染色体9p21大片段缺失断点精确定位探讨及意义分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤,是全球重要的公共卫生问题。全球每年肿瘤年发病率约为202.8/100,000,年死亡率约为127.9/100,000。全美国每4个死亡中就有一个是由肿瘤所引起。中国恶性肿瘤呈逐年上升趋势,目前已成为第一位死因。早在20世纪初,科学家就已经发现,染色体结构异常是肿瘤发病的关键因素。费城染色体的研究表明:染色体结构异常能引起基因表观遗传学改变,促进肿瘤发生、发展。拷贝数变异,包括扩增、缺失等,是染色体结构改变的重要组成部分。基于基因芯片的拷贝数变异检测,无法将拷贝数变异断点定位至碱基水平。为研究拷贝数变异可能带来表观遗传学改变,需要选择适当方法进行断点定位分析。本研究主要目的为:以染色体9p21大片段缺失为研究对象,以乳腺癌细胞系MCF-7和胰腺癌细胞系PANC-1为模板,探索缺失断点定位的实验方法,分析拷贝数变异对基因转录的影响。
     实验方法
     培养乳腺癌细胞系MCF-7和胰腺癌细胞系PANC-1,提取DNA及RNA。利用多重连接探针扩增技术(Multiplex Ligation-based Probe Amplification, MLPA),查明MCF-7和PANC-1细胞系中染色体9p21缺失情况,判断缺失位点可能区间,并用常规PCR加以确认。以MCF-7细胞系DNA为模板,探讨长片段PCR以及反向PCR进行缺失断点定位可行性,并明确MCF-7细胞系中9p21缺失断点准确位置。根据缺失断点定位信息,分析可能的基因转录子改变,运用cDNA快速扩增技术以及TA克隆测序,检测可能形成的新融合转录子。
     实验结果
     1、MLPA检测发现乳腺癌细胞系MCF-7和胰腺癌细胞系PANC-1中,均存在累及MTAP、CDKN2A等基因大片段缺失的情况。MCF-7细胞系的端粒侧断点位于MTAP基因内,着丝粒侧断点位于CDKN2A基因内;PANC-1细胞系染色体9p21大片段缺失的端粒侧缺失断点位于MTAP基因内,着丝粒侧的缺失断点因超出MLPA检测范围而未可知。
     2、长片段PCR以及反向PCR均证实,MCF-7细胞系9p21缺失位点位于chr9:21819532至chr9:21989622之间,缺失片段大小约为170kb;断点端粒侧位于MTAP基因的外显子4后,着丝粒侧位于CDKN2A (p14)基因的内含子1内近外显子1β处。
     3、在MCF-7细胞系中,检获到一个新MTAP转录融合子,由MTAP基因前4个外显子与非编码区chr9:22087143-22087648融合形成,含967个碱基、翻译125个氨基酸序列。在PANC-1细胞系中,检获到两个新MTAP转录融合子,其中一个与非编码区chr9:22384168-22384481融合,含876个碱基、翻译138个氨基酸序列;另外一个与非编码区chr9:22674440-22674564融合,含598个碱基、翻译149个氨基酸序列。
     实验结论
     MLPA技术是检测染色体9p21大片段缺失的有效方法,能准确判断大片段缺失边界范围,适合于aCGH检测后大样本筛查。乳腺癌细胞系MCF-7和胰腺癌细胞系PANC-1均存在着累及MTAP和CDKN2A基因大片段缺失。长片段PCR、反向PCR是缺失断点定位的良好方法,证实MCF-7细胞系中存在一个起于MTAP基因内、止于CDKN2A基因内、大小约为170kb的缺失片段。由于染色体9p21的缺失,乳腺癌细胞系MCF-7中存在一个缺失、融合形成新MTAP转录子;胰腺癌细胞系PANC-1中,存在两个缺失、融合形成新MTAP转录子。这些新MTAP转录融合子是否参与肿瘤发生、发展,还有待进一步研究。
Background and Aims
     Cancer is one main public health problem in the whole world. The global annual incidence of cancer is about202.8/100,000while its global annual morbility is about127.9/100,000. In the United States, one of every four deaths is caused by cancer. Tumor incidence grows gradually every year in China, which has already been the first cause of death. In the early20th centry, scientists had found that chromosomal structural variations are key factors of cancer initiation and development. The Philadelphia Chromosome further confirms that chromosomal rearrangements can result in epigenetic alterations and promote the initiation and development of cancers. Copy number variations, mainly including deletions and amplifications, are main parts of chromosomal changes. Copy number variations detected based on microarrays can not be charaterized in base pair level. In order to analyze possible epigenetic alterations caused by copy number variations, it is necessary to modify useful methods for breakpoint mapping. Focused on large deletions on chromosome9p21, this study is aimed to find out efficient methods to detect breakpoints as well as to analyze the possible changes on transcription level in breast cancer cell line MCF-7and pancreatic cancer cell line PANC-1.
