舱内爆炸致大鼠腹部闭合性损伤的特点及其对肠黏膜屏障功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
战斗舱室是现代战争中的主要作战单元,反装甲攻坚武器可击穿战斗舱室在舱内爆炸,平时恐怖主义活动和意外突发性爆炸事件也主要发生在较狭小空间,因而相对密闭空间爆炸是现代战争和平时爆炸事件的主要特征之一。由于腹部表面积大,腹内脏器多且复杂,冲击波易导致腹腔脏器损伤。在战争中,部分伤员体表没有明显伤痕却存在腹内脏器损伤,这类伤员病情严重,后期可发生脓毒症甚至MODS,危及生命,但因其隐匿性强而未引起广泛重视,常延误诊治。由于没有明确的感染源,而肠道是体内最大的细菌和内毒素库,我们设想伤员发生脓毒症的细菌或内毒素可能来自肠道。机体遭受严重创伤(如冲击伤)后产生应激、缺血-再灌注损伤等因素导致肠黏膜屏障功能受损,肠道通透性增高,肠道细菌或内毒素可逸出肠黏膜,通过循环系统到达远处脏器,诱发MODS。目前国内外军事研究机构对爆炸伤的研究集中在听器、眼、脑、胸部和四肢损伤,对腹部爆炸伤大多着眼于穿透伤、贯通伤、切线伤等体表有明显伤痕的研究,而对相对密闭环境下腹部闭合性损伤的研究甚少。因此,开展爆炸冲击波致腹部闭合性损伤特点及冲击波在肠道黏膜屏障功能障碍中的作用研究,可阐明爆炸性武器对生物致伤特点及其机制,并为伤员制定相应的防护措施提供理论基础。本课题通过建立舱内腹部闭合性爆炸伤大鼠模型,分析了舱内大鼠腹部闭合性爆炸伤的大体形态学和组织病理学特点,明确了腹部爆炸伤严重程度与冲击波物理参数之间的量效关系,开展了大鼠腹部闭合性爆炸伤后肠黏膜屏障功能损害以及细菌移位的研究。
     主要研究方法和结果:
     1.通过在模拟陆军装甲舱室内爆炸建立致伤大鼠模型,与开阔地相同条件下爆炸致伤进行比较,从整体、器官和组织水平对大鼠腹部闭合性爆炸伤进行观察和伤情分析。结果显示:舱内爆炸时,死亡率21.7%,而舱外为6.7%;舱内爆炸时腹部脏器损伤发生65.0%,而舱外为53.3%;舱内爆炸时肝损伤率36.7%,而舱外为11.7%。舱内组爆炸时腹腔积血发生率20.0%,而舱外为5.0%。腹部脏器损伤病理组织学改变也提示舱内爆炸时腹内脏器受损较严重。
     2.在舱内不同距离采用不同剂量的点爆源进行爆炸后分析冲击波物理参数与腹部闭合性爆炸伤严重程度之间的量效关系。结果显示,舱内爆炸冲击波波形复杂,表现为高峰值压力、持续时间长、冲量大、而压力上升时间极短。总体趋势是随起爆药重量的增加、爆心距离缩小,冲击波初始压力峰值、超压峰值升高,比冲量逐渐加大;同时发现大鼠多发伤增加、伤情越来越重,死亡率增高。大鼠半数致死比冲量为73.4KPa·ms;脏器损伤严重程度与比冲量大小呈正比。
     3.通过检测舱内腹部爆炸伤大鼠血清及肠道组织氧化应激改变和对大鼠肠道组织细胞凋亡的影响以及血浆DAO、D-Lac水平的动态变化反映肠黏膜损害情况,结果显示:舱内爆炸致大鼠腹部闭合性损伤后氧化应激反应较开阔地爆炸出现早、强度大且持续时间长;舱内腹部闭合性爆炸伤后肠黏膜上皮细胞凋亡发生较早且更严重,Caspase-3表达较开阔地爆炸早且明显上调;肠道细胞凋亡与DAO、D-Lac、IL-6及内毒素正相关。
     4.检测大鼠血浆内毒素及IL-6、TNF-α水平,结果表明舱内组的肠源性内毒素血症不仅发生早,而且进展快、持续时间长。舱内爆炸时外周血TNF-α和IL-6水平较高,全身炎症反应较舱外组重,且持续时间长,舱内爆炸时更易发生SIRS。
     5.采用普通细菌培养、检测细菌DNA评估爆炸伤后细菌移位,用绿色荧光蛋白标记技术证实细菌移位。结果表明:大鼠腹部爆炸伤后存在肠道细菌移位。细菌培养在舱内3h、舱外8h有细菌生长,总阳性率舱内为35.0%,舱外为15.4%;舱内伤后0.5h、舱外3h外周血检出细菌DNA,总细菌DNA检出率舱内为76.7%,舱外为53.3%。外周血血浆ET、IL-6、DAO、TNF-α水平与细菌移位密切相关。
     主要结论:
     1.舱内爆炸时,腹部闭合性损伤程度较开阔地爆炸更严重,肝脏损伤率高;
     2.复杂冲击波是舱内爆炸伤情严重的主要原因之一;
     3.舱内爆炸时氧化应激反应较开阔地爆炸时更严重,血清MDA含量和GSH-Px活性可作为爆炸伤后肠道组织过氧化损伤的诊断指标;
     4.舱内爆炸较舱外爆炸时肠黏膜屏障功能受损程度更严重,细菌移位发生早、移位率高;
     5.血浆内毒素、IL-6、DAO、TNF-α水平可以间接反映细菌移位情况,对早期诊断细菌移位有一定实用价值。
Battle compartment is major unit for combat in modern war. Antiarmor weapons could punch through the shell of the battle cabin and explode. In peace time, modern terrorism attacks and unexpected emergency event usually occured in the relative closed cabin. So explosion in relative enclosure is one of the key features of explosion events in peace or war time. Explosive blast wave frequently lead to intraabdominal organ damage owing to large surface area of abdominal region and many organs in abdominal cavity. In the battlefield, some wounded soldier suffered intraabdominal organ damage without obvious external injury which could further bring about sepsis, and multiorgan dysfunction syndrome(MODS), even threat to life, but it was not taken seriously dut to stronger concealment after closed injury. It is plausible to hypothesise that the bacteria or endotoxin could come from gut tract in patients with sepsis after trauma because ther is no definite source of infection and the intestinal tract is the largest bacteria and endotoxin bank in human body. After trauma, many factors can damage intestinal barrier function and enhance the permeabililty of gut mucosa, the bacteria from the gut lumen transfer to distant organs through variable pathway, and induce SIRS and MODS. So, it was reported that intestinal tract is regared as the central organ following surgical stress reaction and initiator of MODS, gut barrier dysfunction and bacterial transloction paly a vital role in pathogenesis and developing of MODS.
