关于低能冲击波对T淋巴细胞的作用及其作用机理的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击波是压力急剧变化的产物,能在几纳秒内达到它的压力最大值。冲击波的负相波段可引起空化反应。冲击波产生的快速上升的正相压力波和空化反应引起的微泡爆炸喷射会促使被作用物体表面的张力增加。一定的张力作用可使物体发生破裂。由于其这一特性,长期以来,高能冲击波一直被用于体外治疗泌尿系统的结石,并且取得了良好的疗效。近年来人们发现,低能冲击波对骨折愈合有促进作用,并且将冲击波应用到骨不连的治疗中,结果显示冲击波对肥大型骨不连治愈率几乎达到100%,对营养不良型骨不连的疗效不理想,这和手术治疗的结果相似。同时欧洲人又将冲击波用于慢性肌腱炎的治疗,如治疗肱骨外上髁炎、足底筋膜炎和钙化性肌腱炎等,也取得了理想疗效,与传统的非手术疗法相比,冲击波疗效更巩固,和手术治疗相比没有统计学上的差异。这样关于低能冲击波的应有基础研究开始展开。早在1986年Haupt就发现低能冲击波可促进小猪的创口愈合,而加大冲击波的强度则会抑制创口的愈合;形态学上的观察显示:低能冲击波会使小猪创口内的毛细血管、新生上皮细胞和巨嗜细胞的数量明显增加,是对照组的二倍。中国台北的Wang发现,能损伤细胞膜但不损伤其它细胞器的低能冲击波可诱导人骨髓间质干细胞向骨原细胞分化并诱导骨小节形成。
    那么,为什么低能冲击波能产生如此的生物学效应呢?对细胞产生一定应力和应变的机械刺激,会引起细胞内的ATP快速释放。一旦ATP被释放到细胞外的环境中,其会与表达在几乎所用哺乳动物细胞膜表面的P2X和/或P2Y受体相互作用,激活细胞内的传导路途经,调节细胞的功能和代谢。同时ATP的代谢产物(腺苷adenosine)也和细胞表面的P1受体相互作用。这样细胞外的ATP和其代谢产物通过它们的受体,对T淋巴细胞的功能产生很强的影响:ATP可促使小鼠的胸腺细胞增殖,ATP和腺苷将会抑制/或增强由T淋巴细胞受体激活的信号传导、细胞凋亡或胸腺细胞分化。
    冲击波会对细胞表面产生一定的应力和应变的机械刺激。如果能损伤细胞膜而不损伤其它细胞器的低能冲击波作用T淋巴细胞,将会产生什么样的影响呢? 该低能冲击波能否引起细胞内的ATP快速释放?释
    
    
    放到细胞外的ATP是否通过激活P2受体,引起相应的生物学效应呢?关于这方面的研究,国内外未见报道。
    另外,有丝分裂原激活蛋白激酶p38 (p38 MAPK)结构上和酵母菌的压力敏感蛋白HOG-1(the products of Saccharomyces cerevisiae osmosensing gene)蛋白相似。在受到高渗透压作用时,酵母菌细胞通过HOG-1蛋白调节基因表达。高渗透压或机械刺激作用可使人T淋巴细胞的p38 MAPK被激活,促进T淋巴细胞分泌IL-2。这样我们不禁要问:是否低能冲击波通过激活 p38 MAPK,对T淋巴细胞的功能产生影响?关于这方面的研究,国内外未见报道。
    
    为了检验这一假说,我们用Balb/c小鼠的脾细胞和人外周血单个核细胞(PBMC)来研究低能冲击波对T淋巴细胞增殖的影响。用人外周血单个核细胞(PBMC)和人Jurkat T细胞来研究低能冲击波对T淋巴细胞的信号传导和分泌IL-2的影响。
    
    研究目的:
    
