无创性肢体缺血预适应对大鼠心脏延迟保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究和观察无创性肢体缺血预适应(NLIP)对心脏缺血再灌损伤后的延迟保护作用。
     方法:麻醉大鼠,以改良的自制无创血压测试仪套管套住大鼠左后肢根部,脉搏传感器紧贴在足背动脉上,加压使脉搏消失即为阻断股动脉标志,持续5min,减压,脉搏出现为再灌标志,持续5min,共3个循环。Wistar大鼠,体重240-260g,雄性,随机分为3组。(1)心肌缺血再灌组(I/R组,n=10):心脏冠状动脉左前降支(LAD)实施30min缺血,120min再灌。(2)心肌缺血预适应组(IP组,n=10):心脏LAD实施3次缺血5min/再灌5min后立即对心脏LAD实施30min缺血,120min再灌。(3)NLIP组(n=10):左后肢实施3次缺血5min/再灌5min,每天1次,连续3天,第4天对心脏LAD实施30min缺血,120min再灌。
     结果:
     1.NLIP对大鼠心肌缺血再灌损伤后生理学的影响:
     与I/R组(0.373±0.131mV)比较,IP和NLIP均能降低缺血后ST-段的抬高程度(0.232±0.086和0.161±0.116mV,P<0.01)。I/R组心律失常出现时间早(2.5±0.9min),持续时间长(21.3±5.3min),发生率高,IP和NLIP均能推迟室性心律失常出现时间(11.2±3.4和16.7±3.5min,P<0.01),缩短持续时间(10.1±3.1和7.3±1.2min,P<0.01),降低发生率。但后两者之间无显著性差异。
     2.NLIP对大鼠心肌缺血再灌损伤后心肌梗死面积和形态学的影响:
     I/R组心肌梗死面积大(77.4±22.1mg),梗死区与危险区比值(IS/AAR)高(44.5±8.1%),HE染色见心肌细胞损伤严重,出现肿胀、核溶解消失、肌束断裂,伴有炎性细胞浸润。与I/R组比较,IP和NLIP组梗死面积显著减小(43.2±15.4和39.5±13.6mg,P<0.01),IS/AAR值明显降低(28.6±9.5和25.4±8.7%,P<0.01),HE染色见心肌细胞肿胀不明显,无肌束断裂,少量炎性细胞浸润。
     3.NLIP对大鼠心肌缺血再灌损伤后生化的影响:
     与I/R组(118.2±36.4U/L和2.66±1.00ng/ml)比较,IP和NLIP组CK-MB和cTnI在再灌期升高幅度降低(80.4±33.4和85.1±27.9U/L,P<0.05;1.31±0.81和1.20±0.79ng/ml,P<0.01)。与I/R组(300±49NU/ml)比较,IP和NLIP均能显著提高再灌后SOD活性(366±72和388±67NU/ml,P<0.05和P<0.01)。
     4.NLIP对大鼠心肌缺血再灌损伤后心肌凋亡的影响:
     I/R组在缺血区有较高的细胞凋亡率(16.21±2.12%),其对应基因Bcl-2/Bax值较低(0.66±0.03);和I/R组比较,IP和NLIP组的细胞凋亡率明显降低(5.30±0.81和4.82±1.15%,P<0.01),Bcl-2/Bax值明显升高(1.44±0.08和1.51±0.09,P<0.01)。TUNEL法和免疫组化法得到结果与上述一致。
     5.NLIP对大鼠心肌缺血再灌损伤后MMP-2、MMP-9及其抑制物TIMP-1的影响:
     I/R组的缺血区内MMP-2(21.33±2.34%)和MMP-9(16.41±2.92%)的表达增加,TIMP-1的表达却明显减弱(10.79±1.15%);与I/R组比较,IP和NLIP组的缺血区内MMP-2(12.35±1.10和12.55±1.08%,P<0.01)和MMP-9(9.31±1.08和8.76±1.12%,P<0.01)的表达有所减少,TIMP-1的表达有所增加(15.11±2.58和16.59±2.98%,P<0.01)。免疫组化染色结果显示,阳性颗粒主要分布于心肌细胞的胞浆和血管内皮细胞的胞浆内,有时在间质细胞的胞浆中也可见到。RT-PCR结果和免疫组化结果一致。
     6.NLIP对大鼠心肌缺血再灌损伤后纤溶因子的影响:
     各组血浆中t-PA活性在缺血再灌期间呈进行性下降趋势,而PAI-1活性呈进行性升高趋势,再灌后,与I/R组t-PA(1.01±0.33U/ml)和PAI-1(27.11±0.63AU/ml)比较,IP和NLIP均能显著对抗t-PA活性的降低(1.98±0.46和1.89±0.44U/ml,P<0.01)和PAI-1活性的升高(25.42±0.56和22.01±0.45AU/ml,P<0.01)。
     结论:
     1.NLIP能明显降低心肌缺血再灌损伤所致缺血期ST-段抬高幅度,推迟由心肌缺血造成的室性心律失常出现时间,缩短持续时间,能够保护缺血再灌损伤心肌,且能达到心肌早期缺血预适应的程度。
     2.NLIP能降低缺血再灌损伤所致心肌梗死面积,改善损伤的心肌细胞形态学改变。
     3.NLIP能减少心肌缺血再灌损伤时心肌酶的漏出并且提高SOD的活性而保护心肌细胞。
     4.NLIP能抑制缺血再灌损伤心肌细胞凋亡的发生,改善其可能的调控基因Bcl-2、Bax异常表达。
     5.NLIP能降低缺血再灌损伤心肌MMPs的表达,增加TIMP-1的表达而减少缺血再灌对心脏基质的损伤,保护心脏正常结构。
     6.NLIP能改善缺血再灌损伤所致体内纤溶/抗纤溶系统的紊乱,这可能是其保护心脏作用机制之一。
Objective: To study on the delayed protective effect of noninvasive limb ischemic preconditioning against myocardial injury in rats.
