SHP-1缺失的肥大细胞小鼠肺过敏性炎症中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含有Src同源结构域的蛋白酪氨酸磷酸酶1(SHP-1)缺失的小鼠过敏性哮喘表型是白细胞介素13(IL-13)和转录因子STAT6依赖的。它是一种辅助性T淋巴(Th)2类细胞应答,其分子机制并没有完全清楚。我们推测SHP-1的缺失导致了肥大细胞功能失调和细胞产物增加、介质和Th2类细胞因子的释放,从而产生过敏性哮喘表现。我们用mev小鼠骨髓源性肥大细胞(bone marrow derived mast cells, BMMC)检测了SHP-1基因对肥大细胞的分化、存活率以及对刺激的功能反应机能的调节。评测了肥大细胞缺失的KitW-Sh基因型背景下的mev小鼠肺功能表型的变化。
     研究中发现SHP-1是肥大细胞分化、成熟及增殖等功能的重要调节因子,在SHP-1缺陷的情况下,肥大细胞是分泌Th2类细胞因子,促进过敏性哮喘表型发生的主要细胞。
     mev小鼠的骨髓中,成熟的肥大细胞比例明显高于野生型小鼠。这种差异可以一直持续到细胞培养的第16天。但在随后,mev小鼠和野生型小鼠的这种差异逐渐消失,而且mev基因型小鼠细胞的增殖趋于平缓,野生型小鼠细胞的增殖却明显加速。RT-PCR实验结果显示Bcl-2基因在mev小鼠的BMMC中明显上调,但是流式细胞仪检测表明SHP-1缺陷小鼠的BMMC不能抵抗培养环境中不加生长因子所诱导的凋亡。这些结果提示SHP-1的调节不能产生内源性的抗凋亡信号但能增强那些被生长因子启动的效应。
     研究中,我们评价了SHP-1在调节肥大细胞应答于氧化剂刺激和细菌产物脂多糖(LPS)刺激后的细胞因子应答中的功能。结果显示:mev小鼠BMMC的IL-4和IL-13表达明显增加,而γ干扰素(IFN-γ)无变化,且这一变化可被抗氧化剂乙酰半胱氨酸(NAC)阻断。同样,mev小鼠的BMMC应答于LPS刺激后,产生的IL-13明显增高,而不受过氧化氢(H2O2)或NAC影响。提示,ROS和核因子κB(NF-κB)没有参与到这一活化过程。进一步我们发现,激酶抑制剂Gleevec对LPS刺激肥大细胞产生的IL-13没有明显影响,表明该过程是非c-Kit依赖的。
     我们证实用免疫球蛋白Fc段受体I (FcεRI)刺激后,SHP-1能结合T细胞激活交联子2(LAT2),肥大细胞SHP-1缺陷可导致LAT2的磷酸化明显增加,这与肥大细胞活性的增加完全一致。
     为了检测体内SHP-1的下调是否也能影响肥大细胞的功能,我们检测了肺部的肥大细胞的数量和活性以及在mev小鼠过敏性哮喘表型中的作用。这些研究显示,SHP-1缺陷可导致肺部肥大细胞数目的增加,更重要的是在未刺激和应答于刺激后,均可明显增加肺和脾脏的肥大细胞的活性,释放更多的介质,产生更多的Th2类细胞因子。
     在肥大细胞缺陷的KitW-Sh遗传背景下的mev小鼠,其气道炎症明显减轻,肺病理情况转好,IL-13和趋化因子的量减少。
     以上发现证明SHP-1在肥大细胞的发育和功能作用方面是重要的调节因子,SHP-1缺失的肥大细胞能大量产生Th2类细胞因子并在肺部启动过敏性免疫应答。
Phosphatase SHP-1 deficient mice display an allergic asthma phenotype that is largely IL-13 and STAT6 dependent. The cell types responsible for the Th2 phenotype have not been identified. We hypothesized that SHP-1 deficiency leads to mast cell dysregulation and increased production and release of mediators and Th2 cytokines, leading to the allergic asthma phenotype. We examined SHP-1 regulation of mast cell differentiation, survival, and functional responses to stimulation using bone marrow derived mast cells from viable motheaten (mev) mice. We assessed pulmonary phenotypical changes in mev mice on mast cell deficient KitW-Sh genetic background. The results show that SHP-1 deficiency leads to increased differentiation and survival, but reduced proliferation, of mast cells. SHP-1 deficient mast cells produce and release increased amounts of mediators and Th2 cytokines IL-4 and IL-13, spontaneously and in response to H2O2, LPS, and FcεRI cross-linking, involving c-Kit-dependent and independent processes. The FcsRI signaling leads to binding of SHP-1 to LAT2 and enhanced LAT2 phosphorylation in mev BMMC. Furthermore, the number of mast cells in the lung tissue of mev mice is increased and mast cell production and release of Th2 cytokines are distinctly increased upon FcεRI stimulation. When backcrossed to the KitW-Sh background mev mice have markedly reduced pulmonary inflammation and Th2 cytokine production. These findings demonstrate that SHP-1 is a critical regulator of mast cell development and function and that SHP-1 deficient mast cells are able to produce increased Th2 cytokines and to initiate allergic inflammatory responses in the lung.