     Methods
     Cell line DNA and RNA were extracted from cultured breast cancer cell line MCF-7and pancreatic cancer cell line PANC-1. MLPA (Multiplex Ligation-based Probe Amplification) was used to detect large deletions on chromosome9p21in these two cell lines, with deletion borders furtherly confirmed by conventional PCR. The long range and inverse PCR were used to detect deletion breakpoints on chromosome9p21in these two cell lines. RACE (Rapid Amplification of cDNA ends), TA cloning and sequencing were used to find out possible new transcripts.
     Results
     1、The large deletions on chromosome9p21, with invovlment in MTAP and CDKN2A genes, were found in both MCF-7and PANC-1cell lines. The homozygous deletions in MCF-7was found starting within MTAP gene and ending in CDKN2A gene while the homozygous deletions in PANC-1was found starting within MTAP gene, with the centromeric border beyond the detection range of MLPA method.
     2、The long range and inverse PCR confirmed the deletions spanning from chr9:21819532to chr9:21989622in MCF-7, with a deletion size of170kb, starting within the Intron4of MTAP on the tolemeric side and ending within the Intron1near Exon1β of CDKN2A on the centromeric side.
     3、In breast cancer cell line MCF-7, A new MTAP fusion transcript identified turned out to be fused between the first4exons of MTAP and non-coding region chr9:22087143-22087648, containing967base pairs on cDNA level and translating into a protein of125amino acids. In pancreatic cancer cell line PANC-1, two new MTAP fusion transcripts were identified. One transcript turned out to be fused between the first4exons of MTAP and non-coding region chr9:22384168-22384481, containing867base pairs on cDNA level and translationg into one protein of138amino acids. The other one turned out to be fused between the first exons of MTAP and non-coding region chr9:22674440-22674564, containing598base pairs on cDNA level and translating into149amino acids.
     Conclusions
     The MLPA method is an effient way to detect large deletions correctly, which is suitable to confirm abnormal regions detected by array-based Comparative Genomic Hybridization. Both the breast cancer cell line MCF-7and pancreatic cancer cell line PANC-1contain large deletions involved in MTAP and CDKN2A on chromosome9p21. The long range/inverse PCR confirmed the large deletion in MCF-7spanning from chr9:21819532to chr9:J21989622, with a deletion size of170kb, starting within the Intron4of MTAP and ending within the Intron1near Exon1β of CDKN2A. Due to large deletions on chromosome9p21, one new MTAP fusion transcript and two new MTAP fusion transcripts were found in MCF-7, PANC-1, respectively.It needs further study whether these new MTAP fusion transcripts are involved in the initation and development of breast/pancreatic cancer or not.
引文
[1]Ferlay J SHR, Bray F FD, Mathers CaPDM. GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide:IARC CancerBase No.10. Lyon, France:International Agency for Research on Cancer; 2010.
    [2]Siegel R, Naishadham D, Jemal A. Cancer statistics,2012. CA Cancer J Clin.2012.62(I):10-29.
    [3]Conrad DF, Pinto D, Redon R, et al. Origins and functional impact of copy number variation in the human genome. Nature.2010.464(7289):704-12.
    [4]Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet. 2007.39(7 Suppl):S16-21.
    [5]Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010.61:437-55.
    [6]Pinto D, Pagnamenta AT, Klei L, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature.2010.466(7304):368-72.
    [7]Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science.2007.316(5823):445-9.
    [8]Stefansson H, Rujescu D, Cichon S, et al. Large recurrent microdeletions associated with schizophrenia. Nature.2008.455(7210):232-6.
    [9]McCarthy SE, Makarov V, Kirov G, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet.2009.41(11):1223-7.
    [10]Craddock N, Hurles ME, Cardin N, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature.2010.464(7289):713-20.
    [11]McCarroll SA, Huett A, Kuballa P, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat Genet.2008.40(9):1107-12.
    [12]Sharpless NE. INK4a/ARF:a multifunctional tumor suppressor locus. Mutat Res.2005.576(1-2):22-38.
    [13]Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus:all for one or one for all. Nat Rev Mol Cell Biol.2006.7(9):667-77.
    [14]Mistry SH, Taylor C, Randerson-Moor JA, et al. Prevalence of 9p21 deletions in UK melanoma families. Genes Chromosomes Cancer.2005.44(3):292-300.
    [15]Lesueur F, de Lichy M, Barrois M, et al. The contribution of large genomic deletions at the CDKN2A locus to the burden of familial melanoma. Br J Cancer.2008.99(2):364-70.
    [16]工俊岭,沈璐,雷立芳等.中国大陆脊髓小脑性共济失调家系和散发病例的最新基因突变分析(英文).中南大学学报(医学版).2011.(06):482-489+456.
    [17]王谦,金春莲,林长坤,崔婉婷,麻宏伟,武盈玉.多重连接探针扩增方法在假肥大性肌营养不良产前基因诊断中的应用.遗传.2009.(06):600-604.
    [18]Wang LY, Abyzov A, Korbel JO, Snyder M, Gerstein M. MSB:a mean-shift-based approach for the analysis of structural variation in the genome. Genome Res.2009.19(1):106-17.
