IV.Dependence on concentration [J]. Journal of the American Chemical Society,1942,64(11):2716-2718
    [138] Sant S., Thommes M., Hildgen P. Microporous structure and drug release kinetics ofpolymeric nanoparticles [J]. Langmuir,2008,24(1):280-287
    [139] Khafagy E.S., Morishita M., Onuki Y., et al. Current challenges in non-invasiveinsulin delivery systems: A comparative review [J]. Advanced Drug Delivery Reviews,2007,59(15):1521-1546
    [140] Sajeesh S., Sharma C.P. Interpolymer complex microparticles based onpolymethacrylic acid-chitosan for oral insulin delivery [J]. Journal of Applied PolymerScience,2006,99(2):506-512
    [141] Sajeesh S., Vauthier C., Gueutin C., et al. Thiol functionalized polymethacrylicacid-based hydrogel microparticles for oral insulin delivery [J]. Acta Biomaterialia,2010,6(8):3072-3080
    [142] Jelvehgari M., Zakeri-Milani P., Siahi-Shadbad M.R., et al. Development ofpH-sensitive Insulin Nanoparticles using Eudragit L100-55and Chitosan withDifferent Molecular Weights [J]. AAPS PharmSciTech,2010:1-6
    [143] Martins S., Sarmento B., Souto E.B., et al. Insulin-loaded alginate microspheres fororal delivery-Effect of polysaccharide reinforcement on physicochemical propertiesand release profile [J]. Carbohydrate Polymers,2007,69(4):725-731
    [144] Sonaje K., Lin K., Wey S., et al. Biodistribution, pharmacodynamics andpharmacokinetics of insulin analogues in a rat model: Oral delivery usingpH-Responsive nanoparticles vs. subcutaneous injection [J]. Biomaterials,2010,31(26):6849-6858
    [145] Morishita M., Morishita I., Takayama K., et al. Site-dependent effect of aprotinin,sodium caprate, Na2EDTA and sodium glycocholate on intestinal absorption of insulin[J]. Biological&Pharmaceutical Bulletin,1993,16(1):68-72
    [146] Norris D.A., Puri N., Sinko P.J. The effect of physical barriers and properties on theoral absorption of particulates [J]. Advanced Drug Delivery Reviews,1998,34(2-3):135-154
    [147] Chen H.M., Langer R. Oral particulate delivery: status and future trends [J]. AdvancedDrug Delivery Reviews,1998,34(2-3):339-350
    [148] Puttipipatkhachorn S., Nunthanid J., Yamamoto K., et al. Drug physical state anddrug-polymer interaction on drug release from chitosan matrix films [J]. Journal ofControlled Release,2001,75(1-2):143-153
    [149] Hongbo C., Yi Z., Ge T., et al. Oral delivery of DMAB-modified docetaxel-loadedPLGA-TPGS nanoparticles for cancer chemotherapy [J]. Nanoscale Research Letters,2011,6(1):1-10
    [150] Bendayan M., Ziv E., Gingras D., et al. Biochemical and morpho-cytochemicalevidence for the intestinal absorption of insulin in control and diabetic rats.Comparison between the effectiveness of duodenal and colon mucosa [J].Diabetologia,1994,37(2):119-126
    [151] Ziv E., Bendayan M. Intestinal absorption of peptides through the enterocytes [J].Microscopy Research and Technique,2000,49(4):346-352
    [152] Lin C.R., Gokhale R., Trivedi J.S., et al. Recent strategies and methods for improvinginsulin delivery [J]. Drug Development Research,2004,63(4):151-160
    [153] Agarwal V., Khan M.A. Current status of the oral delivery of insulin [J]. Pharm.Technol,2001,10:76–90
    [154] Stoll B.R., Leipold H.R., Milstein S., et al. A mechanistic analysis of carrier-mediatedoral delivery of protein therapeutics [J]. Journal of Controlled Release,2000,64(1-3):217-228
    [155] Paulson S.K., Vaughn M.B., Jessen S.M., et al. Pharmacokinetics of celecoxib afteroral administration in dogs and humans: effect of food and site of absorption [J].Journal of Pharmacology and Experimental Therapeutics,2001,297(2):638-645
    [156] Iyer H., Khedkar A., Verma M. Oral insulin-a review of current status [J]. DiabetesObesity&Metabolism,2010,12(3):179-185
    [157] Card J.W., Magnuson B.A. A Review of the Efficacy and Safety ofNanoparticle-Based Oral Insulin Delivery Systems [J]. American Journal ofPhysiology-Gastrointestinal and Liver Physiology,2011,doi:10.1152/ajpgi.00107.2011:
    [158] Kesisoglou F., Panmai S., Wu Y. Nanosizing-oral formulation development andbiopharmaceutical evaluation [J]. Advanced Drug Delivery Reviews,2007,59(7):631-644