引文
1. Moorman, J. E., R. A. Rudd, C. A. Johnson, M. King, P. Minor, C. Bailey, M. R. Scalia, and L. J. Akinbami.2007. National surveillance for asthma-United States,1980-2004. MMWR Surveill Summ 56:1-54.
    2. Pediatric Research Unit, Kolding Hospital, Kolding, Denmark.2009 Oct 16. pii: pcrj-2009-05-0044. doi:10.4104/pcrj.2009.00059.
    3. Gavett, S. H., X. Chen, F. Finkelman, and M. Wills-Karp.1994. Depletion of murine CD4+T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 10:587-593.
    4. Garlisi, C. G, A. Falcone, T. T. Kung, D. Stelts, K. J. Pennline, A. J. Beavis, S. R. Smith, R. W. Egan, and S. P. Umland.1995. T cells are necessary for Th2 cytokine production and eosinophil accumulation in airways of antigen-challenged allergic mice. Clin Immunol Immunopathol 75:75-83.
    5. Cohn, L., R. J. Homer, A. Marinov, J. Rankin, and K. Bottomly.1997. Induction of airway mucus production By T helper 2 (Th2) cells:a critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med 186:1737-1747.
    6. Foster, P. S., S. P. Hogan, A. J. Ramsay, K. I. Matthaei, and I. G. Young.1996. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183:195-201.
    7. Grunig, G, M. Warnock, A. E. Wakil, R. Venkayya, F. Brombacher, D. M. Rennick, D. Sheppard, M. Mohrs, D. D. Donaldson, R. M. Locksley, and D. B. Corry.1998. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282:2261-2263.
    8. Wills-Karp, M., J. Luyimbazi, X. Xu, B. Schofield, T. Y. Neben, C. L. Karp, and D. D. Donaldson.1998. Interleukin-13:central mediator of allergic asthma. Science 282:2258-2261.
    9. Zhu, Z., R. J. Homer, Z. Wang, Q. Chen, G. P. Geba, J. Wang, Y. Zhang, and J. A. Elias.1999. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103:779-788.
    10. Anderson, G. P.2008. Endotyping asthma:new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372:1107-1119.
    11. Oh, S. Y, T. Zheng, M. L. Bailey, D. L. Barber, J. T. Schroeder, Y. K. Kim, and Z. Zhu.2007. Src homology 2 domain-containing inositol 5-phosphatase 1 deficiency leads to a spontaneous allergic inflammation in the murine lung. J Allergy Clin Immunol 119:123-131.
    12. Oh, S. Y., T. Zheng, Y. K. Kim, L. Cohn, R. J. Homer, A. N. McKenzie, and Z. Zhu.2009. A critical role of SHP-1 in regulation of type 2 inflammation in the lung. Am J Respir Cell Mol Biol 40:568-574.
    13. Taube, C, X. Wei, C. H. Swasey, A. Joetham, S. Zarini, T. Lively, K. Takeda, J. Loader, N. Miyahara, T. Kodama, L. D. Shultz, D. D. Donaldson, E. H. Hamelmann, A. Dakhama, and E. W. Gelfand.2004. Mast cells, Fc epsilon RI, and IL-13 are required, for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J Immunol 172:6398-6406.