    [19]Cin H, Meyer C, Herr R, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol.2011. 121(6):763-74.
    [20]Schmid M, Sen M, Rosenbach MD, Carrera CJ, Friedman H, Carson DA. A methylthioadenosine phosphorylase (MTAP) fusion transcript identifies a new gene on chromosome 9p21 that is frequently deleted in cancer. Oncogene.2000.19(50):5747-54.
    [I]Mills RE, Walter K, Stewart C, et al. Mapping copy number variation by population-scale genome sequencing. Nature.2011.470(7332):59-65.
    [2]Hastings PJ, Lupski JR, Rosenberg SM, Ira G Mechanisms of change in gene copy number. Nat Rev Genet. 2009.10(8):551-64.
    [3]Conrad DF, Pinto D, Redon R, et al. Origins and functional impact of copy number variation in the human genome. Nature.2010.464(7289):704-12.
    [4]Conrad DF, Bird C, Blackburne B, et al. Mutation spectrum revealed by breakpoint sequencing of human germlineCNVs. Nat Genet.2010.42(5):385-91.
    [5]Sharpless NE. INK4a/ARF:a multifunctional tumor suppressor locus. Mutat Res.2005.576(1-2):22-38.
    [6]Cox C, Bignell G, Greenman C, et al. A survey of homozygous deletions in human cancer genomes. Proc Natl Acad Sci U S A.2005.102(12):4542-7.
    [7]Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus:all for one or one for all. Nat Rev Mol Cell Biol.2006.7(9):667-77.
    [8]Christopher SA, Diegelman P, Porter CW, Kruger WD. Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. Cancer Res.2002.62(22):6639-44.
    [9]Novara F, Beri S, Bernardo ME, et al. Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood. Hum Genet.2009.126(4):511-20.
    [10]Schmid M, Sen M, Rosenbach MD, Carrera CJ, Friedman H, Carson DA. A methylthioadenosine phosphorylase (MTAP) fusion transcript identifies a new gene on chromosome 9p21 that is frequently deleted in cancer. Oncogene.2000.19(50):5747-54.
    [II]Volik S, Raphael BJ, Huang G. et al. Decoding the fine-scale structure of a breast cancer genome and transcriptome. Genome Res.2006.16(3):394-404.
    [12]Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science.2007.318(5849):420-6.
    [13]Liu YT, Carson DA. A novel approach for determining cancer genomic breakpoints in the presence of normal DNA. PLoS One.2007.2(4):e380.
    [14]Martin-Harris MH, Bartley PA, Morley AA. Gene walking using sequential hybrid primer polymerase chain reaction. Anal Biochem.2010.399(2):308-10.
    [15]Ochman H, Ajioka JW, Garza D, Hartl DL. Inverse polymerase chain reaction. Biotechnology (N Y).1990. 8(8):759-60.
    [16]Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988.120(3):621-3.
    [17]Meyer C, Schneider B, Reichel M, et al. Diagnostic tool for the identification of MLL rearrangements including unknownpartner genes. Proc Natl Acad Sci U S A.2005.102(2):449-54.
    [18]Cin H, Meyer C, Herr R, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises analternative mechanism of MAPK. pathway activation in pilocytic astrocytoma. Acta Neuropathol.2011. 121(6):763-74.
    [1]Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature.2011. 476(7359):163-9.
    [2]Boveri T. Zur Frage der Entstehung maligner Tumoren. Custa Fisher Verlag, Jena.1914.
    [3]Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005.5(3):172-83.
    [4]Schiffer CA. BCR-ABL tyrosine kinase inhibitors for chronic myelogenous leukemia. N Engl J Med.2007. 357(3):258-65.
    [5]Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer.2007.7(5): 345-56.
    [6]Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med.2010.363(18):1693-703.
    [7]Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature.2007.448(7153):561-6.
    [8]Quintas-Cardama A, Cortes J. Molecular biology of bcr-abll-positive chronic myeloid leukemia. Blood. 2009.113(8):1619-30.
    [9]Leder P, Battey J, Lenoir G, et al. Translocations among antibody genes in human cancer. Science.1983. 222(4625):765-71.
    [10]Hermans KG, van MR, van DH, Jenster G, van WWM, Trapman J. TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res.2006.66(22):10658-63.
    [11]Mitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet.2004.36(4):331-4.
    [12]Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 2008.8(7):497-511.
    [13]Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science.2005.310(5748):644-8.
    [14]Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell.2007.131(6):1190-203.
    [15]Palanisamy N, Ateeq B, Kalyana-Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med.2010.16(7):793-8.
    [16]Tao J, Deng NT, Ramnarayanan K, et al. CD44-SLC1A2 gene fusions in gastric cancer. Sci Transl Med. 2011.3(77):77ra30.
    []7] Bass AJ, Lawrence MS, Brace LE, et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet.2011.43(10):964-8.
    [18]Rowley JD. Letter:A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature.1973.243(5405):290-3.