    研究低能冲击波是否促进T淋巴细胞增殖及分泌IL-2;研究低能冲击波是否通过激活细胞内的有丝分裂原激活蛋白激酶p38(p38 MAPK)增强激活的T淋巴细胞增殖及分泌IL-2;探讨是否细胞内ATP向外释放是低能冲击波影响T淋巴细胞的信号传导和功能的潜在机理。
    
    材料和方法:
    
    研究低能冲击波是否能促进T淋巴细胞增殖及分泌IL-2
    
    先将Balb/c小鼠脾细胞、PBMC或Jurkat T细胞,用0.18mJ/mm2的低能冲击波分别作用0、100、150、200、250、300、320、360和420次。之后再立即用刀豆蛋白A(ConA)的亚刺激量作用Balb/c小鼠脾细胞,植物血凝素(PHA)的亚刺激量作用PBMC,或抗-CD3及抗-CD28抗体的亚刺激量作用Jurkat T细胞,同时设阴性对照组。继续放入5%CO2,37℃孵箱,继续培养48小时,用3H-TdR掺入法检测低能冲击波对激活的T淋巴细胞增殖的影响;或继续培养24小时,用生物活性分析法通过CTLL-2细胞检测低能冲击波对T淋巴细胞分泌IL-2的影响。
    
    研究p38 MAPK在低能冲击波促进T淋巴细胞的增殖和分泌IL-2的作
    
    
    用
    
    预先用p38 MAPK抑制剂( SB203580/20uM)和PBMC或Jurkat细胞37°C孵育箱共育1小时,再用冲击波和PHA或抗-CD3/抗-CD28抗体的亚刺激量作用,之后48小时用PBMC检测低能冲击波对激活的T淋巴细胞增殖的影响,或24小时用Jurkat细胞检测低能冲击波对T淋巴细胞分泌白细胞介素-2(IL-2)的影响。设无上述拮抗剂和抑制剂的阴性对照组。通过用免疫印迹法(Western Immunoblotting),用抗- p38MAPK抗体及抗-磷酸化的p38MAPK(Thr180/Tyr182)抗体,测定Jurkat T细胞上的p38 MAPK的表达及磷酸化。
    
    研究是否细胞内ATP向外释放是低能冲击波影响T淋巴细胞的信号传导和功能的潜在机理
    
    用人Jurkat T细胞通过ATP荧光试剂盒来检测低能冲击波是否引起T细胞分泌ATP。预先用P2X7受体的拮抗剂(KN-62/0.1uM)、P2受体的拮抗剂(suramin/200uM)、p38MAPK抑制剂( SB203580/0-50uM)或Ca2+螯合剂(EGTA/2mM) 和PBMC或Jurkat细胞37°C孵育箱共育1小时,之后用PBMC检测低能冲击波对激活的
A shock wave is elicited by a transient pressure disturbance. Shock waves are characterized by high positive pressure, a rise time lower than 10 ns and tensile wave. The positive pressure and the short rise time are responsible for the direct shock wave effect and the tensile wave for the cavitation, which is called the indirect effect. The fast pressure transition of shock waves (high pressure, short rise time) cause very high tension at the exposed material surfaces so that the structure of the material cracks. Because of this, extracorporeal-generated shock waves were introduced approximately 20 years ago to disintegrate kidney stones. This treatment methed substantially changed the treatment of urolithiasis. Urology, however, is not the medical field for the potential use of shock waves for problems. Shock waves subsequently have been used in orthopaedics and traumatology to treat various insertional tendinopathies (enthesiopathies) and delayed unions and nonunions of fracture. Extracorporeal shock wave therapy has gained increasing acceptance in Europe for some musculoskeletal problems and has led to the inception of clinical studies in the United States. The subsequent researches on biologic mechanism of shock wave treatment on the orthopaedic disorders were carried on in the world. Haupt and Chvapil studies showed that low-density shock wave treatment (10 shock waves at 14kV) led to significant enhancement of reepithelialization of partial-thickness wounds in piglets. Histologically, the upper dermis in the animals that received the treatment had increased numbers of dilated microvessels and increased macrophages in the perivascular spaces. Also, the newly formed epithelial layer was four to five cells thick, almost twice as thick as in control wounds. Wang et al demonstrated that the low-density shock waves (an optimal dose of 500-impulse shock wave treatment at 0.16mJ/mm2) caused a rapid membrane hyperpolarization in 5 min, activation of Ras in 30min, production of specific osteogenic transcription factor (CBFA1) in 6h, enhancement of osteogenic growth factor (TGF-β1) production in 24 h (differentiation of bone marrow stromal cells toward osteoprogenitor associated with induction of
    