     Method: After rat anesthetized with chloral hydrate, the left hind limb was trapped with canula of modified noninvasive sphygmomanometer. After that, to stick pulse transduce to arteria dorsalis pedis. Asphygmia indicated blockade of arteria femoralis, which lasted 5 min, while pulse appearance indicated reperfusion, which last 5 min, the procedure was operated 3 circles. Thirty healthy male Wistar rats (240-260 g) were divided randomly into 3 groups. (1) I/R group, only 30 min ischemia and 120 min reperfusion of LAD was conducted. (2) IP group, 3 circles of 5-min periods of I/R followed by 30 min ischemia and 120 min reperfusion of LAD. (3) NLIP group, 3 circles of 5-min periods of left hind limb I/R, once time every day for 3 days. On the forth day, 30 min ischemia and 120 min reperfusion of LAD was done. shorten IS (43.2±15.4 and 39.5±13.6 mg, P<0.01), decrease IS/AAR (28.6±9.5 and 25.4±8.7%, P<0.01), and myocardial injury was moderate: the swelling was not apparent, no fragmentation, only a little inflammatory cell infiltrated.
     3. Influence of NLIP on the biochemistry after IRI
     Compared with I/R group (118.2±36.4 U/L and 2.66±1.00 ng/ml), IP and NLIP could decrease CK-MB and cTnI (80.4±33.4 and 85.1±27.9 U/L, P<0.05; 1.31±0.81 and 1.20±0.79 ng/ml, P<0.01). Meanwhile, compared with I/R group (300±49 NU/ml), IP and NLIP could elevate SOD activity(366±72 and 388±67 NU/ml, P<0.05 and P<0.01).
     4. Influence of NLIP on apoptosis of myocardium after IRI
     The apoptosis rate in ischemic myocardium of I/R group was very high (6.21±2.12%), but Bcl-2/Bax was very low (0.66±0.03). Compared with I/R group, the apoptosis rate was decreased significantly (5.30±0.81and 4.82±1.15%, P<0.01), but Bcl-2/Bax was very high (1.44±0.08 and 1.51±0.09,P<0.01). Results of TUNEL and immunohistochemistry were in coincidence with above.
     5. Influence of NLIP on MMPs after IRI
     Expression of MMP-2 (21.33±2.34%) and MMP-9 (16.41±2.92%) was high, and TIMP-1 (10.79±1.15%) was low in ischemic myocardium of I/R group. Compared with I/R group, expression of MMP-2 (12.35±1.10 and 12.55±1.08%, P<0.01) and MMP-9 (9.31±1.08 and 8.76±1.12%, P<0.01) was decreased and expression of TIMP-1 (15.11±2.58 and 16.59±2.98%,P<0.01) was increased in IP and NLIP group. Positive particle distributed in the endochylema of myocardial cell and vascular endothelial cell, sometimes in the interstitial cell. Results of RT-PCR were in coincidence with immunohistochemistry.
