风湿性心脏病与DNA甲基化异常的相关实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风湿性心脏病是一种由于A组溶血性链球菌感染引起的自身免疫性疾病,是引起慢性心衰常见的病因之一。心室泵功能异常,引起血流动力学障碍,心肌收缩力减弱,体循环和肺循环淤血,心脏的血液输出量减少,不能搏出与静脉回流及全身各脏器组织代谢所需相匹配的血液供给,并由此产生一系列临床临床症状和体征。在心衰的发生和进展中,常伴有心肌细胞的肥大性改变和心脏结构性改变,心脏间质纤维化、炎症因子积聚等多种病理变化。风湿性心脏病引起心衰的发病机制较为复杂,涉及多方面的分子病理机制变化。近年来研究发现表观遗传机制参与了心血管疾病的发生和发展过程,表观遗传调控在其中的作用机制逐渐被揭示。表观遗传调控主要包括DNA甲基化和组蛋白修饰,其中DNA甲基化是目前表观遗传学领域研究的热点。研究认为与心血管疾病相关基因的启动子区甲基化状态改变影响了基因的表达水平;此外,基因组DNA整体甲基化水平和DNA甲基化转移酶水平的高低变化也参与了疾病的进程和转归,上述几种异常的甲基化状态被称为“甲基化异常”。目前在冠心病、动脉粥样硬化和先天性心脏病中均观察到这种甲基化异常的状态,而在风湿性心脏病-心衰中表观遗传学相关机制仍处于空白。因此,我们第一部分首先采用实时定量RT-PCR技术检测风湿性心脏病患者和健康对照者右心房心肌组织中与风湿性心脏病-心衰发病密切相关的三个基因BNP、NPRA和ICAM-1mRNA的表达情况,再采用亚硫酸氢钠测序PCR技术检测各基因启动子区各个CG位点的甲基化变化情况,并与临床资料进行分析;第二部分采用ELISA法检测风湿性心脏病患者和健康对照者右心房心肌组织中基因组DNA整体甲基化状况,并探讨其与临床资料之间的关系:第三部分采用实时定量RT-PCR技术检测风湿性心脏病患者和健康对照者右心房心肌组织中DNA甲基化转移酶基因mRNA的表达情况,并与基因组DNA整体甲基化状况和临床资料进行相关分析,从而系统的观察风湿性心脏病-心衰中DNA甲基化异常情况,以期发现风湿性心脏病-心衰过程中的表观遗传学作用机制和特点。
     第一部分风湿性心脏病-心衰患者心肌组织中脑钠肽基因及其受体和炎症基因的表达及启动子区甲基化水平研究
     目的观察三种心衰相关基因在风湿性心脏病患者和健康对照者右心房心肌组织中的表达情况,并检测其启动子区DNA甲基化状态,探讨风湿性心脏病-心衰中相关基因表达改变的表观遗传学机制。
     方法:采用实时定量RT-PCR技术从nRNA水平检测风湿性心脏病患者和健康对照者右心房心肌组织中与心衰密切相关的三个基因BNP、NPRA和ICAM-1的表达情况;采用亚硫酸氢钠测序技术检测风湿性心脏病患者和健康对照组右心房心肌组织中上述三个基因的启动子区甲基化情况,并分析其与临床参数之间的关系。
     结果:与健康对照组相比,RHD患者右心房心肌组织中BNP基因和ICAM-1基因的mRNA表达水平显著升高(BNP,p<0.001;ICAM-1, p<0.001);而NPRA基因的mRNA表达水平则明显降低(p=0.044)。随着RHD患者病情进展,上述基因的表达水平进一步改变。与NYHAⅡ级组相比,NYHA Ⅲ级组患者右心房心肌组织中BNP基因和ICAM-1基因的mRNA表达水平显著增高(BNP,p<0.001; ICAM-1, p=0.004); NPRA基因的mRNA表达水平显著降低(p=0.001)。与健康对照组相比,RHD患者右心房心肌组织中BNP基因和NPRA基因启动子区的甲基化水平显著增高(BNP,p<0.001;NPRA, p<0.001);而ICAM-1基因启动子区的甲基化水平显著降低(p=0.004)。随着RHD患者病情进展,上述基因启动子区的甲基化水平进一步改变。与NYHAⅡ级组相比,NYHAIII级组患者右心房心肌组织中BNP基因和NPRA基因的启动子区甲基化水平显著增高(BNP,p=0.005:NPRA,p<0.001);ICAM-1基因启动子区的甲基化水平显著降低(p=0.004)。BNP基因启动子序列甲基化水平与BNP基因的mRNA水平呈显著正相关(r=0.680,P<0.001);而NPRA基因和ICAM-1基因启动子序列甲基化水平与NPRA基因和ICAM-1的mRNA水平呈显著负相关(NPRA,r=-0.233,P=0.041;ICAM-1,r=-0.459,P<0.001)。三个基因启动子区的甲基化水平与患者年龄均无相关性(P>0.05)。不同性别间、房颤组和无房颤组患者间三个基因启动子区的甲基化水平均无明显差别(P>0.05)。
     结论:风湿性心脏病患者右心房心肌组织中BNP基因、NPRA基因和ICAM-1基因mRNA的表达发生改变,改变的程度与疾病的严重程度和疾病进展相一致;上述基因启动子区的甲基化水平变化可能是其mRNA表达改变的重要机制,DNA甲基化参与了风湿性心脏病-心衰的发生和发展过程。
     第二部分风湿性心脏病-心衰患者心肌组织中基因组DNA整体甲基化水平及其临床意义的研究
     目的:检测风湿性心脏病患者与健康对照者右心房心肌组织中基因组DNA整体甲基化水平,并分析其与临床资料间的关系,探寻基因组DNA整体甲基化状态与风湿性心脏病-心衰之间的关系。
     方法:应用5-甲基胞嘧啶(5-MC)特异性抗体,采用ELISA法,检测风湿性心脏病患者与健康对照者右心房心肌组织中基因组DNA整体甲基化状态,并分析其与临床资料间的关系。
     结果:与健康对照组相比,风湿性心脏病患者右心房心肌组织中基因组DNA整体甲基化水平明显增高(p=0.044);而且随着病情进展、心功能的恶化,基因组DNA整体甲基化水平明显增高,NHYA Ⅲ级组患者右心房心肌组织中基因组DNA整体甲基化水平显著高于NYHA Ⅱ级组患者(p=0.029)。基因组DNA整体甲基化水平与年龄呈显著的正相关性,随着年龄的增长,基因组DNA整体甲基化水平也逐渐增高,(r=0.326,p=0.005),在不同年龄段的对比中(小于40岁、40~50岁,50~60岁和60岁以上),60岁以上年龄组患者右心房心肌组织中的基因组DNA整体甲基化水平明显高于其他三组(p=0.006)。不同性别间、房颤组和无房颤组患者间基因组DNA总体甲基化水平均无明显差别(P>0.05)。
     结论:风湿性心脏病患者右心房心肌组织中基因组DNA整体呈现高甲基化改变,随着心衰的进展,基因组DNA整体甲基化程度逐渐增高;基因组DNA整体甲基化水平与年龄呈正相关,在高龄组(>60岁)中基因组DNA整体甲基化水平增高更为显著。
     第三部分风湿性心脏病-心衰患者心肌组织中DNA甲基化转移酶表达及其临床意义的研究
     目的:观察DNA甲基化转移酶(DNMTs)在风湿性心脏病患者与健康对照者右心房心肌组织中表达情况,并结合DNA甲基化变化情况和临床资料进行分析,探讨DNA甲基化转移酶在风湿性心脏病-心衰异常甲基化过程中的作用。
     方法:采用实时定量RT-PCR技术从mRNA水平检测风湿性心脏病患者与健康对照者右心房心肌组织中DNMT1、DNMT3a和DNMT3b表达情况,并分析其与基因组DNA整体甲基化状况和临床资料间的关系。
     结果:与健康对照组相比,风湿性心脏病患者右心房心肌组织中DNMT1、DNMT3a和DNMT3b mRNA表达水平明显增高(DNMT1, p=0.02;DNMT3a,p=0.043;DNMT3b,p=0.035):且随着病情进展,DNMTs的表达水平逐渐升高,与NYHA Ⅱ级组相比,NHYA Ⅲ级组患者右心房心肌组织中DNMT1、DNMT3a和DNMT3b mRNA表达水平明显增高(DNMT1,p=0.019;DNMT3a,p=0.019;DNMT3b, p=0.002)。DNMT1与DNMT3a.DNMT3a与DNMT3b之间的mRNA表达存在显著的正相关性(DNMT1与DNMT3a,r==0.618,p<0.001; DNMT3a与DNMT3b,r=0.509,p<0.001)。Bivariate相关性分析显示在三种DNMTs中,仅DNMT1mRNA的表达水平与基因组整体DNA甲基化水平呈显著正相关(DNMT1,r=0.350,p=0.002; DNMT3a,r=0.221,p=0.053;DNMT3b,r=0.181,p:0.115);DNMT1、DNMT3a和DNMT3b mRNA表达与年龄、性别和合并房颤均无明显关系。
     结论:风湿性心脏病-心衰患者右心房心肌组织中三种DNMTs呈高表达状态,且随着心衰的进展,DNMTs mRNA表达水平逐渐升高;三种DNMTs mRNA表达之间存在相关性,其中DNMT1mRNA的表达增高与风湿性心脏病-心衰中基因组DNA整体高甲基化的关系密切。