    
    TGF-β1), cell proliferation in 2 days, increase of bone alkaline phosphatase activation and collagen type I mRNA expression in 6 days, and osteocalcin mRNA expression in 12 days.
    Then why can the low-density shock waves (LDSWs) elicit such biological effects on cells? Mechanical stimulation can cause the rapid release of ATP from intracellular plasma. Once released into the extracellular environment, ATP can regulate cell function in an autocrine/paracrine manner by interacting with P2X and /or P2Y receptors that are expressed on the surface of virtually all mammalian cells. Extracellular ATP and its metablic products, including adenosine, which acts via P1 receptors, exert a strong influence on lymphocyte function: ATP can stimulate the proliferation of mouse thymocytes, and ATP and adenosine can antagonize and/or complement T cell receptor-induces signaling, apoptosis, and thymocyte differentiation.
    LDSWs presumably cause stress forces on the exposed material surface by the high pressure amplitude and the short rise time. LDSWs can be regarded as a kind of mechanical stimulation. What will happen if T cells were exposed to the LDSWs which are able to damage plasma membrane without impairing other organelles? Whether are the LDSWs able to induce the rapid release of ATP from intracellular plasma? And whether is the rapid release of ATP able to elicit the relevant biological effect on T cells?
    In addition, mechanical stress activates multiple signaling enzymes, including Mitogen activated protein kinase p38 (p38 MAPK). This kinase is structurally related to the yeast protein HOG-1(the products of Saccharomyces cerevisiae osmosensing gene), which is part of the signaling system that allows yeast cells to regulate gene transcription in response to osmotic stress. In human T cells p38 MAPK signaling is involved in t
引文
Hepp w, Grunewald M, Brendel W. Die extrokorporale stoβwellen-lithtripsie. Speltrum der wissenschaft.1991. 7: 44-45
    Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urology 158: 4-11, 1997
    Wang FS, Wang CJ, Huang HJ, Chung H, Chen RF, and Yang KD. Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 2001. Sep 28.287(3):648-55.
    Yu JS. Pathological and postoperative conditions of the plantar fascia: A review of MR imaging appearances. Skeletal Radiol, 2000, 29:491-501
    Haupt G & Chvapil M. Effect of shock waves on the healing of partial-thickness wounds in piglets. Journal of Surgical Research 1990. 49:45-48.
    Kültz D and Burg M. Evolution of osmotic stress signaling via MAP kinase cascades. (1998) J. Exp. Biol. 201, 3015-3021
    Matsuda S, Moriguchi T, Koyasu S, and Nishida E. T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. (1998) J. Biol. Chem. 273, 12378-12382
    Granz P, Kohler D. What makes shock waves efficient in lithotripsy. J Stone Dis. 1992, 4: 123-128
    Schultheiss R. Basic Physical Principles of Shock Waves. HMT High Medical Technologies, Kreuzlingen, Switzerland. 1998. pp: 10-23.
    Li PF & Jing FQ. Calculations of Shock wave and Plasma Parameters of the Discharge in Liquid. Journal of Zhejiang University. 1994. 28(1):27-26
    李培芳、金方勤. 液体放电冲击波和等离子体参数的计算. 浙江大学学报. 1994. 第28卷第1期:27-36
    Ma ZG. Rise and Development of Plasma Industry. Science and Technology Review. 1995, 2:14-18
    马振国.等离子体工业的崛起和发展, 科技导报. 1995. 2:14-18
    