     6. Influence of NLIP on blood fibrinolysis factor after IRI
     The activity of t-PA descended in progress during ischemia and reperfusion, but the activity of PAI-1 advanced in progress in every group. After reperfusion, the activity of t-PA and PAI-1 was 1.01±0.33 U/ml and 27.11±0.63 AU/ml respectively. Compared with I/R group, IP and NLIP could prevent t-PA activity (1.98±0.46 and 1.89±0.44 U/ml, P<0.01) from decreasing and PAI-1 (25.42±0.56 and 22.01±0.45 AU/ml, P<0.01) from increasing.
     Conclusion:
     1. NLIP could protect heart against IRI via reducing ST-segment, delaying onset, shortening duration and decreasing incidence rate of VA, which is nearly to the level of early cardiac ischemic preconditioning.
     2. NLIP could decrease IS and improve morphological changes caused by IRI.
     3. NLIP could protect cardiac cell against IRI through reducing the leakage of cardiac muscle enzyme, elevating SOD activity.
     4. NLIP could prevent myocardium from apoptosis caused by IRI and improve anomaly expression of the controlling gene of Bcl-2 and Bax.
     5. NLIP could decrease the expression of MMPs, increase the expression of TIMP caused by IRI, which prevented cardiac matrix from degrading and maintain myocardial normal structure.
     6. NLIP could improve the system of fibrinolysis and anti-fibrinolysis, which maybe the one of mechanisms of protection.
引文
[1] Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium [J]. Circulation. 1986;74(5):1124-36.
    [2] Christophe M, Nicolas S. Mitochondria: a target for neuroprotective interventions in cerebral ischemia-reperfusion [J]. Curr Pharm Des. 2006;12(6):739-57.
    [3] Sakamoto K, Yonoki Y, Kubota Y, Kuwagata M, Saito M, Nakahara T, Ishii K. Inducible nitric oxide synthase inhibitors abolished histological protection by late ischemic preconditioning in rat retina [J]. Exp Eye Res. 2006 Mar;82(3):512-8.
    [4] Olguner C, Koca U, Kar A, Karci A, Islekel H, Canyilmaz M, Mavioglu O, Kizildag S, Unlu G, Elar Z. Ischemic preconditioning attenuates the lipidperoxidation and remote lung injury in the rat model of unilateral lower limb ischemia reperfusion [J]. Acta Anaesthesiol Scand. 2006 Feb;50(2):150-5.
    [5] El Eter E, Hagar HH, Al-Tuwaijiri A, Arafa M. Nuclear factor-kappaB inhibition by pyrrolidinedithiocarbamate attenuates gastric ischemia-reperfusion injury in rats [J]. Can J Physiol Pharmacol. 2005 Jun;83(6): 483-92.
    [6] Caban A, Oczkowicz G, Abdel-Samad O, Cierpka L. Influence of ischemic preconditioning and nitric oxide on microcirculation and the degree of rat liver injury in the model of ischemia and reperfusion [J]. Transplant Proc. 2006Jan-Feb;38(1):196-8.
    [7] Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning [J]. Am J Physiol Renal Physiol. 2006 Jul;291(1):F176-85.
    [8] Ferencz A, Racz B, Gasz B, Benko L, Jancso G, Kurthy M, Roth E. Intestinal ischemic preconditioning in rats and NF-kappaB activation [J]. Microsurgery. 2006;26(1):54-7.
    [9] Gurke L, Mattei A, Chaloupka K, Marx A, Sutter PM, Stierli P, Harder F, Heberer M. Mechanisms of Ischemic Preconditioning in Skeletal Muscle [J]. J Surg Res. 2000 Nov;94(1):18-27.
    [10] Weber NC, Toma O, Damla H, Wolter JI, Schlack W, Preckel B. Upstream signaling of protein kinase C-epsilon in xenon-induced pharmacological preconditioning. Implication of mitochondrial adenosine triphosphate dependent potassium channels and phosphatidylinositol-dependent kinase-1 [J]. Eur J Pharmacol. 2006 Jun;539(1-2):1-9.
    [11] Shoemaker RG, Van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance [J]. Am J Physiol. 2000 May;278(5): H1571-6.
    [12] Peart JN, Gross GJ. Cardioprotective effects of acute and chronic opioid treatment are mediated via different signaling pathways [J]. Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1746-53.
    [13] Smul TM, Lange M, Redel A, Burkhard N, Roewer N, Kehl F. Desflurane-induced preconditioning against myocardial infarction is mediated by nitric oxide [J]. Anesthesiology. 2006 Oct;105(4):719-25.