Rheumatic heart disease (RHD) is an autoimmune disease due to group A hemolytic streptococcus infection, which is the common cause of chornic heart failure (CHF). Ventricular pump dysfunction caused by abnormal hemodynamic disorders, decreased myocardial contractility, systemic and pulmonary circulation congestion, the blood output of heart is reduced and cannot pump out the venous retune and the various organs of the body tissue metabolism required to match the blood supply, which will generate a series of signs and symptoms. A variety of pathological changes such as hypertrophic changes of the myocardial cells, cardiac structural changes, cardiac interstitial fibrosis and inflammatory factors accumulation are associated with the development and progression of heart failure. The pathogenesis of heart failure caused by rheumatic heart disease is more complex and involving a wide range of molecular pathological changes. Recent studies have found that epigenetic mechanisms are involved in the onset and development of cardiovascular disease and are gradually being revealed. Epigenetic regulation include DNA methylation and histone modifications, in which DNA methylation is a hotspot of current research in the field of epigenetics. Studies show that gene expression was caused by the changes of cardiovascular disease-related gene promoter methylation status. In addition, the level of global genomic DNA methylation level and DNA methyltransferase is also involved in the process and outcome of disease. The three abnormal methylation status knows as "methylation imbalance". This kind of methylation imbalance is observed in coronary heart disease (CAD), atherosclerosis and congenital heart disease (CHD), however, the related epigenetic mechanism is still remains unknown in rheumatic heart disease. In this study, we firstly detected the mRNA expressions and the promoter methylation levels of three HF-related genes (BNP, NPRA and ICAM-1) in right atrial myocardial tissue of RHD patients and healthy controls by using real-time RT-PCR and the Bisulfite sequencing PCR. Then we measured the global DNA methylation status by ELISA and finally detected the expressions of DNMTs mRNA by real-time RT-PCR. We also explore the relationship between the clinical data and the above parameters meanwhile in order to discover the mechanisms and characteristics of epigenetics in rheumatic heart disease.
     Part I The inRNA expression levels and promoter methylation patterns of three HF-related genes in myocardium tissue of RHD-HF patients
     Objective:To investigate the mRNA expression levels and the promoter methylation patterns of three HF-related genes and potential clinical significance in right atrial myocardium tissue of RHD-HF patients.
     Methods:Real-time RT-PCR and Bisulfite sequencing PCR (BSP+Sequencing) were performed for evaluated the mRNA expression levels and promoter region methylation patterns of three HF-related genes (BNP, NPRA and ICAM-1) in right atrial myocardial tissue of RHD patients and healthy controls. The correlation between the three HF-related genes mRNA, promoter methylation levels and clinical data were analyzed.
     Results:Compared with healthy controls, the mRNA expression levels of BNP and ICAM-1gene were significantly increased in right atrial myocardial tissue of RHD patients (BNP, p<0.001; ICAM-1, p <0.001); the mRNA expression level of NPRA gene was significantly reduced (p=0.044). The mRNA expressions of these genes were further changes with the progression of RHD disease. Compared with NYHA Ⅱ group, the mRNA expression levels of BNP and ICAM-1gene were significantly increased in NYHA III group (BNP, p<0.001; ICAM-1, p=0.004); the mRNA expression level of NPRA gene was significantly reduced (p=0.001). For promoter methylation patterns, compared with healthy controls, the promoter methylation levels of BNP and NPRA genes were significantly increased (BNP, p<0.001; NPRA, p<0.001). The promoter methylation level of ICAM-1was significantly reduced (p=0.004). The promoter methylation levels of these genes were further changes with the progression of RHD disease. Compared with NYHA Ⅱ group, the promoter methylation levels of BNP and NPRA gene were significantly increased in NYHA Ⅲ group (BNP, p=0.005; NPRA, p <0.001); the promoter methylation level of NPRA gene was significantly reduced (p=0.004). The promoter methylation level and the mRNA expression level of BNP gene had positive correlation (r=0.680, P <0.001). The promoter methylation level and the mRNA expression level of NPRA gene and ICAM-1gene had negative correlation (NPRA, r=-0.233, P=0.041ICAM-1, r=-0.459, P<0.001). There were no correlations between mRNA expression levels of the three HF-related genes with age, sex and the occurrence of atrial fibrillation (p>0.05).