    14. Takeda, K., E. Hamelmann, A. Joetham, L. D. Shultz, G. L. Larsen, C. G. Irvin, and E. W. Gelfand.1997. Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J Exp Med 186:449-454.
    15. Yu, M, M. Tsai, S. Y. Tam, C. Jones, J. Zehnder, and S. J. Galli.2006. Mast cells can promote the development of multiple features of chronic asthma in mice. J Clin Invest 116:1633-1641.
    16. Kamata, T., M. Yamashita, M. Kimura, K. Murata, M. Inami, C. Shimizu, K. Sugaya, C. R. Wang, M. Taniguchi, and T. Nakayama.2003. src homology 2 domain-containing tyrosine phosphatase SHP-1 controls the development of allergic airway inflammation. J Clin Invest 111:109-119.
    17. Nakata, K., T. Yoshimaru, Y. Suzuki, T. Inoue, C. Ra, H. Yakura, and K. Mizuno. 2008. Positive and negative regulation of high affinity IgE receptor signaling by Src homology region 2 domain-containing phosphatase 1. J Immunol 181:5414-5424.
    18. Haddon, D. J., F. Antignano, M. R. Hughes, M. R. Blanchet, L. Zbytnuik, G. Krystal, and K. M. McNagny.2009. SHIP1 is a repressor of mast cell hyperplasia, cytokine production, and allergic inflammation in vivo. J Immunol 183:228-236.
    19. Tsui, F. W., A. Martin, J. Wang, and H. W. Tsui.2006. Investigations into the regulation and function of the SH2 domain-containing protein-tyrosine phosphatase, SHP-1. Immunol Res 35:127-136.
    20. Zhang, J., A. K. Somani, and K. A. Siminovitch.2000. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin Immunol 12:361-378.
    21. Green, M. C, and L. D. Shultz.1975. Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered 66:250-258.
    22. Shultz, L. D., D. R. Coman, C. L. Bailey, W. G. Beamer, and C. L. Sidman.1984. "Viable motheaten," a new allele at the motheaten locus. I. Pathology. Am J Pathol 116:179-192.
    23. Tsui, H. W., K. A. Siminovitch, L. de Souza, and F. W. Tsui.1993. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet 4:124-129.
    24. Su, X., T. Zhou, P. Yang, C. K. Edwards,3rd, and J. D. Mountz.1998. Reduction of arthritis and pneumonitis in motheaten mice by soluble tumor necrosis factor receptor. Arthritis Rheum 41:139-149.
    25. Yu, C. C, H. W. Tsui, B. Y. Ngan, M. J. Shulman, G. E. Wu, and F. W. Tsui. 1996. B and T cells are not required for the viable motheaten phenotype. J Exp Med 183:371
    26. Paulson, R. F., S. Vesely, K. A. Siminovitch, and A. Bernstein.1996. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shpl. Nat Genet 13:309-315.
    27. Lorenz, U., A. D. Bergemann, H. N. Steinberg, J. G. Flanagan, X. Li, S. J. Galli, and B. G. Neel.1996. Genetic analysis reveals cell type-specific regulation of receptor tyrosine kinase c-Kit by the protein tyrosine phosphatase SHP1. J Exp Med 184:11111126.
    28. Zheng, T., Z. Zhu, Z. Wang, R. J. Homer, B. Ma, R. J. Riese, Jr., H. A. Chapman, Jr., S. D. Shapiro, and J. A. Elias.2000. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase-and cathepsin-dependent emphysema. J Clin Invest 106:1081-1093.
    29. Frossi, B., J. Rivera, E. Hirsch, and C. Pucillo.2007. Selective activation of Fyn/PI3K and p38 MAPK regulates IL-4 production in BMMC under nontoxic stress condition. J Immunol 178:2549-2555.
    30. Cho, Y. S., S. Y. Oh, and Z. Zhu.2008. Tyrosine phosphatase SHP-1 in oxidative stress and development of allergic airway inflammation. Am J Respir Cell Mol Biol 39:412-419.
    31. Stassen, M., C. Muller, M. Arnold, L. Hultner, S. Klein-Hessling, C. Neudorfl, T. Reineke, E. Serfling, and E. Schmitt.2001. IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-kappa B is decisively involved in the expression of IL-9. J Immunol 166:4391-4398.