    [19]Gale RP, Canaani E. An 8-kilobase abl RNA transcript in chronic myelogenous leukemia. Proc Natl Acad Sci U S A.1984.81 (18):5648-52.
    [20]Palanisamy N, Ateeq B, Kalyana-Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med.2010.16(7):793-8.
    [21]Robinson DR, Kalyana-Sundaram S, Wu YM, et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med.2011.17(12):1646-51.
    [22]Steidl C, Shah SP, Woolcock BW, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature.2011.471(7338):377-81.
    [23]Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene.2001.20(40):5695-707.
    [24]Bernard OA, Berger R. Molecular basis of 11q23 rearrangements in hernatopoietic malignant proliferations. Genes Chromosomes Cancer.1995.13(2):75-85.
    [25]Cimino G, Rapanotti MC, Sprovieri T, Elia L. ALL1 gene alterations in acute leukemia:biological and clinical aspects. Haematologica.1998.83(4):350-7.
    [26]Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T. AML with 11q23/MLL abnormalities as defined by the WHO classification:incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood.2003.102(7):2395-402.
    [27]Meyer C, Schneider B, Reichel M, et al. Diagnostic tool for the identification of MLL rearrangements including unknownpartner genes. Proc Natl Acad Sci U S A.2005.102(2):449-54.
    [28]Cin H, Meyer C, Herr R, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises analternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol.2011. 121(6):763-74.
    [29]Bertino JR, Waud WR, Parker WB, Lubin M. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity:current strategies. Cancer Biol Ther.2011.11(7):627-32.
    [30]Nobori T, Takabayashi K, Tran P, et al. Genomic cloning of methylthioadenosine phosphorylase:a purine metabolic enzyme deficient in multiple different cancers. Proc Natl Acad Sci U S A.1996.93(12):6203-8.
    [31]Schmid M, Malicki D, Nobori T, et al. Homozygous deletions of methylthioadenosine phosphorylase (MTAP) are more frequent than p16INK4A (CDKN2) homozygous deletions in primary non-small cell lung cancers (NSCLC). Oncogene.1998.17(20):2669-75.
    [32]Bishop DT, Demenais F, Iles MM, et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet.2009.41(8):920-5.
    [33]Amos CI, Wang LE, Lee JE, et al. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet.2011.20(24):5012-23.
    [34]Huang HY, Li SH, Yu SC, et al. Homozygous deletion of MTAP gene as a poor prognosticator in gastrointestinal stromal tumors. Clin Cancer Res.2009.15(22):6963-72.
    [35]Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature.2010.467(7319):1114-7.
    [36]Campbell PJ, Yachida S, Mudie LJ, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature.2010.467(7319):1109-13.
    [1]Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA Cancer J Clin.2010.60(5):277-300.
    [2]Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008. Int J Cancer.2010.127(12):2893-917.
    [3]Ferlay J SHR, Bray F FD, Mathers CaPDM. GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide:IARC CancerBase No.10. Lyon, France:International Agency for Research on Cancer; 2010.
    [4]Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature.2011. 476(7359):163-9.
    [5]Boveri T. Zur Frage der Entstehung maligner Tumoren. Custa Fisher Verlag, Jena.1914.
    [6]NOWELL PC, HUNGERFORD DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst.1960.25:85-109.
    [7]Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer.2007.7(4):233-45.
    [8]Quintas-Cardama A, Cortes J. Molecular biology of bcr-abll-positive chronic myeloid leukemia. Blood. 2009.113(8):1619-30.
    [9]Leder P, Battey J, Lenoir G, et al. Translocations among antibody genes in human cancer. Science.1983. 222(4625):765-71.
    [10]Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer.2007.7(4):233-45.
    [11]Rowley JD. Letter:A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature.1973.243(5405):290-3.
    [12]Kurzrock R, Gutterman JU, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med.1988.319(15):990-8.
    [13]Gale RP, Canaani E. An 8-kilobase abl RNA transcript in chronic myelogenous leukemia. Proc Natl Acad Sci U S A.1984.81(18):5648-52.
    [14]Heisterkamp N, Stephenson JR, Groffen J, et al. Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature.1983.306(5940):239-42.
    [15]Hermans A, Heisterkamp N, von LM, et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell.1987.51(1):33-40.
    [16]Rabbitts TH. Chromosomal translocations in human cancer. Nature.1994.372(6502):143-9.
    [17]Look AT. Oncogenic transcription factors in the human acute leukemias. Science.1997.278(5340): 1059-64.
    [18]Aplan PD. Causes of oncogenic chromosomal translocation. Trends Genet.2006.22(1):46-55.
    [19]Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer.2005.5(4):251-62.
    [20]Steidl C, Shah SP, Woolcock BW, et al. MHC class Ⅱ transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature.2011.471(7338):377-81.
    [21]Torres L, Lisboa S, Vieira J, et al. Acute megakaryoblastic leukemia with a four-way variant translocation originating the RBM15-MKL1 fusion gene. Pediatr Blood Cancer.2011.56(5):846-9.