     Conclusion:Our findings suggest that the mRNA expression levels of BNP, NPRA and ICAM-1gene were changed in RHD-HF patients and consistent with the severity of the disease and disease progression. The promoter methylation levels could play an important role in these expression level changes, DNA methylation is involved in the development of RHD-HF.
     Part II Global DNA methylation status and its clinic significance in myocardium tissue of RHD-HF patients
     Objective:To evaluate the global DNA methylation status in right atrial myocardial tissue of RHD-HF patients.
     Methods:ELISA like method with an antibody against5-methylcytosi.ne (5-MC) were performed to observe the global DNA methylation status in right atrial myocardial tissue of RHD patients and healthy controls. The results were compared with the clinical data.
     Results:Compared with healthy controls, the global DNA methylation status were significantly higher in right atrial myocardial tissue of RHD patients (p=0.044), and the global DNA methylation status were further increased with the progression of RHD disease. Compared with NYHA II group, NYHA III group had higher global DNA methylation status (p=0.029). The global DNA methylation status had positive correlation with age, the global DNA methylation status gradually increased with age increased. Comparison of different ages (<40years,40-50years,50-60years and>60years), the global DNA methylation status of60-year-old age group was significantly higher than the other three age groups. There were no correlations between global DNA methylation status with sex and the occurrence of atrial fibrillation (p>0.05).
     Conclusion:Global DNA hypermethylation was observed in right atrial myocardial tissue of RHD patients compared with healthy controls. The global DNA methylation status was gradually increased with the progression of disease. The global DNA methylation status had positive correlation with age; the global DNA methylation status of60-year-old age group was significantly higher than the other age groups.
     Part III The mRNA expressions of DNMTs and clinic significance in myocardium tissue of RHD-HF patients
     Objective:To investigate the mRNA expression of DNMTs gene and its potential clinical significance in right atrial myocardial tissue of RHD-HF patients.
     Methods:The real-time RT-PCR was performed to evaluate the expression of the DNMTs. The correlations between DNMTs mRNA expression with global DNA methylation status and clinical data were analyzed.
     Results:Compared with healthy controls, the mRNA expression levels of all three DNMTs were significantly higher in right atrial myocardial tissue of RHD patients.(DNMT1, p=0.02; DNMT3a, p=0.043; DNMT3b, p=0.035) and the mRNA expression levels of all three DNMTs were further increased with the progression of RHD disease, Compared with NYHA Ⅱ group, NYHA Ⅲ group had higher mRNA expression levels of the three DNMTs (DNMT1, p=0.019; DNMT3a, p=0.019; DNMT3b, p=0.002). These had positive correlations between mRNA expression levels of DNMT1and DNMT3a, DNMT3a and DNMT3b (DNMT1and DNMT3a, r=0.618, p<0.001; DNMT3a and DNMT3b, r=0.509, p<0.001). Moreover, a significant positive correlation was found between DNMT1mRNA levels and the OD value of global methylation levels (r=0.350, p=0.002). This correlation did not occur between OD values and DNMT3a or DNMT3b mRNA expression levels (r=0.221, p=0.053, for DNMT3a; r=0.181, p=0.115, for DNMT3b). There were no correlations between mRNA expression levels of DNMTs with age, sex and the occurrence of atrial fibrillation (p>0.05).
     Conclusion:DNMTs genes were over-expressed in right atrial myocardial tissue of RHD patients and the over-expressions of three DNMTs were further increased with the progression of RHD disease. These had correlations between the three DNMTs and DNMT1was closely related with the global DNA hypermethylation status in RHD-HF patients.
引文
[1]James MA, Saadeh AM and Jones JV. Wall stress and hypertension. J Cardiovasc Risk.2000; 7:187-190.
    [2]Gullestad L, Kjekshus J, Damas JK, et al. Agents targeting inflammation in heart failure. Expert Opin Investig Drugs.2005; 14:557-566.
    [3]Gullestad L, Aukrust P. Review of trials in chronic heart failure showing broad-spectrum anti-inflammatory approaches. Am J Cardiol.2005; 6:17C-23C.
    [4]Brown RD, Ambler SK, Mitchell MD, et al. The cardiac fibroblast:therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol.2005; 45:657-687.
    [5]Mudd JO, Kass DA. Tackling heart failure in the twenty-first century. Nature. 2008; 451:919-928.
    [6]Douglas L. Mann. Inflammatory mediators and the failing heart:Past, present, and the foreseeable future. Circ Res.2002; 91:988-998.
    [7]Satoh M, Minami Y, Takahashi Y, et al. Immune modulation:role of the inflammatory cytokine cascade in the failing human heart. Curr Heart Fail Rep. 2008; 5:69-74.
    [8]Alexandra Villa-Forte, Brian F. Mandell. Cardiovascular disorders and rheumatic disease. Rev Esp Crdiol.2001; 64(9):809-817.
    [9]Eloi Marijon, Mariana Mirabel, David S Celermajer, et al. Rheumatic heart disease. The Lancet.2012; 379:953-964.
    [10]Steer A, Carapetis J. Prevention and treatment of rheumatic heart disease in the developing world. Nat Rev Cardiol.2009; 6:689-698.
    [11]Michael D Seckeler, Tracey R Hoke. The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin Epidemiol.2011; 3:67-84.
    [12]Uma Nahar Saikia, Rohit Manoj Kumar, V.K.G. Rajasekara Pal Pandian, et al. Adhesion molecule expression and ventricular remodeling in chronic rheumatic heart disease:a cause or effect in the disease progression-a pilot study. Cardiovascular pathology.2012; 21:83-88.
    [13]Guilherme L, Kohler KF, Postol E, et al. Genes, autoimmunity and pathogenesis of rheumatic heart disease. Ann Pediatr Cardiol.2011; 4(1):13-21.
    [14]Luiza Guilherme, Jorge Kalil. Rheumatic fever and rheumatic heart disease: Cellular mechanisms leading autoimmune reactivity and disease. J Clin Immunol. 2010; 30:17-23.
    [15]Herron TJ, McDonald KS. Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. Circ RES.2002; 90:1150-1152.
    [16]Olson EN, Backs J, McKinsey TA. Control of cardiac hypertrophy and heart failure by histone acetylation deacetylation. Novartis Found Sysm.2006; 274: 3-12, discussion 13-19,152-155,272-276.
    [17]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet,2002; 3(6):415-428.
    [18]Esteller M. Epigenetics in cancer. N Engl J Med.2008; 358:1148-1159.
    [19]Mill J, Tang T, Kaminsky Z, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008; 82:696-711.
    [20]Barres R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1 alpha promoter through DNMT3B controls mitochondrial density. Cell Metab.2009; 10: 189-198.
    [21]Backdahl L, Bushell A and Beck S. Inflammatory signaling as mediator of epigenetic modulation in tissue-secific chronic inflammation. Int J Biochem Cell Biol.2009; 41:176-184.