     In present study, we systemically observed and analyzed morphological and histopathological changes of intraabdominal organs in rats with abdominal closed injury subjected to explosion in relative enclosed space, assessed relationship between degree of abdominal explosive closed injury and physical parameters of blast wave, and then focused on investigating intestinal mucosal lesions and gut bacterial/endotoxin transloction.
     Main experimental methods and conclusions are as follows:
     1. We established a valid rat model of abdominal closed blast injury exploded at 10 centimeter distal to instantaneous electric detonator contained 600mg diazodinitrophenol in enclosed space to oberve and analyze the traumatic characteristics at levels of whole-body, organ and tissue. The results showed that the traumatic condition of abdominal closed explosive injury of rats in enclosed spaces is much severe than that in the free-field. The major damaged organs in enclosed space were liver and colon with higher hematocelia, and which in the open air were colon and stomach. Kidney, bladder and spleen were not detected obviously injury with naked eye. There is no difference in injury types between two groups which were subcapsular haemorrhagia, hematoma formation in parenchymatous viscera and subserosal or submucosal bleeding in hollow viscera. Pathohistological findings revealed that injury severity of abdominal viscera in enclosure was more obvious than that in free-field. The pathohsitological changes were mainly congestion, hemorrhage, focal necrosis, higher inflammatory cell infiltration in sold viscera and submucosal bleeding, tissue edema, lower inflammatory cell infiltration in gas-containing organs.
     2. Rats were subjected to explosion at different distance with various dose levels of diazodinitrophenol in cabin model. Physical parameters of blast wave were measured using pressure transducers. Relationship between degree of abdominal explosive closed injury and physical parameters of blast wave was analyzed. The results demonstrated higher peak pressure, shorter duration and larger explosive impulse in relative enclosure. Elevated multiple trauma, more seious condition and higher mortality rate were discovered with increased diazodinitrophenol dose and minified shorter distance. Half lethal dose of specific impulse of rats in cabin was 73.4KPa·ms. There was a significant positive correlation between degree of abdominal explosive closed injury and specific impulse.
     3. Malondialdehyde(MDA) content and SOD, GSH-Px activities in serum and intestinal tissue were measured, in addition, apoptosis in gut tissue was detected using TUNEL and plasma D-lactic acid, diamine oxidase levels were assayed. The results indicated that oxidative stress reaction occurred earlier, sustained longer and stronger in rats with abdominal closed explosive injury in enclosed space than that in open space, and serum MDA content, GSH-Px could be one of the diagnostic indicators for oxidative injury of intestinal tissue. Apoptosis and upregulaion of Caspase-3 expression in gut mucosal cell occurred earlier, much severe in rat of compartment than that of open ground. Apoptotic index and positive index of caspase-3 showed a significant positive correlation with the levels of DAO, D-lactic acid, endotoxin, and interleukin-6 which could indirect estimate severity of intestinal mucosa damage and apoptosis. The findings also demonstrated that the degree of intestinal mucosal lesions in rats with abdominal closed blast injury was more severe in enclosed space compared with in free-field. The changes of D-lactic acid and DAO occurred earlier, sustained longer and stronger in rats in enclosed space than that in open space. It was considered that plasma D-lactic acid content could be one of the diagnostic indicators in rats with gut barrier dysfunction.
     4. Dynamic changes of plasma endotoxin and IL-6, TNF-αlevels were measured. The results showed that enterogenic endotoxemia occurred ealier, elevated significantly and lasted longer in rats of relative enclosure than that of free-field, which indicated that it was getting easier to develop enterogenic endotoxemia in rats of cabin. Detection of plasma endtoxin could assess intestinal endotoxin transloction. Higher IL-6, TNF-αlevels of plasma were found in abdominal blast injury rats in enclosure, which illustrated that rats in cabin were more severe and could be susceptible to to induce SIRS.