    32. Grimbaldeston, M. A., C. C. Chen, A. M. Piliponsky, M. Tsai, S. Y. Tam, and S. J. Galli.2005. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835-848.
    33. Shultz, L. D., and M. C. Green.1976. Motheaten, an immunodeficient mutant of the mouse. Ⅱ. Depressed immune competence and elevated serum immunoglobulins. J Immunol 116:936-943.
    34. Clark, E. A., L. D. Shultz, and S. B. Pollack.1981. Mutations in mice that influence natural killer (NK) cell activity. Immunogenetics 12:601-613.
    35. Brown R. British Medical Bulletin. The bcl-2 family of proteins.1996; 53:466-477
    36. Zamzami N, Brenner C, Marzo I, et al. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene,1998; 16:2265-2287
    37. Cai JY, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem,1998; 273:11401-11404
    38. Xiao JR, Jia LS, Chen HJ, Wei HF, Yang XH, Chen DY, Zhu QF,Zhonghua Wai Ke Za Zhi. Investigation of resection and reconstruction procedure of high-sacrum tumors.2003 Aug;41(8):575-7.
    39. Reynolds J, Eastman A. Intracellular calcium stores are not required for Bcl-2-mediated. protection from apoptosis. J Biol Chem,1996; 271:27739-27743
    40. Reed JC. Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. Nature,1997; 387:773-776
    41. Cosulich SC, Savory PJ, Clarke PR. Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr Biol,1999; 9:147-150
    42. Yang J, Liu XS, Bhalla K. Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science,1997; 175:1132-1136
    43. Kluck RM, Ella BW, Green DR, et al. The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. Science,1997; 275:1132-1136
    44. Rosse T, Olivier R, Momey L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature,1998; 391:496-499
    45. Zhivotovsky B, Orrenius S, Brustugun OT, et al. Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2. Nature,1998; 391:499-450
    46. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature,1999; 397:441-446
    47. Strasser A, Huang D, David L, et al. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. Biochimica Biophysica Acta, 1997; 1333.-F151-F178
    48. Scaffidi C, Fulda S, Srinivasan A. Two CD95 (APO-1/Fas) signaling pathways.EMBO J,1998; 17:1675-1687
    49. Kozlowski, M., L. Larose, F. Lee, D. M. Le, R. Rottapel, and K. A. Siminovitch. 1998. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol Cell Biol 18:2089-2099.
    50. Paling, N. R., and M. J. Welham.2002. Role of the protein tyrosine phosphatase SHP1 (Src homology phosphatase-1) in the regulation of interleukin-3-induced survival, proliferation and signalling. Biochem J 368:885-894.
    51. Dong, Q., K. A. Siminovitch, L. Fialkow, T. Fukushima, and G. P. Downey.1999. Negative regulation of myeloid cell proliferation and function by the SH2 domain-containing tyrosine phosphatase-1. J Immunol 162:3220-3230.
    52. Borner, C.1996. Diminished cell proliferation associated with the death-protective activity of Bcl-2. J Biol Chem 271:12695-12698.
    53. Copeland, N. G, D. J. Gilbert, B. C. Cho, P. J. Donovan, N. A. Jenkins, D. Cosman, D. Anderson, S. D. Lyman, and D. E. Williams.1990. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell 63:175-183.
    54. Chabot, B., D. A. Stephenson, V. M. Chapman, P. Besmer, and A. Bernstein. 1988. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335:88-89.
    55. Swindle, E. J., D. D. Metcalfe, and J. W. Coleman.2004. Rodent and human mast cells produce functionally significant intracellular reactive oxygen species but not nitric oxide. J Biol Chem 279:48751-48759.
    56. Masuda, A., Y. Yoshikai, K. Aiba, and T. Matsuguchi.2002. Th2cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly regulated by c-Jun N-terminal kinase and p38 pathways. J Immunol 169:3801-3810.
    57. Krautwald, S., D. Buscher, V. Kummer, S. Buder, and M. Baccarini.1996. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway. Mol Cell Biol 16:5955-5963.
    58. Iwaki, S., J. Spicka, C. Tkaczyk, B. M. Jensen, Y. Furumoto, N. Charles, M. Kovarova, J. Rivera, V. Horejsi, D. D. Metcalfe, and A. M. Gilfillan.2008. Kit-and Fc epsilonRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cell Signal 20:195-205.