    [22]Sanchez Pernaute O, Ospelt C, Neidhart M, et al. Epigenetic clues to rheumatoid arthritis. J Autoimmun.2008; 30(1-2):12-20.
    [23]Ballestar E. Epigenetic alterations in autoimmune rheumatic diseases. Nat Rev Rheumatol.2011; 7(5):263-271.
    [24]Patel DR, Richardson BC. Epigenetic mechanisms in lupus. Curr Opin Rheumatol.2010; 22(5):478-482.
    [25]Laird PW. Cancer epigenetics. Hum Mol Genet 2005; 14 (Sp 1):R65-76.
    [26]Choo KB. Epigenetics in disease and cancer. Malays J Pathol.2011; 33(2):61-70.
    [27]Bird A. The essentials of DNA methylation. Cell.1992; 70(1):5-8.
    [28]Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltrans ferase gene result in embryonic lethality. Cell.1992; 69(6):915-26.
    [291 Panning B, Janeisch R. RNA and the epigenetic regulation of X chromosome inactivation. Cell.1998; 93(3):305-308.
    [30]Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature.1993; 366(6453):362-365.
    [31]Cross SH, Bird AP. CpG islands and genes. Curr Opin Genet Dev.1995; 5(3): 309-14.
    [32]Herman JG, Baylin SB. Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol.2000; 249:35-54.
    [33]Mikko P. Turunen, Einari Aavik, Seppo Yla-Herttuala. Epigenetics and atherosclerosis. Biochimica et Biophysica Acta.2009:886-891.
    [34]Millis RM. Epigenetics and hypertension. Curr Hypertens Rep.2011; 13(1): 21-28.
    [35]Shimul Chowdhury, Stephen W. Erickson, Stewart L. MacLeod, et al. Maternal genome-wide DNA methylation patterns and congenital heart defects. PLoS One. 2011; 24(6):el6506.
    [36]Sylvia A. Obermann-Borst, Lydi M.J.W. van Driel, Willem A. Helbing, et al. Congenital heart defects and biomarkers of methylation in children:a case-control study. Eur J Clin Invest.2011; 41(2):143-150.
    [37]Shimul Chowdhury, Mario A. Cleves, Stewart L. MacLeod, et al. Maternal DNA hypomethylation and congenital heart defects. Birth Defects Res A Clin Mol Teratol.2011; 91(2):69-76.
    [38]Dorn GW 2na, Matkovich SJ. Put your chips on transcriptomics. Circulation.2008; 118:216-218.
    [39]Heidecker B, Kasper EK, Wittstein IS, et al. Transcriptomic biomarkers for individual risk assessment in new-onset heart failure. Circulation.2008; 118: 238-246.
    [40]Van Rooij E. Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet. 2008; 24:159-166.
    [41]Misteli T. Beyond the sequence:cellular organization of genome function. Cell. 2007; 128:787-800.
    [42]Nikitina T, Shi X, Ghosh RP, et al. Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol Cell Biol.2007; 27: 864-877.
    [43]Lachner M, C/Carroll D, Rea S, et al. Methylation of histone H3 lysine 9 creates a binding site for HP 1 proteins. Nature.2001; 410:116-120.
    [44]Bannister AJ, Zegerman P, Partridge JF, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature.2001; 410:120-124.
    [45]Cosgrove MS, Boeke JD and Wolberger C. Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol.2004; 11:1037-1043.
    [46]Klose RJ, Bird AP. Genomic DNA methylation:the mark and its mediators. Trends Biochem Sci.2006; 31:89-97.
    [47]Hendrich B, Tweedie S. The rnethyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet.2003; 19:269-277.
    [48]Ng HH, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet.1999; 23:58-61.
    [49]Clouaire T, Stancheva I. Methyl-CpG binding proteins:specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci.2008; 65: 1509-1522.
    [50]Andrea Baccarelli, Robert Wright, Valentina Bollati, et al. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology.2010; 21: 819-828.
    [51]Rudolf P Talents, Jukema JW, Trompet S, et al. Hypermethylation at loci sensitive to the prenatal environment is associated with increased incidence of myocardial infarction. Int J Epidemiol.2012; 41(1):106-115.
    [52]Chun Zhu, Zhangbin Yu,-Xiaohui Chen, et al. Screening for differential methylation status in fetal myocardial tissue samples with ventricular septal defects by promoter methylation microarrays. Mol Med Report.2011; 4(1): 137-143.
    [53]Kao YH, Chen YC, Cheng CC, et al. Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expression via the promoter methylation in cardiomyocytes. Crit Care Med.2010; 38:217-222.
    [54]Movassagh M, Choy MK, Goddard M, et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One.2010; 5:e8564.
    [55]Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med.1998; 339:321-328.
    [56]Jenny Doust, Richard Lehman and Paul Glasziou. The role of BNP testing in heart failure. Am Fam Physician.2006; 74(11):1893-1898.
    [57]Vedat Davutoglu, Ahmet Celik, Mehmet Aksoy, et al. Plasma NT-proBNP is a potential marker of disease severity and correlates with symptoms in patients with chronic rheumatic valve disease. Eur J Heart Fail.2005; 7(4):532-536.
    [58]Kaushik Pandit, Pradip Mukhopadhyay, Suioy Ghosh, et al. Natriuretic peptides: diagnostic and therapeutic use. Indian J Endocrinol Metab.2011; 15(S4): S345-S353.
    [59]Nishikimi T, Kuwahara K and Nakao K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J Cardiol.2011; 57(2):131-140.
    [60]Charron F, Parades P, Bronchain O, et al. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol Cell Biol.1999; 19:4355-4365.
    [61]Rana Temsah, Mona Nemer. GATA factors and transcriptional regulation of cardiac natriuretic peptide genes. Regul Pept.2005; 128(3):177-185.
    [62]Jens Peter Goetze, Birgitte Georg, Henrik L. Jorgensen, et al. Chamber-dependent circadian expression of cardiac natriuretic peptides. Regul Pept.2010; 160(1-3): 140-145.
    [63]Yasue H, Yoshimura M, Sumida H, et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natreuretic peptide in normal subjects and patients with heart failure. Circulation. 1994; 90:195-203.
    [64]Clerico A, Del Ry S and Giannessi D. Measurement of cardiac natriuretic hormones (atrial natriuretic peptide, brain natriuretic peptide and related peptides) in clinical practice:the need for a new generation of immunoassay methods. Clin Chem.2000; 46:1529-1534.
    [65]Zehra Golbapy, Ozgul Ucar, Ayse Gecer Yuksel, et al. Plasma brain natriuretic peptide levels in patients with rheumatic heart disease. Eur J Heart Fail.2004; 6(6):757-760.
    [66]Ray SG.Natriuretic peptides in heart valve disease. Heart.2006; 92:1194-1197.
    [67]Przemyslaw Leszek, Anna Klisiewicz, Jadwiga Janas, et al. Determinants of the reduction in B-type natriuretic peptide after mitral valve replacement in patients with rheumatic mitral stenosis. Clin Physiol Funct Imaging.2010; 30:473-479.