     5. Normal bacteria culture, detection of bacterial DNA were performed to evaluate the bacterial traslocation rate. Enhanced green fluorescent protein labeling Escherichia coli DH5αtracking bacterial translocation confirmed that finding. In addition, early diagnostic indicators were screened by receiver operating characteristic curve analysis. It was observed from the findings that bacterial translocation rate was greater in rats of cabin than that of open ground. The sensitivity of PCR method is higher than that of bacteria culture method. The plasma levels of endotoin, IL-6, DAO, TNF-αwere raised if bacteria from gut lumen translocted to circulatory system or distant organs, which could indirect reflect the bacterial transloction and become one of diagnostic or predicting markers of intestinal bacterial transloction after blast injury.
引文
1. Hinsley DE, Rosell PA, Rowlands TK, et al. Penetrating missile injuries during asymmetric warfare in the 2003 Gulf conflict[J]. Br J Surg, 2005, 92(5): 637-642.
    2. Marti M, Parron M, Baudraxler F, et al. Blast injuries from Madrid terrorist bombing attacks on March 11, 2004[J]. Emerg Radiol, 2006, 13(3): 113-122.
    3. Cave KM, Cornish EM and Chandler DW. Blast injury of the ear: clinical update from the global war on terror[J]. Mil Med, 2007, 172(7): 726-730.
    4. Thach AB, Johnson AJ, Carroll RB, et al. Severe eye injuries in the war in Iraq, 2003-2005[J]. Ophthalmology, 2008, 115(2): 377-382
    5. Bochicchio GV, Lumpkins K, O'Connor J, et al. Blast injury in a civilian trauma setting is associated with a delay in diagnosis of traumatic brain injury[J]. Am Surg, 2008, 74(3): 267-270.
    6. Davidovic LB, Cinara IS, Ille T, et al. Civil and war peripheral arterial trauma: review of risk factors associated with limb loss[J]. Vascular, 2005, 13(3): 141-147.
    7. Davila S, Mikulic D, Davila NJ, et al. Treatment of war injuries of the shoulder with external fixators[J]. Mil Med, 2005, 170(5): 414-417.
    8. Leppaniemi AK. Abdominal war wounds--experiences from Red Cross field hospitals[J]. World J Surg, 2005, 29(Suppl 1): S67-S71.
    9. Busic Z, Lovric Z, Amic E, et al. Small bowel injuries in penetrating abdominal trauma during war: ten-year follow-up findings[J]. Mil Med, 2004, 169(9): 721-722.
    10. Mil Med, 2004, 169(9): 721-722. Milotic F, Uravic M, Raguz K, et al. Penetrating liver war injury: a report on 172 cases[J]. Mil Med, 2003, 168(5): 419-421.
    11. Owens BD, Kragh JF Jr, Wenke JC, et al. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom[J]. J Trauma, 2008, 64(2): 295-299.
    12. Almogy G, Mintz Y, Zamir G, et al.Suicide bombing attacks: Can external signs predict internal injuries?[J] Ann Surg, 2006, 243(4): 541-546.
    13. Bochicchio GV, Lumpkins K, O'Connor J, et al. Blast injury in a civilian trauma setting is associated with a delay in diagnosis of traumatic brain injury[J]. Am Surg, 2008, 74(3): 267-270.
    1. de-Ceballos JP, Turegano-Fuentes F, Perez-Diaz D, et al. 11 March 2004: The terrorist bomb explosions in Madrid, Spain—an analysis of the logistics, injuries sustained and clinical management of casualties treated at the closest hospital[J]. Crit Care, 2005, 9(1): 104-111.
    2. Mujkic A, Peek-Asa C, Young T, et al. Effect of war on weapon-related deaths in Croatian children and youth[J]. Arch Pediatr Adolesc Med, 2008, 162(2): 140-144.
    3. Carey ME.Analysis of wounds incurred by U.S. Army Seventh Corps personnel treated in Corps hospitals during Operation Desert Storm, February 20 to March 10, 1991[J]. J Trauma, 1996, 40(3 Suppl): S165-169.
    4. Merickel B. Blast overpressure studies: part(2) non-auditory damage-risk assessment for simulated weapons fired 100 times form an enclosure, DTIC, 1997, 10.
    5. Moore EE, Cogbill TH, Jurkovich GJ, et al. Organ injury scaling: spleen and liver (1994revision)[J]. J Trauma 1995; 38(3): 323-324.
    6. Moore EE, Czgbill TH, Malangoni MA, et al. Organ injury scalingⅡ: pancreas, duodenum, small bowel, colon and rectum[J]. J Trauma, 1990, 30(11):1427-1429.
    7. Hinsley DE, Rosell PA, Rowlands TK, et al. Penetrating missile injuries during asymmetric warfare in the 2003 Gulf conflict[J]. Br J Surg, 2005, 92(5): 637-642.
    8. Bradic N, Cuculic D, Jancic E. Terrorism in Croatia[J]. Prehospital Disaster Med, 2003, 18(2): 88-91.
    9. Owens BD, Kragh JF Jr, Wenke JC, et al. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom[J]. J Trauma, 2008, 64(2): 295-299.
    10. Rignault DP. Abdominal trauma in war. World J Surg, 1992, 16(5): 940-946.
    11.杨志焕,周继红,康建毅等.爆炸冲击波损伤生物效应评估进展[J].野战外科通讯, 2006, 31(3): 8-12.
    12. Sharma OP, Oswanski MF, White PW. Injuries to the colon from blast effect of penetrating extra-peritoneal thoraco-abdominal trauma[J]. Injury, 2004, 35(3): 320-324.
    13. Elsayed NM. Toxicology of blast overpressure[J]. Toxicology, 1997, 121(1): 1-15.
    1.王正国.冲击伤[M].第1版.北京:人民军医出版社. 1983: 106.