    Coleman A J, Saunders J E, Crum L A, and Dyson M. Acoustic cavitation generated by an extracorporeal. shockwave lithotripter Ultrasound Med. Biol. 1987. 13: 69–76
    Gates EM & Bacon J. A note on the determination of cavitation nuclei distributions by holography. J Ship Res 1978.22:29 –31.
    Church CC. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J Acoust Soc Am 1989.86:215–227.
    Church CC & Miller DL. Shock wave lithotripsy produces large cavitation bubbles. Ultrasound Med Biol 1990.16:626–627.
    Ding Z & Gracewski SM. Response of constrained and unconstrained bubbles to lithotripter shock wave pulses. J Acoust Soc Am 1994.96:3636 –3644.
    Litster J D. Stability of lipid bilayers and red blood cell membranes Phys. Lett. 1975 .A 53 : 193–4
    Andriianov IV & Smirnov VP. The enhanced lethality of cells in suspension during simultaneous exposure to pulsed electrical and shock-wave acoustic fields. Izv Akad Nauk Ser Biol 1999 Jul-Aug;(4): 390-5
    Russo P, Mies C, Huryk R, Heston WD, Fair WR. Histopathologic and ultrastructural correlates of tumor growth suppression by high energy shock waves. J Urol 1987 Feb;137(2):338-41
    Laudone VP, Morgan TR, Huryk RF, Heston WD, Fair WR.. Cytotoxicity of high energy shock waves: methodologic considerations. J Urol 1989 Apr;141(4):965-8
    Lee S, Anderson T, Zhang H, Flotte TJ, Doukas AG. Alteration of cell membrane by stress waves in vitro. Ultrasound Med Biol. 1996. 22(9):1285-1293
    Oosterhof GO, Cornel EB, Smits GA, Debruyne FM, and Schalken JA. The influence of high-energy shock waves on the development of metastases. Ultrasound Med Biol 1996.22(3):339-44.
    Kirkali Z, Esen AA, Hayran M, Gencbay A, Gidener S, Guven H, Gure A. The effect of extracorpireal electromagnetic shock waves on the morphology and ciontractility of rabbit ureter. J Urol,1995, 154:1939-1943.
    Tschoep K, Hartmann G, Jox R, Thompson S, Eigler A, Krug A, Erhardt S, Asams G, Endres S, and Delius M. Shock
    
    
    waves: a novel method for cytoplasmic delivery of antisense oligonucleotides.J Mol Med. 2001. Jun. 79(5-6): 306-13.
    Kodama T, Doukas AG & Hamblin MR. Shock wave-mediated molecular delivery into cells. Biochim Biophys Acta. 2002. Jan 30, 1542 (1-3): 186-94.
    Delius M & Adams G. Shock wave permeabilization with ribosome inactivating proteins: a new approach to tumor therapy. Cancer Res 1999 .Oct 15,59 (20):5227-32.
    Cornel EB, Oosterwijk E, van de Streek JD, Grutters G, Debruyne FM, Schalken JA, and Oosterhof GO. High energy shock waves induced increase in the local concentration of systemically given TNF-alpha. J Urol 1994 Dec.152(6 Pt 1):2164-6.
    Haupt G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M. Influence of shock waves on fracture healing. Urology. 1992. 39(6):529-32.
    Augat P, Claes L, and Suger G. In vivo effect of shock-waves on the healing of fractured bone. Clin Biomech (Bristol, Avon) 1995.Oct.10(7): 374-378
    Steinbach P, Hofstadter F, Nicolai H, Rossler W, Wieland W. In vitro investigations on cellular damage induced by high energy shock waves. Ultrasound Med Biol. 1992.18:691– 699.
    Valchanow V.D. and Michailov P. High energy shock waves in the treatment of delayed and nonunion fractures. Int. Orthopaed.1991.15:181-191.
    Haist J., Steeger D., Witzsch U., et al. The extracorporeal shockwave in the treatment of the disturbed union. Int. Conf. Biomed. Eng. 1992.p.222-229。
    Schleberger R. Senge T. Non-invasive treatment of long-bone pseudarthrosis by shock wave (ESWL). ARCH. Orthop. Trauma Surg.1992.111:224-232.
    Wang CJ, Chen HS, Chen CE, et al. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop 2001 Jun; 387:95-101.
    Johannes EJ, Kaulesar Sukul DMSK, Mature E. High energy shock waves for treatment of nonunions: an experiment on dogs. J Surg Res, 1994, 57:246-252.
    Scheberger R, Senge T. Non-invasive treatment of long-bone pseudarthrosis by shock waves. Arch Orthop Trauma Surg, 1992, 111:224-227.
    