    [14] Kolar F, Jezkova J, Balkova P, Breh J, Neckar J, Novak F, Novakova O, Tomasova H, Srbova M, Ost'adal B, Wilhelm J, Herget J. Role of oxidative stress in PKC-delta upregulation and cardioprotection induced by chronic intermittent hypoxia [J]. Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H224-30.
    [15] Chai W, Mehrotra S, Jan Danser AH, Schoemaker RG. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning in isolated rat hearts [J]. Eur J Pharmacol. 2006 Feb;531(1-3):246-53.
    [16] Ma SG, Fu RF, Feng GQ, Wang ZJ, Ma XQ, Weng SA. Effect of G(alphaq/11) protein and ATP-sensitive potassium channels on prostaglandin E (1) preconditioning in rat hearts [J]. Acta Pharmacol Sin. 2004 May;25(5):587-92.
    [17] Kim E, Raval AP, Defazio RA, Perez-Pinzon MA. Ischemic preconditioning via epsilon protein kinase C activation requires cyclooxygenase-2 activation in vitro [J]. Neuroscience. 2007 Mar; 145(3): 931-41.
    [18] Beguin PC, Belaidi E, Godin-Ribuot D, Levy P, Ribuot C. Intermittent hypoxia-induced delayed cardioprotection is mediated by PKC and triggered by p38 MAP kinase and Erk1/2 [J]. J Mol Cell Cardiol. 2007 Feb;42(2):343-51.
    [19] Wakeno-Takahashi M, Otani H, Nakao S, Imamura H, Shingu K. Isoflurane induces second window of preconditioning through upregulation of inducible nitric oxide synthase in rat heart [J]. Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2585-91.
    [20] Jiang B, Xiao W, Shi Y, Liu M, Xiao X. Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperones [J]. 2005 Autumn;10(3):252-62.
    [21] Moses MA, Addison PD, Neligan PC, Ashrafpour H, Huang N, Zair M, Rassuli A, Forrest CR, Grover GJ, Pang CY. Mitochondrial K_(ATP) channels in hindlimb remote ischemic preconditioning of skeletal muscle against infarction [J]. Am J Physiol Heart Circ Physiol. 2005 Feb;288: H559-67.
    [22] Danielisova V, Nemethova M, Gottlieb M, Burda J. Changes of endogenous antioxidant enzymes during ischemic tolerance acquisition [J]. Neurochem Res. 2005 Apr;30(4):559-65.
    [23] Xu D, Zhang S, Foster D Jr, Wang J. The effects of isosteviol against myocardium injury induced by ischaemia-reperfusion in the isolated Guinea pig heart [J]. Clin Exp Pharmacol Physiol. 2007 May-Jun; 34(5-6): 488-93.
    [24] 娄建石,梁会旭,刘艳霞.硝酸甘油与丁丙诺啡合用抗大鼠心肌缺血的药理性预适应研究:早期心脏保护作用[J].中国药理学通报,2003,19(10):43-9.
    [25] Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic preconditioning protects remote virgin myocardium from subsequent sustained coronary occlusion [J]. Circulation. 1993 Mar; 87(3): 893-9.
    [26] Pell TJ, Baxter GF, Yellon DM, Drew GM. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels [J]. Am J Physiol. 1998 Nov; 275(5 Pt 2): H1542-7.
    [27] Wang YP, Maeta H, Mizoguchi K, Suzuki T, Yamashita Y, Oe M. Intestinal ischemia preconditions myocardium: role of protein kinase C and mitochondrial KATP channel [J]. Cardiovasc Res. 2002 Aug; 55(3): 576-82.
    [28] Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo[J]. Circulation. 2002 Dec; 106(23): 2881-3.
    [29] Gho BCG, Shoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD. Myocardial protection by brief ischemia in noncardiac tissue [J]. Circulation. 1996 Nov; 94(9): 2193-200.
    [30] Pasupathy S, Homer-Vanniasinkam S. Ischaemic preconditioning protects against ischaemia/reperfusion injury: emerging concepts [J]. Eur J Vasc Endovasc Surg. 2005 Jan; 29(2): 106-15.
    [31] 徐淑云,卞如濂,陈修主编.药理实验方法学[M].北京:人民出版社,2001:1042-3.
    [32] 孔雁君,刘艳霞,娄建石.硝酸甘油与丁丙诺啡合用抗大鼠心肌缺血 的药理性预适应研究[J].中国药理学通报,2003, 19(12): 55-60.