    59. Tkaczyk, C, V. Horejsi, S. Iwaki, P. Draber, L. E. Samelson, A. B. Satterthwaite, D. H. Nahm, D. D. Metcalfe, and A. M. Gilfillan.2004. NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and Fc epsilon RI aggregation. Blood 104:207-214.
    60. Linnekin, D.1999. Early signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol 31:1053-1074.
    61. Kroemer G, Petit P, Zamzami N, et al. The biochemistry of programmed cell death. FASEB J,1995; 9:1277-1287
    1. Gilfillan AM, Rivera J. The tyrosine kinase network regulating mast cell activation. Immunol Rev.2009; 228:149-69.
    2. Lorenz U. SHP-1 and SHP-2 in T cells:two phosphatases functioning at many levels. Immunol Rev.2009; 228:342-59.
    3. Green MC, Shultz LD. Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered.1975; 66:250-8.
    4. Shultz LD, Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell.1993; 73:1445-54.
    5. Tsui HW, Siminovitch KA, de Souza L, Tsui FW. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet.1993; 4:124-9.
    6. Ward JM. Pulmonary pathology of the motheaten mouse. Vet Pathol.1978; 15:170-8.
    7. Shultz LD, Coman DR, Bailey CL, Beamer WG, Sidman CL. "Viable motheaten," a new allele at the motheaten locus. I. Pathology. Am J Pathol.1984; 116:179-92.
    8. Rossi GA, Hunninghake GW, Kawanami O, Ferrans VJ, Hansen CT, Crystal RG. Motheaten mice-an animal model with an inherited form of interstitial lung disease. Am Rev Respir Dis.1985; 131:150-8.
    9. Kovarik J, Kuntz L, Ryffel B, Borel JF. The viable motheaten (mev) mouse-a new model for arthritis. J Autoimmun.1994; 7:575-88.
    10. Oh SY, A critical role of SHP-1 in regulation of type 2 inflammation in the lung. Am J Respir Cell Mol Biol.2009; 40:568-74.
    11. Kamata T, et al. src homology 2 domain-containing tyrosine phosphatase SHP-1 controls the development of allergic airway inflammation. J Clin Invest.2003; 111:109-19.
    12. Cho YS, Oh SY, Zhu Z. Tyrosine phosphatase SHP-1 in oxidative stress and development of allergic airway inflammation. Am J Respir Cell Mol Biol.2008; 39:412-9.
    13. Cunnick JM, Dorsey JF, Mei L, Wu J. Reversible regulation of SHP-1 tyrosine phosphatase activity by oxidation. Biochem Mol Biol Int.1998; 45:887-94.
    14. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell.2002; 9:387-99.
    15. Heneberg P, Draber P. Regulation of cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils. Curr Med Chem.2005; 12:1859-71.
    16. Frossi B, De Carli M, Daniel KC, Rivera J, Pucillo C. Oxidative stress stimulates IL4 and IL-6 production in mast cells by an APE/Ref-1-dependent pathway. Eur J Immunol.2003; 33:2168-77.
    17. Frossi B, Rivera J, Hirsch E, Pucillo C. Selective activation of Fyn/PI3K and p38 MAPK regulates IL-4 production in BMMC under nontoxic stress condition. J Immunol.2007; 178:2549-55.
    18. Yu CC, Tsui HW, Ngan BY, Shulman MJ, Wu GE, Tsui FW. B and T cells are not required for the viable motheaten phenotype. J Exp Med.1996; 183:371-80.
    19. Paulson RF, Vesely S, Siminovitch KA, Bernstein A. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shpl. Nat Genet.1996; 13:309-15.
    20. Lorenz U, Genetic analysis reveals cell type-specific regulation of receptor tyrosine kinase c-Kit by the protein tyrosine phosphatase SHP1. J Exp Med. 1996; 184:1111-26.
    21. Masuda A, Yoshikai Y, Aiba K, Matsuguchi T. Th2 cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly regulated by c-Jun N-terminal kinase and p38 pathways. J Immunol.2002; 169:3801-10.
    22. Pawankar R, Okuda M, Yssel H, Okumura K, Ra C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest. 1997; 99:1492-9.