    [68]Amir NL, Gerber IL, Edmond JJ, et al. Plasma B-type Natriuretic peptide levels in cardiac donors. Clin Transplant.2009; 23:174-177.
    [69]Xiongbin Lin, Jorg Hanze, Frauke Heese, et al. Gene expression of natriuretic peptide receptors in myocardial cells. Circ Res.1995; 77:750-758.
    [70]Kone BC. Molecular biology of natriuretic peptides and nitric oxide synthases. Cardiovasc Res.2001; 51:429-441.
    [71]Renu Garg, Kailash N. Pandey. Regulation of guanylyl cyclase/natriuretic peptide receptor-A gene expression. Peptides.2005; 26(6):1009-1023.
    [72]Kailash N. Pandey. Guanylyl cyclase/atrial natriuretic peptide receptor-A:role in the pathophysiology of cardiovascular regulation. Can J Physiol Pharmacol. 2011; 89:557-573.
    [73]Elangovan Vellaichamy, Di Zhao, Naveen Somanna, et al. Genetic disruption of guanylyl cyclase/natriuretic peptide receptor-A upregulates ACE and ATI receptor gene expression and signaling:role in cardiac hypertrophy. Physiol Genomics.2007; 31:193-202.
    [74]Toshio Nishikimi, John R. Hagaman, Nobuyuki Takahashi, et al. Increased susceptibility to heart failure in response to volume overload in mice lacking natriuretic peptide receptor-A gene. Cardiovascular Res.2005; 66:94-103.
    [75]Cabiati M, Campan M, Caselli C, et al. Sequencing and cardiac expression of natriuretic peptide receptors A and C in normal and heart failure pigs. Regul Pept. 2010; 162(1-3):12-17.
    [76]Rothlein R, Dustin ML, Marlin SD, et al. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol.1986; 4:1270-1274.
    [77]Jobin C, Hellerbrand C, Licato LL, et al. Mediation by NF-kappa B of cytokine induced expression of intercellular adhesion molecule 1 (ICAM-1) in an intestinal epithelial cell line, a process blocked by proteasome inhibitors. Gut.1998; 42(6): 779-787.
    [78]Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol.1999; 66(6):876-888.
    [79]Wissink S, Van de Stolpe A, Caldenhoven E, et al. NF-kappa B/Rel family members regulating the ICAM-1 promoter in monocytic THP-1 cells. Immunobiology.1997; 198(1-3):50-64.
    [80]Petra H. Wirtz, Laura S. Redwine, Sarah Linke, et al. Circulating levels of soluble intercellular adhesion molecule-1 (s ICAM-1) independently predict depressive symptom severity after 12 months in heart failure patients. Brain, Behavior, and Immunity.2010; 24:366-369.
    [81]Adamopoulos S, Parissis J, Kroupis C, et al. Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J.2001; 22(9):791-797.
    [82]Eugene Kotlyar, Joseph A. Vita, Michael R. Winter, et al. The relationship between aldosterone, oxidative stress, and inflammation in chronic, stable human heart failure. J Card Fail.2006; 12(2):122-127.
    [83]Charlotte Lawson, Sabine Wolf. ICAM-1 signaling in endothelial ceils. Pharmacological Reports.2009; 61:22-32.
    [84]Wang XM, Li Y, Li HF, et al. Effects of perindopril on soluble intercellular adhesion molecule-1 in patients with congestive heart failure. Heart.2002; 88: 417-418.
    [85]Massimo Cugno, Daniela Mari, Pier Luigi Meroni, et al. Haemostatic and inflammatory biomarkers in advanced chronic heart failure:role of oral anticoagulants and successful heart transplantation. Br J Haematol.2004; 126(1): 85-92.
    [86]卢圣栋主编.现代分子生物学实验技术.北京:高等教育出版社.1993.465-497.
    [87]Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLHI promoter correlates with lack of expression of hMLHI in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res.1997; 57(5): 808-811.
    [88]Herman JG,Graff JR, Myohanen S, et al. Methylation-Specific PCR:a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA.1996, 93(18):9821-9826.
    [89]Trygve O.T著.表观遗传学实验手册.上海:上海科学技术出版社2007.220-233.
    [90]Vossen RH, Aten E, Roos A, et al. High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat.2009; 30(6):860-866.
    [91]A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC Res Notes.2011; 4:565.
    [92]Newman M, Blyth BJ, Hussey DJ, et al. Sensitive quantitative analysis of murine LINE1 DNA methylation using high resolution melt analysis. Epigenetics.2012; 7(1). [Epub ahead of print]
    [93]Grigg C, Clark S. Sequencing 5-methylcytosine residues in genomic DNA. Bioessays,1994,16(6):431-436.
    [94]Worm J, Aggerholm A, Guldberg P. In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin Chem,2001,47(7):1183-1189
    [95]Maekawa M, Sugano K, Ushiama M, et al. Heterogeneity of DNA methylation status analyzed by bisulfite-PCR-SSCP and correlation with clinicopathological characteristics in colorectal cancer. Clin Chem Lab Med,2001,39(2):122-128.
    [96]Xiong Z, Laird PW. COBRA:a sensitive and quantitative DNA methylation assay. Nucleic Acids Res,1997,25(12); 2532-2534.
    [97]Tomohiro Nakayama. The genetic contribution of the natriuretic peptide system to cardiovascular disease. Endocr J.2005; 52(1):11-21.
    [98]David E. Lanfear, Joshua M. Stolker, Sharon Marsh, et al. Genetic variation in the B-type natriuretic peptide pathway affects BNP levels. Cardiovasc Drugs Ther. 2007; 21:55-62.
    [99]Priyanka Sharma, Jitender Kumar, Gaurav Garg, et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol.2008; 27(7): 357-365.
    [100]Sylvia A. Obermann-Borst, Lydi M.J.W. van Driel, Willem A. Helbing, et al. Congenital heart defects and biomarkers of methylation in children:a case-control study. Eur J Clin Invest.2011; 41(2):143-150.
    [101]Anisowicz A, Huang H, Braunschweiger KI, et al. A high-throughput and sensitive method to measure global DNA methylation:application in lung cancer. BMC Cancer.2008; 8:222.
    [102]Guerrero-Preston R, Baez A, Blanco A, et al. Global DNA methylation:a common early event in oral cancer cases with exposure to environmental carcinogens or viral agents. P R Health Sci J.2009; 28(1):24-29.
    [103]Seifert HH, Schmiemann V, Mueller M, et al. In situ detection of global DNA hypomethylation in exfoliative urine cytology of patients with suspected bladder cancer. Exp Mol Pathol.2007; 82(3):292-297.
    [104]Chen H, Liu J, Merrick BA, Waalkes MP. Genetic events associated with arsenic-induced malignant transformation:applications of cDNA microarray technology. Mol Carcinogen.2001; 30:79-87.