    2. Bird SM and Fairweather CB. Military fatality rates (by cause) in Afghanistan and Iraq: a measure of hostilities[J]. Int J Epidemiol, 2007, 36(4): 841-846.
    3. Rignault DP, Deligny MC. The 1986 terrorist bombing experience in Paris[J]. Ann Surg, 1989, 209:368-373.
    4. Katz E, Ofek B, Adler J, et al. Primary blast injury after a bomb explosion in a civilian bus[J]. Ann Surg, 1989, 209(4): 484-488.
    5.杨志焕,尹友国,李晓炎,等.环境压力对大鼠冲击伤伤情的影响[J].第三军医大学学报, l994, 16(4): 274-276.
    6. Chaloner E. Blast injury in enclosed spaces[J]. BMJ, 2005, 331(7509): 119-1 20.
    7. Leibovici D, Gofrit ON, Stein M, et a1. Blast injuries:bus versus open-air bombings.a comparative study of injuries in survivors of open-air versus confined-space explosions[J]. J Trauma, 1996, 41(6):1030-1035.
    8. Richmond D R,Jenssen A.Compendiumon the Biological Effects of Complex Blast Waves[R]. ADA 392597, 1992: 133-135.
    9.赖西南.美军开展武器弹药杀伤生物效应的研究概况.野战外科通讯, 2006, 31(3): 2-4.
    10. Sayer NA, Chiros CE, Sigford B, et al. Characteristics and rehabilitation outcomes among patients with blast and other injuries sustained during the Global War on Terror[J]. Arch Phys Med Rehabil, 2008, 89(1): 163-170.
    11.黎鳌,盛志勇,王正国.现代战伤外科学[M].北京:人民军医出版社, 1998, 93-124.
    12. Quintana DA, Parker JR, Jordan FB, et al. The spectrum of pediatric injuries after a bomb blast[J]. J Pediatr Surg, 1997, 32:307-310.
    13.黄显凯.加强腹部创伤的早期救治.创伤外科杂志, 2007, 9(5): 385-387.
    1. Deitch EA and Berg R. Bacterial translocation from the gut: a mechanism of infection[J]. J Burn Care Rehabil, 1987, 8(6): 475-482.
    2. Magnotti LJ, Deitch EA. Burns, bacterial translocation, gut barrier function, and failure[J]. J Burn Care Rehabil, 2005, 26(5):383-391.
    3. Kombean JL, Takala J. Summary of round table conference: gut dysfunction in critical illness[J]. Intensive Care Medicine, 1997, 23(7): 475-480.
    4.黄显凯.加强胸腹部创伤的早期救治.中华创伤杂志, 2004, 20(9): 513-515.
    5. Gorbunov NV, Elsayed NM, Kisin ER, et al. Air blast-induced pulmonary oxidative stress: interplay among hemoglobin, antioxidants, and lipid peroxidation[J]. Am J Physiol, 1997, 272(2 Pt 1): L320-34.
    6. Elsayed NM, Gorbunov NV. Pulmonary biochemical and histological alterations after repeated low-level blast overpressure exposures[J]. Toxicol Sci, 2007, 95(1): 289-296.
    7. Jin LH, Bahn JH, Eum WS, et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells[J]. Free Radic Biol Med, 2001, 31(11): 1509-1519.
    8. Biesalski HK, McGregor GP. Antioxidant therapy in critical care-is the microcirculation the primary target[J]? Crit Care Med. 2007, 35(9 Suppl):S577-S583.
    9. Mishra V. Oxidative stress and role of antioxidant supplementation in critical illness[J]. Clin Lab, 2007, 53(3-4):199-209.
    1.吴伟康.细胞凋亡与疾病.见金惠铭主编.病理生理学[M].第6版.北京:人民卫生出版社, 2005: 130-143.
    2. Cerwinka WH, Cooper D, Krieglstein CF, et al. Superoxide mediates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules[J]. Am J Physiol Heart Circ Physiol, 2003, 284(2): H535-541.
    3. Fry DE. Sepsis syndrome[J]. Am Surg, 2000, 66(2):126-132.
    4. Grossmann J, Walther K, ArtingerM,et al. Induction of apoptosis before shedding of human intestinal epithelial cells[J]. Am J Gastroenterol, 2002. 97(6): 1421-1428.
    5. Tarnawski AS, Szabo I. Apoptosis-programmed cell death and its relevance to gastrointestinal epithelium: survival signal from the matrix[J]. Gastroenterology, 2001, 120(1): 294-299.
    6. Watson AJ. The role of apoptosis in intestinal disease[J]. J Gastroenterol, 1997, 32(3): 414-423.
    7. Wang J, Lenardo MJ. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies[J]. J Cell Sci, 2000, 113 ( Pt 5): 753-757.
    8. Thornberry NA, Lazebnik Y. Caspases: enemies within[J.] Science, 1998, 281(5381): 1312-1316.
    9 Droin N,Dubrez L,Eymin B,et al.Upregulantion of CASP genes in human tumor cells undergoing etoposide induce apoptosis[J]. Oncogene,1998,16(2):2885-2894.
    10. Ikeda H, Chao L, Tong J, et al. Rat small intestinal goblet cell kinetics in the process of restitution of surface epithelium subjected to ischemia-reperfusion injury. Dig Dis and Sci, 2002, 74(5): 590-601.