    [159] Wu Y., Loper A., Landis E., et al. The role of biopharmaceutics in the development ofa clinical nanoparticle formulation of MK-0869: a Beagle dog model predictsimproved bioavailability and diminished food effect on absorption in human [J].International Journal of Pharmaceutics,2004,285(1-2):135-146
    [160] Bernkop-Schnurch A. Chitosan and its derivatives: potential excipients for peroralpeptide delivery systems [J]. International Journal of Pharmaceutics,2000,194(1):1-13
    [161] Sonaje K., Lin K.J., Tseng M.T., et al. Effects of chitosan-nanoparticle-mediated tightjunction opening on the oral absorption of endotoxins [J]. Biomaterials,2011,32(33):8712-8721
    [162] Sonaje K., Chen Y.J., Chen H.L., et al. Enteric-coated capsules filled with freeze-driedchitosan/poly (gamma-glutamic acid) nanoparticles for oral insulin delivery [J].Biomaterials,2010,31(12):3384-3394
    [163] Nguyen H.N., Wey S.P., Juang J.H., et al. The glucose-lowering potential of exendin-4orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequentinsulin secretion in vivo [J]. Biomaterials,2011,32(10):2673-2682
    [164] Ferrari M. Nanovector therapeutics [J]. Current opinion in chemical biology,2005,9(4):343-346
    [165] Ferrari M., Tasciotti E. Multistage delivery of active agents[P], US:2008
    [166] Serda R.E., Godin B., Blanco E., et al. Multi-stage delivery nano-particle systems fortherapeutic applications [J]. Biochimica et Biophysica Acta,2010,1810(3):317-329
    [167] Tasciotti E., Liu X., Bhavane R., et al. Mesoporous silicon particles as a multistagedelivery system for imaging and therapeutic applications [J]. Nature nanotechnology,2008,3(3):151-157
    [168] Wong C., Stylianopoulos T., Cui J., et al. Multistage nanoparticle delivery system fordeep penetration into tumor tissue [J]. Proceedings of the National Academy ofSciences,2011,108(6):2426-2431
    [169] Canselier J.R., Delmas H., Wilhelm A.M., et al. Ultrasound emulsification-Anoverview [J]. Journal of Dispersion Science and Technology,2002,23(1-3):333-349
    [170] Abismail B., Canselier J.P., Wilhelm A.M., et al. Emulsification by ultrasound: dropsize distribution and stability [J]. Ultrasonics Sonochemistry,1999,6(1-2):75-83
    [171] Djenouhat M., Hamdaoui O., Chiha M., et al. Ultrasonication-assisted preparation ofwater-in-oil emulsions and application to the removal of cationic dyes from water byemulsion liquid membrane: Part1: Membrane stability [J]. Separation and PurificationTechnology,2008,62(3):636-641
    [172] Walstra P. Principles of emulsion formation [J]. Chemical Engineering Science,1993,48(2):333-349
    [173] Behrend O., Ax K., Schubert H. Influence of continuous phase viscosity onemulsification by ultrasound [J]. Ultrasonics Sonochemistry,2000,7(2):77-85
    [174] Gaikwad S.G., Pandit A.B. Ultrasound emulsification: Effect of ultrasonic andphysicochemical properties on dispersed phase volume and droplet size [J].Ultrasonics Sonochemistry,2008,15(4):554-563
    [175] Leong T.S.H., Wooster T.J., Kentish S.E., et al. Minimising oil droplet size usingultrasonic emulsification [J]. Ultrasonics Sonochemistry,2009,16(6):721-727
    [176] Abdelwahed W., Degobert G., Stainmesse S., et al. Freeze-drying of nanoparticles:Formulation, process and storage considerations [J]. Advanced Drug DeliveryReviews,2006,58(15):1688-1713
    [177] Ma X., Santiago N., Chen Y., et al. Stability study of drug-loaded proteinoidmicrosphere formulations during freeze-drying [J]. Journal of Drug Targeting,1994,2(1):9-21
    [178] Vandervoort J., Ludwig A. Biocompatible stabilizers in the preparation of PLGAnanoparticles: a factorial design study [J]. International Journal of Pharmaceutics,2002,238(1-2):77-92
    [179] Baeyens V., Gurny R. Chemical and physical parameters of tears relevant for thedesign of ocular drug delivery formulations [J]. Pharmaceutica Acta Helvetiae,1997,72(4):191-202
    [180] Vachon M.G., Nairn J.G. The use of13C solid state NMR to elucidatephysico-chemical association in Eudragit(R) RS100microencapsulated acyl esters ofsalicylic acid [J]. European Journal of Pharmaceutics and Biopharmaceutics,1998,45(1):9-21