    [105]Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature.1983; 301:89-92.
    [106]Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation:a fundamental aspect of neoplasia. Adv Cancer Res.1998; 72:141-196.
    [107]Myungjin Kim, Tiffany I. Long, Kazuko Arakawa, et al. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One.2010; 5(3):e9692.
    [108]Hobbs CA, Cleves MA, Zhao W, et al. Congenital heart defects and abnormal maternal biomarkers of methionine and homocysteine metabolism. Am J Clin Nutr.2005; 81:147-153.
    [109]Kuo KC, McCune RA, Gehrke CW, et al. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res.1980; 8:4763-4776.
    [110]Wu J. Issa J, Hermen J, et al. Expression of an exogenous eukaryotic DNA methyl transferase gene induces transformation of NIN3T3 cells. Proc Natl Acad Sci USA.1993; 90(19):8891-8895.
    [111]Oakeley EJ, Podesta A, Jost JP. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci USA. 1997; 94:11721-11725.
    [112]Oakeley EJ, Schmitt F, Jost JP. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques.1999; 27: 744-746,748-750,752.
    [113]Frommer M, McDonald LE, Millar DS. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA.1992; 89:1827-1831.
    [114]McGuinness D, McGlynn LM, Johnson PC, et al. Socio-economic status is associated with epigenetic differences in the pSoBid cohort. Int J Epidemiol. 2012; 41(1):151-160.
    [115]Fuke C, Shimabukuro M, Petronis A, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas:an HPLC-based study. Ann Hum Genet.2005; 68:196-204.
    [116]Fraga MF, Esteller M. Epigenetics and aging:the targets and the marks. Trends Genet.2007; 23:413-418.
    [117]Issa JP. Age-related epigenetic changes and the immune system. Clin Immunol.2003; 109:103-108.
    [118]Cheng X, Blumenthal RM. Mammalian DNA methyltransferases:a structural perspective. Structure.2008; 16(3):341-350.
    [119]Goyal R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmtl methyltransferase. Nucleic Acids Res.2006; 34(4): 1182-1188.
    [120]Pradhan S, Bacolla A, Wells RD, et al. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem.1999; 274:33002-33010.
    [121]Kanai Y, Hirohashi S. Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis.2007; 28(12): 2434-2442.
    [122]Zhu WG, Otterson GA. The interaction of the histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anticancer Agents.2003; 3(3):187-199.
    [123]Schneider-Stock R, Ocker M. Epigenetic therapy in cancer:molecular background and clinical development of histone deacetylase and DNA methyltransferase inhibitors. IDrugs.2007; 10(8):557-561.
    [124]Reid GK, Besterman JM, Macleod AR. Selective inhibition of DNA methyltransferase enzymes as a novel strategy for cancer treatment. Curr Opin Mol Ther.2002; 4(2):130-137.
    [125]Slack A, CervoniN, PinardM, et al. Feedback regulation of DNA methyltransferase gene expression by methylation. Eur J Biochem,1999,264:191-199.
    [126]Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999; 99(3):247-257.
    [127]Rahnama F, Thompson B, Steiner M, et al. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology.2009; 150(2): 1466-1472.
    [128]Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron.2007; 53(6):857-869.
    [129]Wilson VL, Smith RA, Ma S, et al. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem.1987; 262(21):9948-9951.
    [130]Richardson B. Impact of aging on DNA methylation. Ageing Res Rev.2003; 2(3):245-261.
    [131]Zhang Z, Deng C, Lu Q, et al. Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mech Ageing Dev.2002; 123(9):1257-1268.
    [132]Mizuno S, Chijiwa T, Okamura T, et al. Expression of DNA methyltransferases DNMT1,3A and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood.2001; 97 (5):1172-1179.
    [133]Svetlana Dzitoyeva, Marta Imbesi, Louisa W. Ng, et al.5-Lipoxygenase DNA methylation and mRNA content in the brain and heart of young and old mice. Neural Plast.2009; 2009:209596.
    [134]Cuk-Seong Kim, Young-Rae Kim, Asma Naqvi, et al. Homocysteine promotes human endothelial cell dysfunction via site-sepcific epigenetic regulation of p66shc. Cardiovasc Res.2011; 92(3):466-475.
    [135]Girault I, Tozlu S, Lidereau R, et al. Expression analysis of DNA methyltransferases 1,3A, and 3B in sporadic breast carcinomas. Clin Cancer Res. 2003,1; 9(12):4415-22.
    [136]Chen CL, Yan X, Gao YN, et al. Expression of DNA methyltransferase 1,3A and 3B mRNA in the epithelial ovarian carcinoma. Zhonghua Fu Chan Ke Za Zhi. 2005; 40(11):770-774.
    [137]Xie S, Wang Z, Okano M, et al. Cloning, exp ression and chromosome locations of the human DNMT3 gene family. Gene.1999; 236:87-95.
    [138]Robertson K. D. The human DNA methyltransferases (DNMTs) 1,3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucl. Acid. Res.1999; 27 (11):2291-2298.
    [139]Karpf AR, Matsui S. Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Reso 2005,65(19):8635-8639.
    [140]Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature.2002,416:552-556.
    [141]Leu YW, Rahmatpanah F, Shi H, et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res.2003,63(19):6110-6115.
    [142]Kou CY, Lau SL, Au Kw, et al. Epigenetic regulation of neonatal cardiomyocytes differentiation. Biochem Biophys Res Commun.2010; 400(2): 278-283.
    [1]卫生部心血管病防治研究中心.中国心血管病报告(2007).中国大百科全书出版社.2007.
    [2]Herron TJ, McDonald KS. Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. CircRES.2002; 90:1150-1152.
    [3]Olson EN, Backs J, McKinsey TA. Control of cardiac hypertrophy and heart failure by histone acetylation deacetylation. Novartis Found Sysm.2006; 274: 3-12, discussion 13-19,152-155,272-276.
    [4]Dorn GW 2nd, Matkovich SJ. Put your chips on transcriptomics. Circulation.2008; 118:216-218.
    [5]Heidecker B, Kasper EK, Wittstein IS, et al. Transcriptomic biomarkers for individual risk assessment in new-onset heart failure. Circulation.2008; 118: 238-246.
    [6]Van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet. 2008; 24:159-166.
    [7]Rose G.Familial patterns in ischemic heart disease. Br J Prev Soc Med.1964; 18: 75-80.
    [8]Barker DJ. Fetal programming of coronary heart disease. Trends Endocrinol Metab.2002; 13(9):364-368.
    [9]Alkemade, FE, Gittenberger-de Groot AC, Schiel AE, et al. Intrauterine exposure to maternal atherosclerotic risk factors increases the susceptibility to atherosclerosis in adult life. Arterioscler Thromb Vase Biol.2007; 27(10): 2228-2235.
    [10]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet,2002; 3(6):415-428.
    [11]Esteller M. Epigenetics in cancer. N Engl J Med.2008; 358:1148-1159.