    11. Noda T, Iwakiri R, Fujimoto R,et al·Programmed cell death induced by ischemia-refusion in rat intestinal mucosa[J]. Am J Physiol,1998,274:G270-276
    12. Salahira H, Enari M, Nagata S, et al. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature, 1998, 391(6662): 96-99.
    13. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J med, 2003, 348: 138-150.
    14. Daugas E, Nochy D, Ravagnan L, et al. Apoptosis-inducing factor: (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis[J].FEBS Lett, 2000, 476(1):118-123.
    15. Schmitz H, Fromm M, Bentzel C J,et al. Tumor necrosis factor-alpha(TNFalpha) regulates the epithelial barrier in the human intestinal cellline HT-29/B6[J]. J Cell Sci, 1999 ,112 (1):137-146.
    16. Hirata H, Takahashi A, Kobayashi S,et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis[J]. J Exp Med, 1998, 16(4):587-600.
    17.BehrnsKE, Schrum LW, Que FG. Apoptosis: cell death by proteolytic scalpel[J]. Surgery, 1999, 126(3): 463-468.
    1. Chiu CJ, McArdle AH, Brown R, et al.Intestinal mucosal lesion in low-flow states. Arch Surg, 1970, 101(4): 478-488.
    2. Brandt RB, Siegel SA, Waters MG, et al. Spectrophotometric assay for D-(-)-lactate in plasma. Anal Biochem, 1980: 102(1):39-46.
    3.屠伟峰,肖光夏.“休克肠”与多脏器功能障碍[J].中华麻醉学杂志, 2002, 22(2): 125-128.
    4. Moriyama K, Kouchi Y, Morinaga H, et al. Diamine oxidase, a plasma biomarker in rats to GI tract toxicity of oral fluorouracil anti-cancer drugs[J]. Toxicology, 2006, 217(2-3): 233-239.
    5. Murray MJ, Gonze MD, Nowak LR, et al. Serum D(-)-lactate levels as an aid to diagnosing acute intestinal ischemia. Am J Surg, 1994, 167(6): 575-578.
    6. Berg RD. Bacteria1 translocation from the gastrointestinal tract. Adv Exp Med Biol,1999,473:11-30.
    7. Thompson JS, Vaughan WP, Forst CF, et al. The effect of the route of nutrient delivery on gut structure and diamine oxidase levels[J]. JPEN J Parenter Enteral Nutr, 1987, 11(1): 28-32.
    8. Luk GD, Bayless TM, Baylin SB. Plasma postheparin diamine oxidase. Sensitive provocative test for quantitating length of acute intestinal mucosal injury in the rat[J]. J Clin Invest, 1983, 71(5): 1308-1315.
    9. Tsunooka N, Maeyama K, Nakagawa H,etal. Localization and changes of diamine oxidase during cardiopulmonary bypass in rabbits[J]. J Surg Res, 2006, 131(1): 58-63.
    10. Clausen MR, bonnen H, Tvede M, et a.l Colonic fermentation to short-chain fatty acids is decreased in antibiotic-associated diarrhea[ J].Gastroen terology, 1991, 101(6): 1497-1504.
    11. Ewaschuk JB, Naylor JM and Zello GA. D-lactate in human and ruminant metabolism[J]. J Nutr, 2005, 135(7): 1619-1625.
    12. Tan L,WangY, Liu XQ, et a.l Simultaneous determination of L-and D-lactic acid in plasma by capillary electrophoresis[ J]. J Chromatogr B, 2005, 814(2): 393-398.
    1. Nawata M, Minobe S, Hase M, et al. Specific assay for endotoxin using immobilized histidine, Limulus amoebocyte lysate and a chromogenic substrate[J]. J Chromatogr, 1992, 597(1-2): 415-424.
    2. Helle M, Boeije L, de Groot E, et al. Sensitive ELISA for interleukin-6. Detection of IL-6 in biological fluids: synovial fluids and sera[J]. J Immunol Methods, 1991, 138(1): 47-56.
    3. McLaughlin PJ, Elwood NJ, Ramadi LT, et al. Improvement in sensitivity of enzyme-linked immunosorbent assay for tumour necrosis factor[J]. Immunol Cell Biol, 1990, 68 ( Pt 1): 51-55.
    4. Schweinburg FB and Fine J. Evidence for a lethal endotoxemia as the fundamental feature of irreversibility in three types of traumatic shock[J]. J Exp Med, 1960, 112: 793-800.
    5. Velickovic TC, Thunberg S, Polovic N, et al. Low levels of endotoxin enhance allergen-stimulated proliferation and reduce the threshold for activation in human peripheral blood cells[J]. Int Arch Allergy Immunol, 2008, 146(1): 1-10.
    6. Duvigneau JC, Piskernik C, Haindl S, et al. A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction[J]. Lab Invest, 2008, 88(1): 70-77.
    7. Sharma R, Tepas JJ, Hudak ML, et al. Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotizing enterocolitis[J]. J Pediatr Surg, 2007, 42(3): 454-461.
    8. Hassett S, Moynagh P and Reen D. TNF-alpha is a mediator of the anti-inflammatory response in a human neonatal model of the non-septic shock syndrome[J]. Pediatr Surg Int, 2006, 22(1): 24-30.
    9. Watanabe E, Hirasawa H, Oda S, et al. Cytokine-related genotypic differences in peak interleukin-6 blood levels of patients with SIRS and septic complications[J]. J Trauma, 2005, 59(5): 1181-1189; discussion 1189-1190.
    10. Papathanassoglou ED, Movnihan JA, Dafni O, et al. Association of proinflammatory molecules with apoptotic markers and survival in critically ill multiple organ dysfunction patients[J]. Biol Res Nurs, 2003, 5(2): 129-141.