    [33] London B. A precondition for arrhythmias [J]. J Cardiovasc Electrophysiol. 2007 Jan;18(1):100-1.
    [34] Xiao L, Lu R, Hu CP, Deng HW, Li YJ. Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide[J]. Eur J Pharmacol. 2001 Sep;427(2):131-5.
    [35] Oxman T, Arad M, Klein R, Avazov N, Rabinowitz B. Limb ischemia precondi-tions the heart against reperfusion tachyarrhythmia [J]. Am J Physiol. 1997 Oct;273:H1707-12.
    [36] Marina Prendes MG, Gonzalez M, Savino EA, Varela A. Role of endogenous nitric oxide in classic preconditioning in rat hearts [J]. Regul Pept. 2007 Mar;139(1-3):141-5.
    [37] Kristiansen, SB, Ole H, Rajesh K, Kharbanda, JE, Michael RS, Andrew N. Remote preconditioning reduces ischemic infury in the explanted heart by a Katp channel-dependent mechanism [J]. Am J Physiol Heart Cir'c Physiol. 2005 May;288(3):H1252-6.
    [38] Beguin PC, Belaidi E, Godin-Ribuot D, Levy P, Ribuot C. Intermittent hypoxia-induced delayed cardioprotection is mediated by PKC and triggered by p38 MAP kinase and Erk1/2 [J]. J Mol Cell Cardiol. 2007 Feb;42(2):343-51.
    [39] Tang XL, Kodani E, Takano H, Hill M, Shinmura K, Vondriska TM, Ping P, Bolli R. Protein tyrosine kinase signaling is necessary for NO donor-induced late preconditioning against myocardial stunning[J]. Am J Physiol Heart Circ Physiol. 2003 Apr;284(4):H1441-8.
    [40] Serejo FC, Rodrigues LF Junior, da Silva Tavares KC, de Carvalho AC, Nascimento JH. Cardioprotective Properties of Humoral Factors Released From Rat Hearts Subject to Ischemic Preconditioning [J]. J Cardiovasc Pharmacol. 2007 Apr;49(4):214-20.
    [41] Li SZ, Wu F, Wang B, Wei GZ, Jin ZX, Zang YM, Zhou JJ, Wong TM. Role of reverse mode Na(+)/Ca(2+) exchanger in the cardioprotection of metabolic inhibit-tion preconditioning in rat ventricular myocytes [J]. Eur J Pharmacol. 2007 Apr30;561(1-3): 14-22.
    [42] 徐淑云,卞如濂,陈修主编.药理实验方法学[M].北京:人民出版社 2001: 1055-8.
    [43] Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of K_(ATP) channel activation [J]. Cardiovasc Res. 2006 Nov;72(2):313-21.
    [44] Zhang SZ, Xia Q, Cao CM, Gao Q, Bruce IC. The Mitochondrial Calcium Uniporter participates in Ischemia/Reperfusion Injury and in Cardioprotection by Ischemic Preconditioning[J]. Conf Proc IEEE Eng Med Biol Soc. 2004;5:3625-7.
    [45] Gross GJ. Remote preconditioning and delayed cardioprotection in skeletal muscle [J]. Am J Physiol Regul Integr Comp Physiol. 2005 Dec;289(6):R1562-3.
    [46] Yih-Sharng Chen, Chiang-Ting Chien, Ming-Chieh Ma.Protection "outside the box"skeletal remote preconditioning in rat model is triggered by free radical pathway [J]. Journal of Surgical Research. 2005;126:92-101
    [47] Iliodromitis EK, Kyrzopoulos S, Paraskevaidis IA, Kolocassides KG, Adamopoulos S, Karavolias G, Kremastinos DT. Increased C reactive protein and cardiac enzyme levels after coronary stent implantation. Is there protection by remote ischemic preconditioning [J]? Heart. 2006 Dec;92(12):1821-6.
    [48] Vahlhaus C, Neumann J, Luss H, Wenzelburger F, Tjan TD, Hammel D, Scheld HH, Schmitz W, Breithardt G, Wichter T. Ischemic preconditioning by unstable angina reduces the release of CK-MB following CABG and stimulates left ventricular HSP-72 protein expression [J]. J Card Surg. 2005 Sep-Oct; 20(5): 412-9.