    [12]Mill J, Tang T, Kaminsky Z, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008; 82:696-711.
    [13]Barres R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1 alpha promoter through DNMT3B controls mitochondrial density. Cell Metab.2009; 10: 189-198.
    [14]Backdahl L, Bushell A and Beck S. Inflammatory signaling as mediator of epigenetic modulation in tissue-secific chronic inflammation. Int J Biochem Cell Biol.2009; 41:176-184.
    [15]Sanchez Pernaute O, Ospelt C, Neidhart M. et al. Epigenetic clues to rheumatoid arthritis. J Autoimmun.2008; 30(1-2):12-20.
    [16]Ballestar E. Epigenetic alterations in autoimmune rheumatic diseases. Nat Rev Rheumatol.2011; 7(5):263-271.
    [17]Patel DR, Richardson BC. Epigenetic mechanisms in lupus. Curr Opin Rheumatol.2010; 22(5):478-482.
    [18]Laird PW. Cancer epigenetics. Hum Mol Genet,2005; 14 (Sp 1):R65-76.
    [19]Choo KB. Epigenetics in disease and cancer. Malays J Pathol.2011; 33(2):61-70.
    [20]Bird A. The essentials of DNA methylation. Cell.1992; 70(1):5-8.
    [21]Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltrans ferase gene result in embryonic lethality. Cell.1992; 69(6):915-26.
    [22]Panning B, Janeisch R. RNA and the epigenetic regulation of X chromosome inactivation. Cell.1998; 93(3):305-308.
    [23]Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature.1993; 366(6453):362-365.
    [24]Cross SH, Bird AP. CpG islands and genes. Curr Opin Genet Dev.1995; 5(3): 309-314.
    [25]Herman JG, Baylin SB. Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol.2000; 249:35-54.
    [26]Lamon BD, Hajjar DP. Inflammation at the molecular interface of atherogenesis: an anthropological journey. Am J Pathol.2008; 173(5):1253-1264.
    [27]Yla-Herttuala S, Palinski W, Rosenfeld ME, et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest.1989; 84(4):1086-95.
    [28]Wissler RW. Update on the pathogenesis of atherosclerosis. Am J Med.1991; 91(1B):3S-9S.
    [29]Sanchez LA, Veith FJ. Diagnosis and treatment of chronic lower extremity ischemia. Vasc Med.1998; 3(4):291-299.
    [30]Lusis AJ. Atherosclerosis. Nature.2000; 407(6801):233-241.
    [31]Ross R. Mechanisms of disease-atherosclerosis-an inflammatory disease. N Engl J Med.1999; 340:115-126.
    [32]Chen H, Liu J, Merrick BA, Waalkes MP. Genetic events associated with arsenic-induced malignant transformation:applications of cDNA microarray technology. Mol Carcinogen.2001; 30:79-87.
    [33]Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature.1983; 301:89-92.
    [34]Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation:a fundamental aspect of neoplasia. Adv Cancer Res.1998; 72:141-196.
    [35]Priyanka Sharma, Jitender Kumar, Gaurav Garg, et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol.2008; 27(7): 357-365.
    [36]Myungjin Kim, Tiffany I. Long, Kazuko Arakawa, et al. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One.2010; 5(3):e9692.
    [37]Lee M.E, Wang H. Homocysteine and hypomethylation.:A novel link to vascular disease. Trends Cardiovasc. Med.1999; 9(1-2):49-54.
    [38]Castro R, Rivera I, Blom H.J, et al. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease:an overview. J Inherit Metab Dis. 2006; 29(1):3-20.
    [39]Matouk C.C, Marsden P.A. Epigenetic regulation of vascular endothelial gene expression. Circ Res.2008; 102(8):873-887.
    [40]Faraci FM. Hyperhomocysteinemia:a million ways to lose control. Arterioscler Thromb Vasc Biol.2003; 23(3):371-373.
    [41]Topal G, Brunet A, Millanvoye E, et al. Homocysteine induces oxidative stress by uncoupling of NO synthase activity through reduction of tetrahydrobiopterin. Free Radic Biol Med.2004; 36(12):1532-1541.
    [42]Zhang X, Li H, Jin H, et al. Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol.2000; 279(4):671-678.
    [43]Stanger O, Weger M. Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium. Clin Chem Lab Med.2003; 41(11):1444-1454.
    [44]Antoniades C, Tousoulis D, Marinou K, et al. Am J Clin Nutr.2006; 84(4): 781-788.
    [45]Jiang Y, Zhang J, Xiong J, et al. Ligands of peroxisome proliferators-activated receptor inhibit homocysteine-induced DNA methyl ation of inducible nitric oxide synthase gene. Acta Biochim Biophys Sin.2007; 39(5):366-376.
    [46]Chang P.Y, Lu S.C, Lee C.M, et al. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res.2008; 102(8):933-941.
    [47]Ross R. The pathogenesis of atherosclerosis:a perspective for the 1990s. Nature. 1993; 362(6423):801-809.
    [48]Schwartz S.M, Majesky M.W, Murry C.E. The intima:development and monoclonal responses to injury. Atherosclerosis.1995; 118 Suppl:S125-S140.
    [49]Post W.S, Goldschmidt-Clermont P.J, Wilhide C.C, et al. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res.1999; 43(4):985-991.
    [50]Ying A.K, Hassanain H.H, Ross C.M, et al. Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res.2000; 46(1):172-179.
    [51]Kim J, Kim J.Y, Song K.S, et al. Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta.2007; 1772(1):72-80.
    [52]Issa J.P. CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol.2000; 249:101-118.
    [53]Chand HS, Foster DC, Kisiel W. Structure, function and biology of tissue factor pathway inhibitor-2. Thromb Haemost,2005; 94(6):1122-1130.
    [54]Crawley JT, Goulding DA, Ferreira V, et al. Expression and localization of tissue factor pathway inhibitor-2 in normal and atherosclerotic human vessels. Arterioscler Thromb Vase Biol.2002; 22(2):218-224.
    [55]Herman MP, Sukhova GK, Kisiel W, et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest.2001; 107(9):1117-1126.
    [56]Christophe Zawadzki, Nicolas Chatelain, Marianne Delestre, et al. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis.2009; 204(2):e4-e14.
    [57]Stenvinkel P, Karimi M, Johansson S, et al. Impact of inflammation on epigenetic DNA methylation:a novel risk factor for cardiovascular disease? J Intern Med. 2007; 261(5):488-99.
    [58]Castro R, Rivera I, Struys E.A, et al. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hopomethylation in vascular disease. Clin Chem.2003; 49(8):1292-1296.
    [59]Klose RJ, Bird AP. Genomic DNA methylation:the mark and its mediators. Trends Biochem Sci.2006; 31:89-97.
    [60]Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene.2005; 24(48): 7213-7223.
    [61]Miranda T.B, Jones P.A. DNA metylation:the nuts and bolts of repression. J Cell Physiol.2007; 213(2):384-390.