    11. Cavaillon JM, Adrie C, Fitting C, et al. Reprogramming of circulatory cells in sepsis and SIRS[J]. J Endotoxin Res, 2005, 11(5): 311-320.
    12. Volman TJ, Hendriks T, Verhofstad AA, et al. Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome[J]. Shock, 2002, 17(6): 468-472.
    13. Nanbo A, Nishimura H, Muta T, et al. Lipopolysaccharide stimulates HepG2 human hepatoma cells in the presence of lipopolysaccharide-binding protein via CD14[J]. Eur J Biochem, 1999, 260(1): 183-191.
    14. Nolan B, Collette H, Baker S, et al. Inhibition of neutrophil apoptosis after severe trauma is NFkappabeta dependent[J]. J Trauma, 2000, 48(4): 599-604; discussion 604-595.
    15. Tsuchida K, Yoshimura R, Nakatani T, et al. Blood purification for critical illness: cytokines adsorption therapy[J]. Ther Apher Dial, 2006, 10(1): 25-31.
    16. Sandeman SR, Howell CA, Mikhalovsky SV, et al. Inflammatory cytokine removal by an activated carbon device in a flowing system[J]. Biomaterials, 2008, 29(11): 1638-1644.
    1. Demling RH. The clinical relevance of defining the mechanism for altered gut permeability in a "two-hit" model of injury and infection[J]. Crit Care Med, 2004, 32(11): 2356-2357.
    2. Choudhry MA, Rana SN, Kavanaugh MJ, et al. Impaired intestinal immunity and barrier function: a cause for enhanced bacterial translocation in alcohol intoxication and burn injury[J]. Alcohol, 2004, 33(3): 199-208.
    3. Bharhani MS, Grewal JS, Peppler R, et al. Comprehensive phenotypic analysis of the gut intra-epithelial lymphocyte compartment: perturbations induced by acute reovirus 1/L infection of the gastrointestinal tract[J]. Int Immunol, 2007, 19(4): 567-579.
    4. Tomlinson JE and Blikslager AT. Effects of ischemia and the cyclooxygenase inhibitor flunixin on in vitro passage of lipopolysaccharide across equine jejunum[J]. Am J Vet Res, 2004, 65(10): 1377-1383.
    5. Unno N, Hodin RA, Fink MP. Acidic conditions exacerbate interferon gamma-induced intestinal epithelial hyperpermeability:role of peroxynitrous acid[J].Crit Care Med, 1999, 27(8): 1429-1436.
    6. Souza DG and Teixeira MM. The balance between the production of tumor necrosis factor-alpha and interleukin-10 determines tissue injury and lethality during intestinal ischemia and reperfusion[J]. Mem Inst Oswaldo Cruz, 2005, 100(Suppl 1): 59-66.
    7. Li Q, Zhang Q, Wang M, et al. Interferon-gamma and tumor necrosis factor-alpha disrupt epithelial barrier function by altering lipid composition in membrane microdomains of tight junction[J]. Clin Immunol, 2008, 126(1): 67-80.
    8. Nadler EP, Upperman JS, Dickinson EC, et al. Nitric oxide and intestinal barrier failure[J]. Semin Pediatr Surg, 1999, 8(3): 148-154.
    9. Steinberg SM. Bacterial translocation: what it is and what it is not[J]. Am J Surg, 2003, 186(3): 301-305.
    10. Chokshi NK, Guner YS, Hunter CJ, et al. The role of nitric oxide in intestinal epithelial injury and restitution in neonatal necrotizing enterocolitis[J]. Semin Perinatol, 2008,32(2): 92-99.
    11. Salzman Al. Nitric oxide in the gut[J]. New Horiz, 1995, 3(2): 352-364.
    12. Banan A, Fitzpatrick L, Zhang Y,et al. OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability. Free Radic Biol Med, 2001, 30(3): 287-298.
    13. Kumar S, Bharti A, Mishra NC, et al. Targeting of the c-Abl tyrosine kinase to mitochondria in the necrotic cell death response to oxidative stress. J Biol Chem, 2001, 276(20): 17281-17285.
    14. Hoyt DB, Junger WG, Loomis WH, et al. Effects of trauma on immune cell function: impairment of intracellular calcium signaling. Shock, 1994, 2(1): 23-28.
    15. Luyer MD, Buurman WA, Hadfoune M, et al. Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock[J]. Infect Immun, 2005, 73(6): 3686-3692.
    16. Leeuwen PAMV,Boermeester MA,Houdi JK JAPet al. Pretreatment with enteralcholestiramine prevents suppression of the cellular immune system after partial hepatectomy[J]. Ann Surg, 1995, 221(3): 282-290.
    17. Sukhotnik I, Coran AG, Greenblatt R, et al. Effect of 100% oxygen on E-selectin expression, recruitment of neutrophils and enterocyte apoptosis following intestinal ischemia-reperfusion in a rat[J]. Pediatr Surg Int, 2008, 24(1): 29-35.
    18. Shimizu K, Ogura H, Goto M, et al.Altered gut flora and environment in patients with severe SIRS. JTrauma, 2006, 60(1): 126-133.
    19. Matsumoto T, Ishikawa H, Tateda, K, et al. Oral administration of Bifidobacterium longum prevents gut-derived Pseudomonas aeruginosa sepsis in mice. J Appl Microbiol, 2008, 104(3): 672-680.