    [22]Mathew P, Sanger WG, Weisenburger DD, et al. Detection of the t(2;5)(p23;q35) and NPM-ALK. fusion in non-Hodgkin's lymphoma by two-color fluorescence in situ hybridization. Blood.1997.89(5):1678-85.
    [23]Erickson P, Gao J, Chang K.S, et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood.1992.80(7):1825-31.
    [24]Miyoshi H, Kozu T, Shimizu K, et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J.1993.12(7):2715-21.
    [25]Romana SP, Mauchauffe M, Le CM, et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood.1995.85(12):3662-70.
    [26]Shurtleff SA, Buijs A, Behm FG, et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia.1995.9(12):1985-9.
    [27]Kuehl WM, Bergsagel PL. Multiple myeloma:evolving genetic events and host interactions. Nat Rev Cancer.2002.2(3):175-87.
    [28]Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol.2005.23(26):6333-8.
    [29]Goddard AD, Borrow J, Freemont PS, Solomon E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science.1991.254(5036):1371-4.
    [30]Jedlicka P. Ewing Sarcoma, an enigmatic malignancy of likely progenitor cell origin, driven by transcription factor oncogenic fusions. Int J Clin Exp Pathol.2010.3(4):338-47.
    [31]Cin H, Meyer C, Herr R, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol.2011. 121(6):763-74.
    [32]Charest A, Lane K, McMahon K, et al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21 q21). Genes Chromosomes Cancer.2003.37(1):58-71.
    [33]Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet. 2003.34(4):369-76.
    [34]Mitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet.2004.36(4):331-4.
    [35]Pierotti MA, Santoro M, Jenkins RB, et al. Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci U S A.1992.89(5):1616-20.
    [36]Pierotti MA. Chromosomal rearrangements in thyroid carcinomas:a recombination or death dilemma. Cancer Lett.2001.166(1):1-7.
    [37]Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science.2005.310(5748):644-8.
    [38]Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 2008.8(7):497-511.
    [39]Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature.2007.448(7153):561-6.
    [40]Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell.2007.131(6):1190-203.
    [41]Palanisamy N, Ateeq B, Kalyana-Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med.2010.16(7):793-8.
    [42]Tao J, Deng NT, Ramnarayanan K, et al. CD44-SLC1A2 gene fusions in gastric cancer. Sci Transl Med. 2011.3(77):77ra30.
    [43]Bass AJ, Lawrence MS, Brace LE, et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet.2011.43(10):964-8.
    [44]Robinson DR, Kalyana-Sundaram S, Wu YM, et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med.2011.17(12):1646-51.
    [45]van RJ, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer.2010.10(4):301-9.
    [46]Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer.2007.7(5): 345-56.
    [47]Shaw AT, Solomon B. Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res.2011.17(8): 2081-6.
    [48]Beyermann B, Agthe AG, Adams HP, et al. Clinical features and outcome of children with first marrow relapse of acute lymphoblastic leukemia expressing BCR-ABL fusion transcripts. BFM Relapse Study Group. Blood.1996.87(4):1532-8.
    [49]Gleissner B, Gokbuget N, Bartram CR, et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia:a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood.2002.99(5):1536-43.
    [50]Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol.2009.27(26):4247-53.
    [51]Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med.2001.344(14):1038-42.
    [52]Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med.2001.344(14):1031-7.
    [53]Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer.2007.7(5): 345-56.
    [54]Christensen JG, Zou HY, Arango ME, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther.2007.6(12 Pt 1):3314-22.
    [55]Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med.2010.363(18):1693-703.
    [56]Edwards PA. Fusion genes and chromosome translocations in the common epithelial cancers. J Pathol. 2010.220(2):244-54.
    [57]Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science.2007.318(5849):420-6.
    [58]Ozsolak F, Milos PM. RNA sequencing:advances, challenges and opportunities. Nat Rev Genet.2011. 12(2):87-98.
    [59]Maher CA, Kumar-Sinha C, Cao X, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature.2009.458(7234):97-101.
    [60]Zhao Q, Caballero OL, Levy S, et al. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line. Proc Natl Acad Sci U S A.2009.106(6):1886-91.
    [61]Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science.2008.321 (5894):1357-61.
    [62]Maher CA, Palanisamy N, Brenner JC, et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci U S A.2009.106(30):12353-8.
    [1]Hidalgo M. Pancreatic cancer. N Engl J Med.2010.362(17):1605-17.
    [2]Garcea Q Neal CP, Pattenden CJ, Steward WP, Berry DP. Molecular prognostic markers in pancreatic cancer a systematic review. Eur J Cancer.2005.41(15):2213-36.
    [3]Altekruse SF KC KM, Neyman N AR, Waldron W RJ, et al. SEER Cancer Statistics Review,1975-2007. National Cancer Institute.2010.
    [4]Ferlay J SHR, Bray F FD, Mathers CaPDM. GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide:IARC CancerBase No.10. Lyon, France:International Agency for Research on Cancer; 2010.
    [5]Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics,2011:the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin.2011.61(4):212-36.