    [62]Wilson V.L, Jones P.A. DNA methylation decreases in aging but not in immortal cells. Science.1983:220(4601):1055-1057.
    [63]Butcher L.M, Beck S. Future impact of integrated high-throughput methylome analyses on human health and disease. J Genet Genomics.2008; 35(7):391-401.
    [64]Shimabukuro M, Sasaki T, Imamura A, et al. Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia:a potential link between epigenetics and schizophrenia. J Psychiatr Res.2007; 41(12): 1042-1046.
    [65]Hiltunen M.O, Turunen M.P, Hakkinen T.P, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med.2002; 7(1): 5-11.
    [66]Lund G, Andersson L, Lauria M, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem.2004; 279(28):29147-29154.
    [67]Jiang Yideng, Sun Tao, Xiong Jiantuan, et al. Hyperhomocysteinemia-mediated DNA hypomethylation and its potential epigenetic role in rats. Acta Biochimica et Biophysica Sinica.2007; 39(9):657-667.
    [68]Laukkanen M.O, Mannermaa S, Hiltunen M.O, et al. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol.1999; 19(9):2171-2178.
    [69]Andrea Baccarelli, Robert Wright, Valentina Bollati, et al. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology.2010; 21: 819-828.
    [70]Cuk-Seong Kim, Young-Rae Kim, Asma Naqvi, et al. Homocysteine promotes human endothelial cell dysfunction via site-sepcific epigenetic regulation of p66shc. Cardiovasc Res.2011; 92(3):466-475.
    [71]James M.A, Saadeh A.M, Jones J.V. Wall stress and hypertension. J Cardiovasc Risk.2000; 7(3):187-190.
    [72]Zhang H, Darwanto A, Linkhart T.A, et al. Maternal cocaine administration causes an epigenetic modification of protein kinase cepsilon gene expression in fetal rat heart. Mol Pharmacol.2007; 71(5):1319-1328.
    [73]Rudolf P Talents, Jukema JW, Trompet S, et al. Hypermethylation at loci sensitive to the prenatal environment is associated with increased incidence of myocardial infarction. Int J Epidemiol.2012; 41(1):106-115.
    [74]Movassagh M, Choy MK, Goddard M, et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One.2010; 5:e8564.
    [75]Kao Y.H, Chen Y.C, Cheng C.C, et al. Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expression via the promoter methylation in cardiomyocytes. Crit Care Med.2010; 38(1):217-222.
    [76]Svetlana Dzitoyeva, Marta Imbesi, Louisa W. Ng, et al.5-Lipoxygenase DNA methylation and mRNA content in the brain and heart of young and old mice. Neural Plast.2009; 2009:209596.
    [77]Kou CY, Lau SL, Au Kw, et al. Epigenetic regulation of neonatal cardiomyocytes differentiation. Biochem Biophys Res Commun.2010; 400(2):278-283.
    [78]Shimul Chowdhury, Mario A. Cleves, Stewart L. MacLeod, et al. Maternal DNA hypomethylation and congenital heart defects. Birth Defects Res A Clin Mol Teratol.2011; 91(2):69-76.
    [79]Sylvia A. Obermann-Borst, Lydi M.J.W. van Driel, Willem A. Helbing, et al. Congenital heart defects and biomarkers of methylation in children:a case-control study. Eur J Clin Invest.2011; 41(2):143-150.
    [80]Hobbs CA, Cleves MA, Zhao W, et al. Congenital heart defects and abnormal maternal biomarkers of methionine and homocysteine metabolism. Am J Clin Nutr.2005; 81:147-153.
    [81]Shimul Chowdhury, Stephen W. Erickson, Stewart L. MacLeod, et al. Maternal genome-wide DNA methylation patterns and congenital heart defects. PLoS One. 2011; 24(6):el6506.
    [82]Chun Zhu, Zhangbin Yu, Xiaohui Chen, et al. Screening for differential methylation status in fetal myocardial tissue samples with ventricular septal defects by promoter methylation microarrays. Mol Med Report.2011; 4(1): 137-143.
    [83]Chan G.C, Fish J.E, Mawji LA, et al. E Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol.2005; 175(6):3846-3861.
    [84]Fish J.E, Matouk C.C, Rachlis, et al. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem.2005; 280(26): 24824-24838.
    [85]Luoma J.S, Stralin P, Marklund S.L, et al. Expression of extracellular SOD and iNOS in marerophages and smooth muscle cells in human and rabbit atherosclerotic lesions-colocalization with epitopes characteristic of oxidezed LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol.1998; 18(2):157-167.
    [86]Wilcox J.N, Subramanian R.R, Sundell C.L, et al. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol.1997; 17(11):2479-2488.
    [87]Shirodaria C, Antoniades C, Lee J, et al. Global improvement of vascular function and redox state with low-dose folic acid:implications for folate therapy in patients with coronary artery disease. Circulation.2007; 115(17):2262-2270.
    [88]Till U, Rohl P, Jentsch A, et al. Decrease of carotid intimamedia thickness in patients at risk to cerebral ischemia after supplementation with folic acid, Vitamins B6 and B12. Atherosclerosis.2005; 181(1):131-135.
    [89]Antoniades C, Shirodaria C, Warrick N, et al.5-Methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels:Effects on vascular tetrahydrobiopterin availability and eNOS coupling. Circulation.2006; 114(11):1193-1201.
    [90]Bonaa K.H, Njolstad I, Ueland P.M, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med.2006; 354(15):1578-1588.
    [91]Lonn E, Yusuf S, Arnold M.J, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med.2006; 355(7):746.
    [92]Loscalzo J. Homocysteine trials-clear outcomes for complex reasons. N Engl J Med.2006; 354(15):1629-1632.
    [93]Sullivan J.M, Fowlkes L.P. The clinical aspects of estrogens and the cardiovascular system. Obstet Gynecol.1996; 87(2 Suppl):36S-43S.
    [94]Stampfer M.J, Colditz G.A, Willett W.C, et al. Postmenopausal estrogen therapy and cardiovascular disease; ten year follow-up from the Nurses'Health Study. N Engl J Med.1991; 325(11):756-762.
    [95]Grodstein F, Manson J.E, Colditz G.A, et al. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann Intern Med.2000; 133(12):933-941.
    [96]Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women:Heart and Estrogen\Progestin Replacement Study (HERS) Research group. JAMA. 1998; 280(7):605-613.
    [97]Manson J.M, Hsia J, Johnson K.C, et al. Estrogen plus progestin and risk of coronary heart disease. N Engl J Med.2003; 349(6):523-534.
    [98]Koh K.K. Can a healthy endothelium influence the cardiovascular effects of hormone replacement therapy? Int J Cardiol.2003; 87(1):1-8.
    [99]Lambrini Gouva, Agathocles Tsatsoulis. The role of estrogens in cardiovascular disease in the aftermath of clinical trials. Hormones.2004; 3(3):171-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700