    23. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med.2002; 346:1699705.
    24. MacGlashan D, Jr., White JM, Huang SK, Ono SJ, Schroeder JT, Lichtenstein LM. Secretion of IL-4 from human basophils. The relationship between IL-4 mRNA and protein in resting and stimulated basophils. J Immunol.1994; 152:3006-16.
    25. Gibbs BF, Purified human peripheral blood basophils release interleukin-13 and preformed interleukin-4 following immunological activation. Eur J Immunol. 1996; 26:2493-8.
    26. Redrup AC, Howard BP, MacGlashan DW, Jr., Kagey-Sobotka A, Lichtenstein LM, Schroeder JT. Differential regulation of IL-4 and IL-13 secretion by human basophils:their relationship to histamine release in mixed leukocyte cultures. J Immunol.1998; 160:1957-64.
    27. Rumbley CA, Sugaya H, Zekavat SA, El Refaei M, Perrin PJ, Phillips SM. Activated eosinophils are the major source of Th2-associated cytokines in the schistosome granuloma. J Immunol.1999; 162:1003-9.
    28. Kimura T, Zhang J, Sagawa K, Sakaguchi K, Appella E, Siraganian RP. Sykindependent tyrosine phosphorylation and association of the protein tyrosine phosphatases SHP-1 and SHP-2 with the high affinity IgE receptor. J Immunol. 1997; 159:4426-34.
    29. Ozawa T, Nakata K, Mizuno K, Yakura H. Negative autoregulation of Src homology region 2-domain-containing phosphatase-1 in rat basophilic leukemia-2H3 cells. Int Immunol.2007; 19:1049-61.
    30. Nakata K. Positive and negative regulation of high affinity IgE receptor signaling by Src homology region 2 domain-containing phosphatase 1. J Immunol.2008; 181:5414-24.
    31. Xie ZH, Zhang J, Siraganian RP. Positive regulation of c-Jun N-terminal kinase and TNF-alpha production but not histamine release by SHP-1 in RBL-2H3 mast cells. J Immunol.2000; 164:1521-8.
    32. Thrall RS, Vogel SN, Evans R, Shultz LD. Role of tumor necrosis factor-alpha in the spontaneous development of pulmonary fibrosis in viable motheaten mutant mice. Am J Pathol.1997; 151:1303-10.
    33. Su X, Zhou T, Yang P, Edwards CK,3rd, Mountz JD. Reduction of arthritis and pneumonitis in motheaten mice by soluble tumor necrosis factor receptor. Arthritis Rheum.1998; 41:139-49.
    34. Borner C. Diminished cell proliferation associated with the death-protective activity of Bcl-2. J Biol Chem.1996; 271:12695-8.
    35. Brown R. British Medical Bulletin. The bcl-2 family of proteins.1996; 53:466-477
    36. Zamzami N, Brenner C, Marzo I, et al. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene,1998; 16:2265-2287
    37. Cai JY, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem,1998; 273:11401-11404
    38. Xiao JR, Jia LS, Chen HJ, Wei HF, Yang XH, Chen DY, Zhu QF,Zhonghua Wai Ke Za Zhi. Investigation of resection and reconstruction procedure of high-sacrum tumors.2003 Aug;41(8):575-7.
    39. Reynolds J, Eastman A. Intracellular calcium stores are not required for Bcl-2-mediated protection from apoptosis. J Biol Chem,1996; 271:27739-27743
    40. Reed JC. Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. Nature,1997; 387:773-776
    41. Cosulich SC, Savory PJ, Clarke PR. Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr Biol,1999; 9:147-150
    42. Yang J, Liu XS, Bhalla K. Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science,1997; 175:1132-1136
    43. Kluck RM, Ella BW, Green DR, et al. The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. Science,1997; 275:1132-1136
    44. Rosse T, Olivier R, Momey L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature,1998; 391:496-499
    45. Zhivotovsky B, Orrenius S, Brustugun OT, et al. Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2. Nature,1998; 391:499-450
    46. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature,1999; 397:441-446
    47. Strasser A, Huang D, David L, et al. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. Biochimica Biophysica Acta, 1997; 1333:F151-F178
    48. Scaffidi C, Fulda S, Srinivasan A. Two CD95 (APO-1/Fas) signaling pathways.EMBO J,1998; 17:1675-1687
    49. Mertsching E. A mouse Fcgamma-Fcepsilon protein that inhibits mast cells through activation of FcgammaRIIB, SH2 domain-containing inositol phosphatase 1, and SH2 domain-containing protein tyrosine phosphatases. J Allergy Clin Immunol.2008; 121:441-7 e5.