    李晓林,余楠生, 杜靖远,等.高能震波对骨痂中骨形成蛋白表达的影响.中华骨科杂志,1999,19:295-298.
    Karpman R R. Magee G.P. Gruen T.W. et al.: Work-in-progress. The lithotripter and its potential use in the revision of total hip orthoplasty. Orthop. Rev. 1987. 16. 38
    Kim J.K. Park J.B. Weinstein J .N. et al. Effect of shock wave treatment on femoral prosthesis and cement removal. Biomed. Mat. Eng. 1994. 4: 451-461.
    Ko JY, Chen HS, Chen LM. Treatment of lateral epicondylitis of the elbow 、with shock waves. Clin Orthop. 2001 Jun; (387): 60-7.
    Chen HS, Chen LM, Huang TW. Treatment of painful heel syndrome with shock waves. Clin Orthop. 2001 Jun ;( 387):41-6.
    Ogden JA, Alvarez R, Levitt R, et al. Shock wave therapy for chronic proximal plantar fasciitis. Clin Orthop. 2001 Jun; 387:47-59.
    Wang CJ, Ko JY, Chen HS. Treatment of calcifying tendinitis of the shoulder with shock wave therapy. Clin Orthop. 2001 Jun; 387:83-9.
    Rompe JD, Zoellner J, Nafe B. Shock wave therapy versus conventional surgery in the treatment of calcifying tendinitis of the shoulder. Clin Orthop. 2001 Jun; 387:72-82.
    Seiji Ohtori, Gen Inoue, Chikato Mannoji, et al. Shock wave application to rat skin induces degeneration and reinnervation of sensory nerve fibres. Neuroscience Letters 315 (2001) 57–60.
    Loew M, Daecke W, Kusnierczak D, et al. Shock-wave therapy is effective for chronic salicfying tendinitis of the shoulder. J Bone Joint Surg 1999; 81B:863—967.
    Markus Maier. Takashi Saisu. et al. Impaired tensile strength after shock-wave application in an animal model of tendon calicification. Ultrasound in Med. & Biol., 2001 Vol. 27, No. 5, pp. 665–671
    Steinberg ME, Hayken GD, Steinberg DR. A quantitative system for staging avascular necrosis. J Bone Joint Surg Br 1995. 77(1): 34-41.
    Ludwig J, Lauber S, Lauber HJ, et al. High-energy shock wave treatment of femoral head necrosis in adults. Clin Orthop.2001. Jun ;( 387):119-26.
    Lee, JC,Young PR. Role of CSB/p38/RK stress response
    