    [6]Kinoshita S, Wagatsuma Y, Okada M. Geographical distribution for malignant neoplasm of the pancreas in relation to selected climatic factors in Japan. Int J Health Geogr.2007.6:34.
    [7]Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer:an overview. Nat Rev Gastroenterol Hepatol.2009.6(12):699-708.
    [8]Malvezzi M, Arfe A, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2011. Ann Oncol.2011.22(4):947-56.
    [9]Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics,2007. CA Cancer J Clin.2007. 57(1):43-66.
    [10]Iodice S, Gandini S, Maisonneuve P, Lowenfels AB. Tobacco and the risk of pancreatic cancer:a review and meta-analysis. Langenbecks Arch Surg.2008.393(4):535-45.
    [11]Vrieling A, Bueno-de-Mesquita HB, Boshuizen HC, et al. Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer.2010.126(10):2394-403.
    [12]Lucenteforte E, La Vecchia C, Silverman D, et al. Alcohol consumption and pancreatic cancer:a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol.2011.
    [13]Ben Q, Xu M, Ning X, et al. Diabetes mellitus and risk of pancreatic cancer:A meta-analysis of cohort studies. Eur J Cancer.2011.47(13):1928-37.
    [14]Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science.1998.280(5366):1036-7.
    [15]Lowenfels AB, Maisonneuve P, Cavallini G, et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med.1993.328(20):1433-7.
    [16]Lowenfels AB, Maisonneuve P, DiMagno EP, et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst.1997.89(6):442-6.
    [17]Rebours V, Boutron-Ruault MC, Schnee M, et al. Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis:a national exhaustive series. Am J Gastroenterol.2008.103(1):111-9.
    [18]Howes N, Lerch MM, Greenhalf W, et al. Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol.2004.2(3):252-61.
    [19]Petersen GM, de Andrade M, Goggins M, et al. Pancreatic cancer genetic epidemiology consortium. Cancer Epidemiol Biomarkers Prev.2006.15(4):704-10.
    [20]Klein AP, Brune KA, Petersen GM, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res.2004.64(7):2634-8.
    [21]Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet.2011.378(9791): 607-20.
    [22]Brune KA, Lau B, Palmisano E, et al. Importance of age of onset in pancreatic cancer kindreds. J Natl Cancer Inst.2010.102(2):119-26.
    [23]McWilliams RR, Rabe KG, Olswold C, De Andrade M, Petersen GM. Risk of malignancy in first-degree relatives of patients with pancreatic carcinoma. Cancer.2005.104(2):388-94.
    [24]Meszoely IM, Means AL, Scoggins CR, Leach SD. Developmental aspects of early pancreatic cancer. Cancer J.2001.7(4):242-50.
    [25]Winter JM, Maitra A, Yeo CJ. Genetics and pathology of pancreatic cancer. HPB (Oxford).2006.8(5): 324-36.
    [26]Basturk O CC AV. Pathologic classification and biological behavior of pancreatic neoplasia.2010. New York. Springer Science.
    [27]Alexakis N, Halloran C, Raraty M, Ghaneh P, Sutton R, Neoptolemos JP. Current standards of surgery for pancreatic cancer. Br J Surg.2004.91(11):1410-27.
    [28]Hruban RH, Maitra A, Kern SE, Goggins M. Precursors to pancreatic cancer. Gastroenterol Clin North Am. 2007.36(4):831-49, vi.
    [29]Sipos B, Frank S, Gress T, Hahn S, Kloppel G. Pancreatic intraepithelial neoplasia revisited and updated. Pancreatology.2009.9(1-2):45-54.
    [30]Maitra A, Adsay NV, Argani P, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol.2003.16(9): 902-12.
    [31]Yonezawa S, Higashi M, Yamada N, Goto M. Precursor lesions of pancreatic cancer. Gut Liver.2008.2(3): 137-54.
    [32]Iacobuzio-Donahue CA, Wilentz RE, Argani P, et al. Dpc4 protein in mucinous cystic neoplasms of the pancreas:frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol.2000.24(11):1544-8.
    [33]Wilentz RE, Albores-Saavedra J, Hruban RH. Mucinous cystic neoplasms of the pancreas. Semin Diagn Pathol.2000.17(1):31-42.
    [34]Bilimoria KY, Bentrem DJ, Ko CY, et al. Validation of the 6th edition AJCC Pancreatic Cancer Staging System:report from the National Cancer Database. Cancer.2007.110(4):738-44.
    [35]Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet.2009.41(9): 986-90.
    [36]Petersen GM, Amundadottir L, Fuchs CS, et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet.2010.42(3):224-8.
    [37]Wu C, Miao X, Huang L, et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet.2011.44(1):62-6.
    [38]Low SK, Kuchiba A, Zembutsu H, et al. Genome-wide association study of pancreatic cancer in Japanese population. PLoS One.2010.5(7):e11824.
    [39]Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science.2008.321(5897):1801-6.
    [40]Kamoub AE, Weinberg RA. Ras oncogenes:split personalities. Nat Rev Mol Cell Biol.2008.9(7):517-31.