    50. Fong DC, Malbec 0, Arock M, Cambier JC, Fridman WH, Daeron M. Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated Fc gammaRIIB during negative regulation of IgE-dependent mouse mast cell activation. Immunol Lett.1996; 54:83-91.
    51. Lu Kuo JM, Joyal DM, Austen KF, Katz HR. gp49B 1 inhibits IgE-initiated mast cell activation through both immunoreceptor tyrosine-based inhibitory motifs, recruitment of src homology 2 domain-containing phosphatase-1, and suppression of early and late calcium mobilization. J Biol Chem.1999; 274:5791-6.
    52. Daheshia M, Friend DS, Grusby MJ, Austen KF, Katz HR. Increased severity of local and systemic anaphylactic reactions in gp49B1-deficient mice. J Exp Med. 2001; 194:227-34.
    53. Zhang Q, Raghunath PN, Vonderheid E, Odum N, Wasik MA. Lack of phosphotyrosine phosphatase SHP-1 expression in malignant T-cell lymphoma cells results from methylation of the SHP-1 promoter. Am J Pathol.2000; 157:1137-46.
    54. Oka T. Reduction of hematopoietic cell-specific tyrosine phosphatase SHP-1 gene expression in natural killer cell lymphoma and various types of lymphomas/leukemias:combination analysis with cDNA expression array and tissue microarray. Am J Pathol.2001; 159:1495-505.
    55. Chim CS, Wong KY, Loong F, Srivastava G. SOCS1 and SHP1 hypermethylation in mantle cell lymphoma and follicular lymphoma: implications for epigenetic activation of the Jak/STAT pathway. Leukemia.2004; 18:356-8.
    56. Khoury JD, Rassidakis GZ, Medeiros LJ, Amin HM, Lai R. Methylation of SHP1 gene and loss of SHP1 protein expression are frequent in systemic anaplastic large cell lymphoma. Blood.2004; 104:1580-1.
    57. Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA. STAT3and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci USA.2005; 102:6948-53. USA.2005; 102:6948-53.
    58. Reddy J. Differential methylation of genes that regulate cytokine signaling in lymphoid and hematopoietic tumors. Oncogene.2005; 24:732-6.
    59. Wickrema A. Defective expression of the SHP-1 phosphatase in polycythemia vera. Exp Hematol.1999; 27:1124-32.
    60. Asimakopoulos FA, et al. The gene encoding hematopoietic cell phosphatase (SHP-1) is structurally and transcriptionally intact in polycythemia vera. Oncogene.1997; 14:1215-22.
    61. Andersson P, LeBlanc K, Eriksson BA, Samuelsson J. No evidence for an altered mRNA expression or protein level of haematopoietic cell phosphatase in CD34+bone marrow progenitor cells or mature peripheral blood cells in polycythaemia vera. Eur J Haematol.1997; 59:310-7.
    62. Amin HM, Hoshino K, Yang H, Lin Q, Lai R, Garcia-Manero G. Decreased expression level of SH2 domain-containing protein tyrosine phosphatase-1 (Shpl) is associated with progression of chronic myeloid leukaemia. J Pathol. 2007; 212:40210.
    63. Ruchusatsawat K, Wongpiyabovorn J, Shuangshoti S, Hirankarn N, Mutirangura A. SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. J Mol Med.2006; 84:175-82.
    64. Christophi GP. SHP-1 deficiency and increased inflammatory gene expression in PBMCs of multiple sclerosis patients. Lab Invest.2008; 88:243-55.
    65. Christophi GP. Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype. Lab Invest.2009; 89:74259.
    66. Deng C. Expression of the tyrosine phosphatase SRC homology 2 domain-containing protein tyrosine phosphatase 1 determines T cell activation threshold and severity of experimental autoimmune encephalomyelitis. J Immunol.2002; 168:45118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700