    [181] Wi niewska M. The temperature effect on electrokinetic properties of thesilica–polyvinyl alcohol (PVA) system [J]. Colloid&Polymer Science,2011,289:341-344
    [182] Shechter Y., Mironchik M., Rubinraut S., et al. Reversible pegylation of insulinfacilitates its prolonged action in vivo [J]. European Journal of Pharmaceutics andBiopharmaceutics,2008,70(1):19-28
    [183] Hinds K.D., Campbell K.M., Holland K.M., et al. PEGylated insulin in PLGAmicroparticles. In vivo and in vivo analysis [J]. Journal of Controlled Release,2005,104(3):447-460
    [184] Tuesca A.D., Reiff C., Joseph J.I., et al. Synthesis, Characterization and In VivoEfficacy of PEGylated Insulin for Oral Delivery with Complexation Hydrogels [J].Pharmaceutical Research,2009,26(3):727-739
    [185] Fontana A., Spolaore B., Mero A., et al. Site-specific modification and PEGylation ofpharmaceutical proteins mediated by transglutaminase [J]. Advanced Drug DeliveryReviews,2008,60(1):13-28
    [186] Hinds K., Koh J.J., Joss L., et al. Synthesis and characterization of poly(ethyleneglycol)-insulin conjugates [J]. Bioconjugate Chemistry,2000,11(2):195-201
    [187] Murray-Rust J., McLeod A., Blundell T., et al. Structure and evolution of insulins:implications for receptor binding [J]. BioEssays,1992,14(5):325-331
    [188] Hashimoto M., Takada K., Kiso Y., et al. Synthesis of palmitoyl derivatives of insulinand their biological activities [J]. Pharmaceutical Research,1989,6(2):171-176
    [189] Gliemann J., Gammeltoft S. The biological activity and the binding affinity ofmodified insulins determined on isolated rat fat cells [J]. Diabetologia,1974,10(2):105-113
    [190] Uchio T., Baudys M., Liu F., et al. Site-specific insulin conjugates with enhancedstability and extended action profile [J]. Advanced Drug Delivery Reviews,1999,35(2-3):289-306
    [191] Goldman J., Carpenter F.H. Zinc binding, circular dichroism, and equilibriumsedimentation studies on insulin (bovine) and several of its derivatives [J].Biochemistry,1974,13(22):4566-4574
    [192] Pocker Y., Biswas S.B. Conformational dynamics of insulin in solution. Circulardichroic studies [J]. Biochemistry,1980,19(22):5043-5049
    [193] Desai M.P., Labhasetwar V., Amidon G.L., et al. Gastrointestinal uptake ofbiodegradable microparticles: effect of particle size [J]. Pharmaceutical Research,1996,13(12):1838-1845
    [194] Jung T., Kamm W., Breitenbach A., et al. Tetanus toxoid loaded nanoparticles fromsulfobutylated poly (vinyl alcohol)-graft-poly (lactide-co-glycolide): evaluation ofantibody response after oral and nasal application in mice [J]. PharmaceuticalResearch,2001,18(3):352-360
    [195] Jain R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide)(PLGA) devices [J]. Biomaterials,2000,21(23):2475-2490
    [196] Catiker E., Gumusderelioglu M., Guner A. Degradation of PLA, PLGA homo-andcopolymers in the presence of serum albumin: a spectroscopic investigation [J].Polymer international,2000,49(7):728-734
    [197] Jalil R., Nixon J. Biodegradable poly (lactic acid) and poly (lactide-co-glycolide)microcapsules: problems associated with preparative techniques and release properties[J]. Journal of Microencapsulation,1990,7(3):297-325
    [198] Wang N., Wu X.S., Hannia L.U., et al. Synthesis, characterization, biodegradation, anddrug delivery application of biodegradable lactic/glycolic acid oligomers: I. Synthesisand characterization [J]. Journal of Biomaterials Science, Polymer Edition,1997,8(12):905-917
    [199] Cohen S., Alonso M.J., Langer R. Novel approaches to controlled-release antigendelivery [J]. International Journal of Technology Assessment in Health Care,1994,10(01):121-130
    [200] Sahoo S.K., Panyam J., Prabha S., et al. Residual polyvinyl alcohol associated withpoly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties andcellular uptake [J]. Journal of Controlled Release,2002,82(1):105-114
    [201] Attivi D., Wehrle P., Ubrich N., et al. Formulation of insulin-loaded polymericnanoparticles using response surface methodology [J]. Drug Development andIndustrial Pharmacy,2005,31(2):179-189