    [41]Vakiani E, Solit DB. KRAS and BRAF:drug targets and predictive biomarkers. J Pathol.2011.223(2): 219-29.
    [42]Scheffzek K, Ahmadian MR, Kabsch W, et al. The Ras-RasGAP complex:structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science.1997.277(5324):333-8.
    [43]4th MJP, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer.2010.10(10):683-95.
    [44]Dergham ST, Dugan MC, Kucway R, et al. Prevalence and clinical significance of combined K.-ras mutation and p53 aberration in pancreatic adenocarcinoma. Int J Pancreatol.1997.21(2):127-43.
    [45]Kawesha A, Ghaneh P, Andren-Sandberg A, et al. K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. Int J Cancer.2000.89(6):469-74.
    [46]Hruban RH, van MAD, Offerhaus GJ, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol.1993.143(2):545-54.
    [47]Lemoine NR, Jain S, Hughes CM, et al. Ki-ras oncogene activation in preinvasive pancreatic cancer. Gastroenterology.1992.102(1):230-6.
    [48]Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature.1993.366(6456):704-7.
    [49]Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol.2001.2(10):731-7.
    [50]Caldas C, Hahn SA, da CLT, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet.1994.8(1):27-32.
    [51]Schutte M, Hruban RH, Geradts J, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res.1997.57(15):3126-30.
    [52]Levine AJ, Oren M. The first 30 years of p53:growing ever more complex. Nat Rev Cancer.2009.9(10): 749-58.
    [53]Joerger AC, Fersht AR. Structure-function-rescue:the diverse nature of common p53 cancer mutants. Oncogene.2007.26(15):2226-42.
    [54]Morton JP, Timpson P, Karim SA, et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci U S A.2010.107(1):246-51.
    [55]Schneider G, Schmid RM. Genetic alterations in pancreatic carcinoma. Mol Cancer.2003.2:15.
    [56]Ikushima H, Miyazono K. TGFbeta signalling:a complex web in cancer progression. Nat Rev Cancer. 2010.10(6):415-24.
    [57]Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science.1996.271(5247):350-3.
    [58]Tang ZH, Zou SQ, Hao YH, et al. The relationship between loss expression of DPC4/Smad4 gene and carcinogenesis of pancreatobiliary carcinoma. Hepatobiliary Pancreat Dis Int.2002.1(4):624-9.
    [59]Hahn SA, Hoque AT, Moskaluk CA, et al. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res.1996.56(3):490-4.
    [60]Rozenblum E, Schutte M, Goggins M, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res.1997.57(9):1731-4.
    [61]Bartsch D, Hahn SA, Danichevski K.D, et al. Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene.1999.18(14):2367-71.
    [62]Ng JM, Curran T. The Hedgehog's tale:developing strategies for targeting cancer. Nat Rev Cancer.2011. II(7):493-501.
    [63]Rhim AD, Stanger BZ. Molecular biology of pancreatic ductal adenocarcinoma progression:aberrant activation of developmental pathways. Prog Mol Biol Transl Sci.2010.97:41-78.
    [64]Thayer SP, di MMP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature.2003.425(6960):851-6.
    [65]Prasad NB, Biankin AV, Fukushima N, et al. Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res.2005.65(5): 1619-26.
    [66]Morton JP, Mongeau ME, Klimstra DS, et al. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci U S A.2007.104(12):5103-8.
    [67]Pasca dMM, Sekine S, Ermilov A, Ferris J, Dlugosz AA, Hebrok M. Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev.2006.20(22):3161-73.
    [68]Bailey JM, Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene.2009.28(40):3513-25.
    [69]Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases:a new paradigm for combination therapy in solid cancers. Cancer Res.2007. 67(5):2187-96.
    [70]Feldmann G, Habbe N, Dhara S, et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut.2008.57(10):1420-30.
    [71]Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science.2009.324(5933):1457-61.
    [72]Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer.2008. 8(5):387-98.
    [73]4th MJP, Cano DA, Sekine S, Wang SC, Hebrok M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest.2010.120(2):508-20.
    [74]Dennler S, Andre J, Verrecchia F, Mauviel A. Cloning of the human GLI2 Promoter:transcriptional activation by transforming growth factor-beta via SMAD3/beta-catenin cooperation. J Biol Chem.2009. 284(46):31523-31.
    [75]Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours:a little bit of everything but not all the time. Nat Rev Cancer.2011.11(5):338-51.
    [76]Miyamoto Y, Maitra A, Ghosh B, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell.2003.3(6):565-76.
    [77]Habbe N, Shi G, Meguid RA, et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci U S A.2008. 105(48):18913-8.
    [78]Mullendore ME, Koorstra JB, Li YM, et al. Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. Clin Cancer Res.2009.15(7):2291-301.
    [79]Stanger BZ, Stiles B, Lauwers GY, et al. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell.2005.8(3):185-95.