    [49] Kharbanda RK, Li J, Konstantinov IE, Cheung MM, White PA, Frndova H, Stokoe J, Cox P, Vogel M, Van Arsdell G, MacAllister R, Redington AN. Remote ischaemic preconditioning protects against cardiopulmonary bypass-induced tissue injury: a preclinical study [J]. Heart. 2006 Oct; 92(10): 1506-11.
    [50] Danielisova V, Nemethova M, Gottlieb M, Burda J. Changes of endogenous antioxidant enzymes during ischemic tolerance acquisition [J]. Neurochem Res. 2005 Apr; 30(4): 559-65.
    [51] Nesher N, Frolkis I, Vardi M, Sheinberg N, Bakir I, Caselman F, Pevni D, Ben-Gal Y, Sharony R, Bolotin G, Loberman D, Uretzky G, Weinbroum AA. Higher levels of serum cytokines and myocardial tissue markers during on-pump versus off-pump coronary artery bypass surgery [J]. J Card Surg. 2006 Jul-Aug; 21(4): 395-402.
    [52] 陈修等主编.心血管药理学[M].北京:人民卫生出版社,2002:336-40.
    [53] Aguilar A, Alvarez-Vijande R, Capdevila S, Alcoberro J, Alcaraz A. Antioxidant patterns (superoxide dismutase, glutathione reductase, and glutathione peroxidase) in kidneys from non-heart-beating-donors: experimental study [J]. Transplant Proc. 2007 Jan-Feb; 39(1): 249-52.
    [54] Kazimoglu K, Bozkurt AK, Suzer O, Konukoglu D, Koksal C, Kurdal T, Turhan MS. The role of antioxidant supplementation in cardiac transplantation: an experimental study in rats [J]. Transplant Proc. 2004 Dec; 36(10): 2939-43.
    [55] Vila-Petroff M, Salas MA, Said M, Valverde CA, Sapia L, Portiansky E, Hajjar RJ, Kranias EG, Mundina-Weilenmann C, Mattiazzi A. CaMKII inhibition protects against necrosis and apoptosis in irreversible ischemia-reperfusion injury [J]. Cardiovasc Res. 2007 Mar 1; 73(4): 689-98.
    [56] Brady NR, Hamacher-Brady A, Gottlieb RA. Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors [J]. Biochim Biophys Acta. 2006 May-Jun;1757(5-6):667-78.
    [57] Zhang Y, Chen J, Zhang F, Xia Q. Cariporide attenuates myocardial ischaemia, reperfusion injury and apoptosis in isolated rat hearts [J]. Acta Cardiol. 2006 Dec;61(6):637-41.
    [58] Li DQ, Bao YM, Li Y, Wang CF, Liu Y, An LJ. Catalpol modulates the expressions of Bcl-2 and Bax and attenuates apoptosis in gerbils after ischemic injury [J]. Brain Res. 2006 Oct;1115(1):179-85.
    [59] Li L, Zhang YM, Qiao WL, Wang L, Zhang JF. Effects of hypothalamic paraventricular nuclei on apoptosis and proliferation of gastric mucosal cells induced by ischemia/reperfusion in rats [J]. World J Gastroenterol. 2007 Feb 14;13(6):874-81.
    [60] Strosznajder R, Gajkowska B. Effect of 3-aminobenzamide on Bcl-2, Bax and AIF localization in hippocampal neurons altered by ischemia-reperfusion injury, the immunocytochemical study [J]. Acta Neurobiol Exp (Wars). 2006;66(1): 15-22.
    [61] Guan QH, Pei DS, Xu TL, Zhang GY. Brain ischemia/reperfusion induced expression of DP5 and its interaction with Bcl-2, thus.freeing Bax from Bcl-2/Bax dimmers are mediated by c-Jun N-terminal kinase (JNK) pathway [J]. Neurosci Lett. 2006 Jan 30;393(2-3):226-30.
    [62] Lazou A, Iliodromitis EK, Cieslak D, Voskarides K, Mousikos S, Bofilis E, Kremastinos DT. Ischemic but not mechanical preconditioning attenuates ischemia/reperfusion induced myocardial apoptosis in anaesthetized rabbits: the role of Bcl-2 family proteins and ERK1/2 [J]. Apoptosis. 2006 Dec;ll(12):2195-204.
    [63] Penumathsa SV, Thirunavukkarasu M, Koneru S, Juhasz B, Zhan L, Pant R, Menon VP, Otani H, Maulik N. Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat [J]. J Mol Cell Cardiol. 2007 Mar;42(3):508-16.