    [202] Siepmann F., Siepmann J., Walther M., et al. Aqueous HPMCAS coatings: Effects offormulation and processing parameters on drug release and mass transportmechanisms [J]. European Journal of Pharmaceutics and Biopharmaceutics,2006,63(3):262-269
    [203] Wong H.M., Wang J.J., Wang C.H. In vitro sustained release of humanimmunoglobulin G from biodegradable microspheres [J]. Industrial and EngineeringChemistry Research,2001,40(3):933-948
    [204] Mi F.L., Shyu S.S., Lin Y.M., et al. Chitin/PLGA blend microspheres as abiodegradable drug delivery system: a new delivery system for protein [J].Biomaterials,2003,24(27):5023-5036
    [205] Sant S., Nadeau V., Hildgen P. Effect of porosity on the release kinetics ofpropafenone-loaded PEG-g-PLA nanoparticles [J]. Journal of Controlled Release,2005,107(2):203-214
    [206] Klose D., Siepmann F., Elkharraz K., et al. How porosity and size affect the drugrelease mechanisms from PLGA-based microparticles [J]. International Journal ofPharmaceutics,2006,314(2):198-206
    [207] Guo X.D., Zhang L.J., Wu Z.M., et al. Dissipative Particle Dynamics Studies onMicrostructure of pH-Sensitive Micelles for Sustained Drug Delivery [J].Macromolecules,2010,43(18):7839-7844
    [208] Gref R., Minamitake Y., Peracchia M., et al. Biodegradable long-circulating polymericnanospheres [J]. Science,1994,263(5153):1600-1603
    [209] Jeon H., Jeong Y., Jang M., et al. Effect of solvent on the preparation of surfactant-freepoly (-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics [J].International Journal of Pharmaceutics,2000,207(1-2):99-108
    [210] Ito F., Fujimori H., Makino K. Factors affecting the loading efficiency ofwater-soluble drugs in PLGA microspheres [J]. Colloids and Surfaces B-Biointerfaces,2008,61(1):25-29
    [211] Kahle C.F. Microporous organic thin films by the solvent precipitation method: Areview of formulation techniques and their commercial applications [J]. Industrial andEngineering Chemistry Research,2001,40(1):33-36
    [212] Sahana D., Mittal G., Bhardwaj V., et al. PLGA nanoparticles for oral delivery ofhydrophobic drugs: Influence of organic solvent on nanoparticle formation and releasebehavior In Vitro and In Vivo using estradiol as a model drug [J]. Journal ofPharmaceutical Sciences,2008,97(4):1530-1542
    [213] Rathod S., Ward T. Hierarchical porous and composite particle architectures based onself assembly and phase separation in droplets [J]. Journal of Materials Chemistry,2007,17(22):2329-2335
    [214] Mi F.L., Lin Y.M., Wu Y.B., et al. Chitin/PLGA blend microspheres as a biodegradabledrug-delivery system: phase-separation, degradation and release behavior [J].Biomaterials,2002,23(15):3257-3267
    [215] Yang Y.Y., Chung T.S., Bai X.L., et al. Effect of preparation conditions on morphologyand release profiles of biodegradable polymeric microspheres containing proteinfabricated by double-emulsion method [J]. Chemical Engineering Science,2000,55(12):2223-2236
    [216] Mark J. Physical properties of polymers handbook [M], Springer Verlag, Cincinnati,2006
    [217] Hansen C. Hansen solubility parameters: a user's handbook [M], CRC, London,2007
    [218] Van Krevelen D., Te Nijenhuis K. Properties of polymers: their correlation withchemical structure; their numerical estimation and prediction from additive groupcontributions [M], Elsevier Science Ltd,2009
    [219] Van Krevelen D.W., Te Nijenhuis K., NetLibrary I. Properties of polymers: theircorrelation with chemical structure; their numerical estimation and prediction fromadditive group contributions [M], Elsevier Science Ltd,1990
    [220] Fedors R.F. A method for estimating both the solubility parameters and molar volumesof liquids [J]. Polymer Engineering and Science,1974,14(2):147-154
    [221] Brandrup J., Immergut E.H., Grulke E.A., et al. Polymer handbook [M], Wiley NewYork,1999
    [222] Motoyoshi K., Tajima A., Higuchi T., et al. Static and dynamic control of phaseseparation structures in nanoparticles of polymer blends [J]. Soft Matter,2010,6(6):1253-1257
    [223] Sarmento B., Ferreira D., Veiga F., et al. Characterization of insulin-loaded alginatenanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies [J].Carbohydrate Polymers,2006,66(1):1-7