    20. De-Souza DA and Greene LJ. Intestinal permeability and systemic infections in critically ill patients: effect of glutamine[J]. Crit Care Med, 2005, 33(5): 1125-1135.
    21. Soderholm JD,Perdue MH.Stress and the gastrointestinal tract. II.Stress and intestinal barrier function[J].Am J Physiol GastrointestLiver Physiol, 2001, 280(1): G7-G13.
    22. Sakamoto K, Hirose H, Onizuka A, et al. Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J Surg Res, 2000, 94(2):99-106.
    23. Ziegler TR, Evans ME, Fernandez-Estivariz C, et al. Trophic and cytoprotective nutrition for intestinal adaptation, mucosal repair, and barrier function[J]. Annu Rev Nutr, 2003, 23: 229-261.
    24. Lichtman SM. Bacterial translocation in humans. J Pediatr Gastroenterol Nutr, 2001, 33(1): 1-10.
    25. Hassoun HT, Kone BC, Mercer DW, et al. Post-injury multiple organ failure: the role of the gut. Shock, 2001, 15(1): 1-10.
    26. Nakad A, Piessevaux H, Marot JC, et al. Is early enteral nutrition in acute pancreatitis dangerous? About 20 patients fed by an endoscopically placed nasogastrojejunal tube[J]. Pancreas, 1998, 17(2): 187-193.
    27. Shang HF, Wang YY, Lai YN, et al. Effects of arginine supplementation on mucosal immunity in rats with septic peritonitis. Clin Nutr, 2004, 23(4): 561-569.
    28. Stefanov CS, Boyadzhiev NP, Uchikov AP, et al. Enteral nutrition in sepsis patients. Folia Med (Plovdiv), 2005, 47(1): 11-20.
    29. Ohta K, Omura K, Hirano K, et al. The effects of an additive small amount of a low residual diet against total parenteral nutrition-induced gut mucosal barrier. Am J Surg, 2003, 185(1): 79-85.
    30. Kell MR, Barry BD, Redmond HP. Systemic inflammatory response syndrome: a new direction? Ir J Med Sci, 2003, 172(1): 7-8.
    31. Akyildiz M, Ersin S, Oymaci E, et al. Effects of somatostatin analogues and vitamin C on bacterial translocation in an experimental intestinal obstruction model of rats[J]. J Invest Surg, 2000, 13(3): 169-173.
    32. Nayci A, Atis S, Ersoz G, et al. Oxygen supplementation during airway instrumentation improves intestinal barrier dysfunction[J]. J Pediatr Surg, 2006, 41(8): 1386-1391.
    33. Bhor VM, Thomas CJ, Surolia N, et al. Polymyxin B: an ode to an old antidote for endotoxic shock[J]. Mol Biosyst, 2005, 1(3): 213-222.
    34. Kleessen B, Hartmann L, Blaut M. Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria ingnotobiotic rats. Br J Nutr, 2003, 89(5): 597-606.
    35. Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut, 2003; 52(7): 988-997.
    36. Andrews FJ,Griffiths ED.Glutamine:essential for immune nutrition in the critically ill[J].Br J Nutr, 2002, 87(Suppl 1): S3-S8.
    37. Clark EC, Patel SD, Chadwick PR, et al. Glutamine deprivation facilitates tumour necrosis factor induced bacterial translocation in Caco-2 cells by depletion of enterocyte fuel substrate. Gut, 2003, 52(2): 224-230.
    38. Murali SG, Nelson DW, Draxler AK, et al. Insulin-like growth factor-I (IGF-I) attenuates jejunal atrophy in association with increased expression of IGF-I binding protein-5 in parenterally fed mice[J]. J Nutr, 2005, 135(11): 2553-2559.
    39. Banan A, Zhang LJ, Shaikh M, et al. Key role of PLC-gamma in EGF protection of epithelial barrier against iNOS upregulation and F-actin nitration and disassembly. Am J Physiol Cell Physiol, 2003, 285(4): C977-C993.
    40. Drucker DJ, Deforest L, Brubaker PL. Intestinal response to growth factors administered alone or in combination with human glucagon-like peptide 2[J]. Am J Physiol, 1997, 273(10): G1252-1262.
    41. Kato Y, Yu D, Schwartz MZ. Glucagon-like peptide 2 enhances amall intestinal absorptive function and mucosal mass in vivo[J]. J Pediatr Surg, 1999, 34(1):18-21.
    42. Prasad R, Alavi K, Schwartz MZ, Glucagon-like peptide2 analogue enhances intestinal mucosal mass after ischemia and reperfusion[J]. J Pediatr Surg, 2000, 35(4):357-359.
    43. Chance WT, Sheriff S, McCarter F,et al. Glucagon-like peptide-2 stimulates gut mucosal growth and immune response in burned rats. J Burn Care Rehabil, 2001, 22(2): 136-143.
    44. Yi C, Cao Y, Wang SR, et al. Beneficial effect of recombinant human growth hormone on the intestinal mucosa barrier of septic rats[J]. Braz J Med Biol Res, 2007, 40(1): 41-48.
    1. Feighery L, Smyth A, Keely S, et al. Increased intestinal permeability in rats subjected to traumatic frontal lobe percussion brain injury. J Trauma 2008;64:131-137; discussion 137-138.
    2. Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg 1996;20:411-417.
    3. Maes M, Kubera M, Leunis JC. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett 2008;29:117-124.
    4. Papa M, Halperin Z, Rubinstein E, et al. The effect of ischemia of the dog's colon on transmural migration of bacteria and endotoxin. J Surg Res 1983;35:264-269.