    [64] Raphael J, Abedat S, Rivo J, Meir K, Beeri R, Pugatsch T, Zuo Z, Gozal Y. Volatile anesthetic preconditioning attenuates myocardial apoptosis in rabbits after regional ischemia and reperfusion via Akt signaling and modulation of Bcl-2 family proteins [J]. J Pharmacol Exp Ther. 2006 Jul;318(1):186-94.
    [65] Chang Y, Hsiao G, Chen SH, Chen YC, Lin JH, Lin KH, Chou DS, Sheu JR. Tetramethylpyrazine suppresses HIF-1alpha, TNF-alpha, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats [J]. Acta Pharmacol Sin. 2007 Mar;28(3): 327-33.
    [66] Quireze C, Montero EF, Leitao RM, Juliano Y, Fagundes DJ, Poli-de-Figueiredo LF. Ischemic preconditioning prevents apoptotic cell death and necrosis in early and intermediate phases of liver ischemia-reperfusion injury in rats [J]. J Invest Surg. 2006 Jul-Aug;19(4): 229-36.
    [67] Gottlieb RA, Gruol DL, Zhu JY, Engler RL. Preconditioning rabbit cardiomyocytes: role of pH, vacuolar proton ATPase, and apoptosis [J]. J Clin Invest. 1996 May 15;97(10):2391-8.
    [68] Neri M, Cerretani D, Fiaschi AI, Laghi PF, Lazzerini PE, Maffione AB, Micheli L, Bruni G, Nencini C, Giorgi G, D'Errico S, Fiore C, Pomara C, Riezzo I, Turillazzi E, Fineschi V. Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats [J]. J Cell Mol Med. 2007 Jan-Feb;11(1):156-70.
    [69] Baltriukiene D, Kalvelyte A, Bukelskiene V. Induction of apoptosis and activation of JNK and p38 MAPK pathways in deoxynivalenol-treated cell lines [J]. Altern Lab Anim. 2007 Mar;35(1):53-9.
    [70] Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning [J]. Cardiovasc Res. 2006 Jan; 69(1): 178-85.
    [71] E1-Domyati M, Barakat M, Abdel-Razek R, El-Din Anbar T. Apoptosis, P53 and Bcl-2 expression in response to topical calcipotriol therapy for psoriasis [J]. Int J Dermatol. 2007 May; 46(5): 468-74.
    [72] Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart [J]. Circulation. 2000 Apr; 101(15): 1833-9.
    [73] Roten L, Nemoto S, Simsic J, Coker ML, Rao V, Baicu S, Defreyte G, Soloway PJ, Zile MR, Spinale FG. Effects of gene deletion of tissue inhibitor of the matrix metalloproteinase-type I (TIMP-I) on left ventricular geometry and function in mice [J]. J Mol Cell Cardiol. 2000 Jan; 32(1): 109-20.
    [74] Ozyigit MO, Kahraman MM, Sonmez G. The identification of matrix metalloproteinases and their tissue inhibitors in broiler chickens by immunohistochemistry [J]. Avian Pathol. 2005 Dec; 34(6): 509-16.
    [75] 张维明主编.现代分子生物学实验手册[M].北京:科学出版社,2003:244-99.
    [76] Peterson JT. The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors [J]. Cardiovasc Res. 2006 Feb; 69(3): 677-87.
    [77] Janicki JS, Brower GL, Gardner JD, Forman MF, Stewart JA Jr, Murray DB, Chancey AL. Cardiac mast cell regulation of matrix metalloproteinase-related ventricular remodeling in chronic pressure or volume overload [J]. Cardiovasc Res. 2006 Feb 15; 69(3): 657-65.
    [78] Mukherjee R, Mingoia JT, Bruce JA, Austin JS, Stroud RE, Escobar GP, McClister DM Jr, Allen CM, Alfonso-Jaume MA, Fini ME, Lovett DH, Spinale FG. Selective spatiotemporal induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 transcription after myocardial infarction [J]. Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2216-28.
    [79] Rork TH, Hadzimichalis NM, Kappil MA, Merrill GF. Acetaminophen attenuates peroxynitrite-activated matrix metalloproteinase-2-mediated troponin I cleavage in the isolated guinea pig myocardium [J]. J Mol Cell Cardiol. 2006 Apr;40(4):553-61.
    [80] Gao D, Zhang X, Jiang X, Peng Y, Huang W, Cheng G, Song L. Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice [J]. Life Sci. 2006 Apr;78(22):2564-70.