    [224] Sertsou G., Butler J., Hempenstall J., et al. Solvent change co-precipitation withhydroxypropyl methylcellulose phthalate to improve dissolution characteristics of apoorly water-soluble drug [J]. Journal of Pharmacy and Pharmacology,2002,54(8):1041-1047
    [225] Fox T. Influence of diluent and of copolymer composition on the glass temperature ofa polymer system [J]. Bull. Am. Phys. Soc,1956,1(123):22060-26218
    [226] Lodge T., McLeish T. Self-concentrations and effective glass transition temperaturesin polymer blends [J]. Macromolecules,2000,33(14):5278-5284
    [227] Zhang S.H., Painter P.C., Runt J. Dynamics of polymer blends with intermolecularhydrogen bonding: Broad-band dielectric study of blends of poly(4-vinyl phenol) withpoly(vinyl acetate) and EVA70[J]. Macromolecules,2002,35(22):8478-8487
    [228] Jo W., Cruz C., Paul D. FTIR investigation of interactions in blends of PMMA with astyrene/acrylic acid copolymer and their analogs [J]. Journal of Polymer Science PartB: Polymer Physics,1989,27(5):1057-1076
    [229] Hamishehkar H., Emami J., Najafabadi A.R., et al. The effect of formulation variableson the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheresprepared by a single phase oil in oil solvent evaporation method [J]. Colloids andSurfaces B: Biointerfaces,2009,74(1):340-349
    [230] Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and areadistributions in porous substances. I. Computations from nitrogen isotherms [J].Journal of the American Chemical Society,1951,73(1):373-380
    [231] Groen J.C., Peffer L.A.A., Perez-Ramirez J. Pore size determination in modifiedmicro-and mesoporous materials. Pitfalls and limitations in gas adsorption dataanalysis [J]. Microporous and Mesoporous Materials,2003,60(1-3):1-17
    [232] Legrand P., Lesieur S., Bochot A., et al. Influence of polymer behaviour in organicsolution on the production of polylactide nanoparticles by nanoprecipitation [J].International Journal of Pharmaceutics,2007,344(1-2):33-43
    [233] Choi S.W., Kwon H.Y., Kim W.S., et al. Thermodynamic parameters onpoly(D,L-lactide-co-glycolide) particle size in emulsification-diffusion process [J].Colloids and Surfaces a: Physicochemical and Engineering Aspects,2002,201(1-3):283-289
    [234] Bilati U., Allemann E., Doelker E. Development of a nanoprecipitation methodintended for the entrapment of hydrophilic drugs into nanoparticles [J]. EuropeanJournal of Pharmaceutical Sciences,2005,24(1):67-75
    [235] Thioune O., Fessi H., Devissaguet J.P., et al. Preparation of pseudolatex bynanoprecipitation: Influence of the solvent nature on intrinsic viscosity and interactionconstant [J]. International Journal of Pharmaceutics,1997,146(2):233-238
    [236] Zamani A., Taherzadeh M.J. Effects of Partial Dehydration and Freezing Temperatureon the Morphology and Water Binding Capacity of Carboxymethyl Chitosan-BasedSuperabsorbents [J]. Industrial and Engineering Chemistry Research,2010,49(17):8094-8099
    [237] Tishchenko G., Rosova E., Elyashevich G.K., et al. Porosity of microporouspolyethylene membranes modified with polypyrrole and their diffusion permeability tolow-molecular weight substances [J]. Chemical Engineering Journal,2000,79(3):211-217
    [238] Chu L.Y., Li Y., Zhu J.H., et al. Control of pore size and permeability of aglucose-responsive gating membrane for insulin delivery [J]. Journal of ControlledRelease,2004,97(1):43-53
    [239] Petrov O., Furó I., Schuleit M., et al. Pore size distributions of biodegradable polymermicroparticles in aqueous environments measured by NMR cryoporometry [J].International Journal of Pharmaceutics,2006,309(1-2):157-162
    [240] Colilla M., Manzano M., Vallet-Regí M. Recent advances in ceramic implants as drugdelivery systems for biomedical applications [J]. International Journal ofNanomedicine,2008,3(4):403
    [241] Ramkissoon-Ganorkar C., Liu F., Baudys M., et al. Modulating insulin-release profilefrom pH/thermosensitive polymeric beads through polymer molecular weight [J].Journal of Controlled Release,1999,59(3):287-298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700