    5. O'Boyle CJ, MacFie J, Mitchell CJ, et al. Microbiology of bacterial translocation in humans. Gut 1998;42:29-35.
    6. Riddington DW, Venkatesh B, Boivin CM, et al. Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 1996;275:1007-1012.
    7. Sedman PC, Macfie J, Sagar P, et al. The prevalence of gut translocation in humans. Gastroenterology 1994;107:643-649.
    8. Winchurch RA, Thupari JN, Munster AM. Endotoxemia in burn patients: levels of circulating endotoxins are related to burn size. Surgery 1987;102:808-812.
    9. Holland J, Carey M, Hughes N, et al. Intraoperative splanchnic hypoperfusion, increased intestinal permeability, down-regulation of monocyte class II major histocompatibility complex expression, exaggerated acute phase response, and sepsis. Am J Surg 2005;190:393-400.
    10. Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview. Gastroenterology 1995;108:1566-1581.
    11. Ewaschuk JB, Naylor JM, Zello GA. D-lactate in human and ruminant metabolism. J Nutr 2005;135:1619-1625.
    12. Murray MJ, Barbose JJ, Cobb CF. Serum D(-)-lactate levels as a predictor of acute intestinal ischemia in a rat model. J Surg Res 1993;54:507-509.
    13. Moriyama K, Kouchi Y, Morinaga H, et al. Diamine oxidase, a plasma biomarker in rats to GI tract toxicity of oral fluorouracil anti-cancer drugs. Toxicology 2006;217:233-239.
    14. Chiu CJ, McArdle AH, Brown R, et al. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 1970;101:478-483.
    15. Nie H, Huang XK, Lai XN, et al. Analysis of traumatic condition on abdominal injury of rats caused by explosion in enclosed spaces. J Trauma Surg 2008;10:145-148.
    16. Lievin V, Peiffer I, Hudault S, et al. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 2000;47:646-652.
    17. Porter EM, van Dam E, Valore EV, et al. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect Immun 1997;65:2396-2401.
    18. Sanders DS. Mucosal integrity and barrier function in the pathogenesis of early lesions in Crohn's disease. J Clin Pathol 2005;58:568-572.
    19. Muller CA, Autenrieth IB, Peschel A. Innate defenses of the intestinal epithelial barrier. Cell Mol Life Sci 2005;62:1297-1307.
    20. Qin X, Caputo FJ, Xu DZ, et al. Hydrophobicity of mucosal surface and its relationship to gut barrier function. Shock 2008;29:372-376.
    21. Rupani B, Caputo FJ, Watkins AC, et al. Relationship between disruption of the unstirred mucus layer and intestinal restitution in loss of gut barrier function after trauma hemorrhagic shock. Surgery 2007;141:481-489.
    22. LeVoyer T, Cioffi WG, Jr., Pratt L, et al. Alterations in intestinal permeability after thermal injury. Arch Surg 1992;127:26-29; discussion 29-30.
    23. Roumen RM, Hendriks T, Wevers RA, et al. Intestinal permeability after severe trauma and hemorrhagic shock is increased without relation to septic complications. Arch Surg 1993;128:453-457.
    24. Ammori BJ. Importance of the early increase in intestinal permeability in critically ill patients. Eur J Surg 2002;168:660-661; author reply 662.
    25. Pape HC, Dwenger A, Regel G, et al. Increased gut permeability after multiple trauma. Br J Surg 1994;81:850-852.
    26. Marcos MA, Vila J, Gratacos J, et al. Determination of D-lactate concentration for rapid diagnosis of bacterial infections of body fluids. Eur J Clin Microbiol Infect Dis 1991;10:966-969.
    27. Gunel E, Caglayan O, Caglayan F. Serum D-lactate levels as a predictor of intestinal ischemia-reperfusion injury. Pediatr Surg Int 1998;14:59-61.
    28. Takagi K, Nakao M, Ogura Y, et al. Sensitive colorimetric assay of serum diamine oxidase. Clin Chim Acta 1994;226:67-75.
    29. Bieganski T, Kusche J, Lorenz W, et al. Distribution and properties of human intestinal diamine oxidase and its relevance for the histamine catabolism. Biochim Biophys Acta 1983;756:196-203.
    30. Wolvekamp MC, de Bruin RW. Diamine oxidase: an overview of historical, biochemical and functional aspects. Dig Dis 1994;12:2-14.
    31. Rokkas T, Vaja S, Murphy GM, et al. Postheparin plasma diamine oxidase in health and intestinal disease. Gastroenterology 1990;98:1493-1501.
    32. D'Agostino L, Ciacci C, Daniele B, et al. Postheparin plasma diamine oxidase in subjects with small bowel mucosal atrophy. Dig Dis Sci 1987;32:313-317.
    33. Bragg LE, Thompson JS, West WW. Intestinal diamine oxidase levels reflect ischemic injury. J Surg Res 1991;50:228-233.
    34. Bouhnik Y, Alain S, Attar A, et al. Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome. Am J Gastroenterol 1999;94:1327-1331.
    35. Alican I, Kubes P. A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol 1996;270:G225-237.
    36. Ziegler TR, Cole CR. Small bowel bacterial overgrowth in adults: a potential contributor to intestinal failure. Curr Gastroenterol Rep 2007;9:463-467.
    37. Kutayli ZN, Domingo CB, Steinberg SM. Intestinal failure. Curr Opin Anaesthesiol 2005;18:123-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700