    [81] Yasuda S, Miyazaki S, Kinoshita H, Nagaya N, Kanda M, Goto Y, Nonogi H. Enhanced cardiac production of matrix metalloproteinase-2 and -9 and its attenuation associated with pravastatin treatment in patients with acute myocardial infarction [J]. Clin Sci (Lond). 2007 Jan;112(1):43-9.
    [82] Mori S, Gibson G, McTiernan CF. Differential expression of MMPs and TIMPs in moderate and severe heart failure in a transgenic model [J]. J Card Fail. 2006 May;12(4):314-25.
    [83] Zhong JQ, Zhang W, Li Y, Zhong M, Li D, Zhang C, Zhang Y. Changes in metalloproteinase and tissue inhibitor of metalloproteinase during tachycardia-induced cardiomyopathy by rapid atrial pacing in dogs[J].Cardiology. 2006;106(1):22-8.
    [84] Shatos MA, Doherty JM, Stump DC, Thompson EA, Collen D. Oxygen radicals generated during anoxia followed by reoxygenation reduce the synthesis of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in human endothelial cell culture [J]. J Biol Chem. 1990 Nov; 265(33):20443-8.
    [85] Sibbing D, von Beckerath O, von Beckerath N, Koch W, Mehilli J, Schwaiger M, Schomig A, Kastrati A. Plasminogen activator inhibitor-1 4G/5G polymorphism and efficacy of reperfusion therapy in acute myocardial infarction [J]. Blood Coagul Fibrinolysis. 2005 Oct; 16(7): 511-5.
    [86] Fay WP. Plasminogen activator inhibitor 1, fibrin, and the vascular response to injury [J]. Trends Cardiovasc Med. 2004 Jul; 14(5): 196-202.
    [87] 朱广瑾,武文心,段岩平,张莹.预处理对大鼠缺血冠脉等组织t-PA,PAI-1基因表达的影响[J].中国医学科学院学报.1997:19(5):319-24.
    [88] 王凌燕,朱广瑾,段岩平,张莹.大鼠实验性心肌梗塞时血浆蛋白C纤溶活性变化及人参皂甙作用的研究[J].解剖学报.1995;26(3):309-12
    [89] Parsson H, Holmberg A, Siegbahn A, Bergqvist D. Activation of coagulation and fibrinolytic systems in patients with CLI is not normalized after surgical revascularization [J]. Eur J Vase Endovasc Surg. 2004 Feb; 27(2): 186-92.
    [90] Schumacher HC, Meyers PM, Yavagal DR, Harel NY, Elkind MS, Mohr JP, Pile-Spellman J. Endovascular mechanical thrombectomy of an occluded superior division branch of the left MCA for acute cardioembolic stroke [J]. Cardiovasc Intervent Radiol. 2003 May-Jun; 26(3): 305-8.
    [91] Roelofs JJ, Rouschop KM, Leemans JC, Claessen N, de Boer AM, Frederiks WM, Lijnen HR, Weening JJ, Florquin S. Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury [J]. J Am Soc Nephrol. 2006 Jan; 17(1): 131-40.
    [92] Nagai N, Suzuki Y, Van Hoef B, Lijnen HR, Collen D. Effects of plasminogen activator inhibitor-1 on ischemic brain injury in permanent and thrombotic middle cerebral artery occlusion models in mice [J]. J Thromb Haemost. 2005 Jul; 3(7): 1379-84.
    [93] Gorlach A. Redox regulation of the coagulation cascade [J]. Antioxid Redox Signal. 2005 Sep-Oct;7(9-10): 1398-404.
    [94] Gorlach A, Berchner-Pfannschmidt U, Wotzlaw C, Cool RH, Fandrey J, Acker H, Jungermann K, Kietzmann T. Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: involvement of the GTPase Racl [J]. Thromb Haemost. 2003 May;89(5):926-35.
    [95] Citerio G, Galli D, Cadore B, Rondelli E, Sala F, Abbruzzese C. How to improve ischemic stroke treatment in the fibrinolysis era [J]. Minerva Anestesiol. 2006 Jun;72(6):407-12.
    [96] Halkin A, Roth A, Jonas M, Behar S. Sulfonylureas are not associated with increased mortality in diabetics treated with thrombolysis for acute myocardial infarction [J]. J Thromb Thrombolysis. 2001 Oct;12(2):177- 84.
    [97] Stief TW. The physiology and pharmacology of singlet oxygen [J]. Med Hypotheses. 2003 Apr;60(4):567-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700