    [80]Zhu L, Shi G, Schmidt CM, Hruban RH, Konieczny SF. Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. Am J Pathol.2007.171(1):263-73.
    [81]Shi G, Zhu L, Sun Y, et al. Loss of the acinar-restricted transcription factor Mistl accelerates Kras-induced pancreatic intraepithelial neoplasia. Gastroenterology.2009.136(4):1368-78.
    [82]De La O JP, Emerson LL, Goodman JL, et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci U S A.2008.105(48):18907-12.
    [83]Feldmann G, Beaty R, Hruban RH, Maitra A. Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg.2007.14(3):224-32.
    [84]Ottenhof NA, Milne AN, Morsink FH, et al. Pancreatic intraepithelial neoplasia and pancreatic tumorigenesis:of mice and men. Arch Pathol Lab Med.2009.133(3):375-81.
    [85]Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell.2005.7(5): 469-83.
    [86]Fendrich V, Chen NM, Neef M, et al. The angiotensin-Ⅰ-converting enzyme inhibitor enalapril and aspirin delay progression of pancreatic intraepithelial neoplasia and cancer formation in a genetically engineered mouse model of pancreatic cancer. Gut.2010.59(5):630-7.
    [87]Izeradjene K, Combs C, Best M, et al. Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell.2007.11(3): 229-43.
    [88]Aguirre AJ, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev.2003.17(24):3112-26.
    [89]Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res. 2000.6(8):2969-72.
    [90]Koorstra JB, Hustinx SR, Offerhaus GJ, Maitra A. Pancreatic carcinogenesis. Pancreatology.2008.8(2): 110-25.
    [91]Moskaluk CA, Hruban RH, Kern SE. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res.1997.57(11):2140-3.
    [92]Wilentz RE, Iacobuzio-Donahue CA, Argani P, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia:evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000.60(7):2002-6.
    [93]DiGiuseppe JA, Hruban RH, Goodman SN, et al. Overexpression of p53 protein in adenocarcinoma of the pancreas. Am J Clin Pathol.1994.101(6):684-8.
    [94]Real FX, Cibrian-Uhalte E, Martinelli P. Pancreatic cancer development and progression:remodeling the model. Gastroenterology.2008.135(3):724-8.
    [95]Dergham ST, Dugan MC, Kucway R, et al. Prevalence and clinical significance of combined K-ras mutation and p53 aberration in pancreatic adenocarcinoma. Int J Pancreatol.1997.21(2):127-43.
    [96]Dong M, Nio Y, Tamura K, et al. Ki-ras point mutation and p53 expression in human pancreatic cancer:a comparative study among Chinese, Japanese, and Western patients. Cancer Epidemiol Biomarkers Prev. 2000.9(3):279-84.
    [97]Motojima K, Urano T, Nagata Y, Shiku H, Tsunoda T, Kanematsu T. Mutations in the Kirsten-ras oncogene are common but lack correlation with prognosis and tumor stage in human pancreatic carcinoma. Am J Gastroenterol.1991.86(12):1784-8.
    [98]Hruban RH, van MAD, Offerhaus GJ, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol.1993.143(2):545-54.
    [99]Salek C, Minarikova P, Benesova L, et al. Mutation status of K-ras, p53 and allelic losses at 9p and 18q are not prognostic markers in patients with pancreatic cancer. Anticancer Res.2009.29(5):1803-10.
    [100]Kim J, Reber HA, Dry SM, et al. Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins. Gut.2006.55(11):1598-605.
    [101]Chen H, Tu H, Meng ZQ, Chen Z, Wang P, Liu LM. K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. Eur J Surg Oncol.2010.36(7):657-62.
    [102]Franko J, Krasinskas AM, Nikiforova MN, et al. Loss of heterozygosity predicts poor survival after resection of pancreatic adenocarcinoma. J Gastrointest Surg.2008.12(10):1664-72; discussion 1672-3.
    [103]Jeong J, Park YN, Park JS, Yoon DS, Chi HS, Kim BR. Clinical significance of p16 protein expression loss and aberrant p53 protein expression in pancreatic cancer. Yonsei Med J.2005.46(4):519-25.
    [104]Gerdes B, Ramaswamy A, Ziegler A, et al. p16INK4a is a prognostic marker in resected ductal pancreatic cancer:an analysis of p16INK4a, p53, MDM2, an Rb. Ann Surg.2002.235(1):51-9.
    [105]Naka T, Kobayashi M, Ashida K., Toyota N, Kaneko T, Kaibara N. Aberrant p16INK4 expression related to clinical stage and prognosis in patients with pancreatic cancer. Int J Oncol.1998.12(5):1111-6.
    [106]Blackford A, Serrano OK, Wolfgang CL, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res.2009.15(14):4674-9.
    [107]Biankin AV, Morey AL, Lee CS, et al. DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma. J Clin Oncol.2002.20(23):4531-42.
    [108]Tascilar M, Skinner HG, Rosty C, et al. The SMAD4 protein and prognosis of pancreatic ductal adenocarci noma. Clin Cancer Res.2001.7(12):4115-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700