    
    kinase in LPS and cytokine signaling mechanisms. J. Leukocyte Biol. 1996 59, 152-157.
    Han J. Lee J-D, Bibbs L. Ulevitch J. A MAP kinase target by endotoxin and hyperosmotality in mammalian cells. Science 1994, 265:808-810
    Loomis W. H., Namiki S., Ostrom R.S., Insel P. A. and Junger W.G. Hypertonic Stress Increases T Cell Interleukin-2 Expressionthrough a Mechanism That Involves ATP Release,P2 Receptor, and p38 MAPK Activation. J Biol Chem. 2003, 278, 7(14): 4590–4596
    Sawada Y., Nakamura K., Doi K., Takeda K., Tobiume K., Saitoh M., Morita K., Komuro I., De Vos K., Sheetz M. and Ichijo1 H.. Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase. Joural of Cell Science. 2001. 114(6): 1221-1227
    Volonte D, Galbiati F, Pestell RG, Lisanti MP. Cellular Stress Induces the Tyrosine Phosphorylation of Caveolin-1 (Tyr14) via Activation of p38 Mitogen-activated Protein Kinase and c-Src kinase. J Biol Chem. , 2001, 276, 11,( 16): 8094–8103
    Chang, L. and Karin, M. Mammalian MAP kinase signaling cascades. Nature. 2001,410: 37–40
    Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science(1995) 270, 1326–1331
    Galcheva-Gargova, Z. Denoit D,Wu IH,Dacis RJ. An osmosensing signal transduction pathway in mammalian cells. Science (1994) 265, 806–808
    Takeda K, Ichijo H. Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system.Genes Cells. 2002 Nov; 7(11):1099-111.
    Matsuda S., Moriguchi T., Koyasu S., and Nishida E. T Lymphocyte Activation Signals for Interleukin-2 Production Involve Activation of MKK6-p38 and MKK7-SAPK/JNK Signaling Pathways Sensitive to Cyclosporin A. J Biol Chem. , 1998, 273, 20(15): 12378–12382
    Pedersen S, Pedersen SF, Nilius B, Lambert IH, Hoffmann EK. Mechanical stress induces release of ATP from Ehrlich ascites tumor cells. Biochim Biophys Acta. 1999 Jan 12; 1416(1-2):271-84.
    Yegutkin G, Bodin P, Burnstock G. Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5'-nucleotidase along with endogenous ATP from vascular
    
    
    endothelial cells. Br J Pharmacol. 2000 Mar; 129(5):921-6.
    Ostrom RS, Gregorian C, Insel PA. Cellular release of and response to ATP as key determinants of the set-point of signal transduction pathways. J Biol Chem. 2000 Apr 21; 275(16):11735-9.
    Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998 Sep; 50(3):413-92.
    Dubyak GR. Focus on "extracellular ATP signaling and P2X nucleotide receptors in monolayers of primary human vascular endothelial cells". Am J Physiol Cell Physiol. 2002 Feb; 282(2):C242-4.
    Dubyak GR. Purinergic signaling at immunological synapses. J Auton Nerv Syst. 2000 Jul 3; 81(1-3):64-8.
    Yegutkin G., Bodin P., and Burnstock G. Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5'-nucleotidase along with endogenous ATP from vascular endothelial cells. Br J Pharmacol. 2000 Mar; 129(5):921-6.
    Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood. 2001 Feb 1;97(3):587-600.
    Loomis WH, Namiki S, Ostrom RS, Inse PA and Junger WG. Hypertonic Stress Increases T Cell Interleukin-2 Expression through a Mechanism That Involves ATP Release, P2 Receptor, and p38 MAPK Activation. J Biol Chem. 2003. 278(7), 14: 4590–4596
    Greenleaf JE, Jackson CG, Lawless D.CD4+/CD8+ T-lymphocyte ratio: effects of rehydration before exercise in dehydrated men. Med Sci Sports Exerc. 1995 Feb; 27(2):194-9.
    Walther I, Pippia P, Meloni MA, Turrini F, Mannu F, Cogoli A. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 1998 Sep 25;436(1):115-8
    Lorenzi G, Bechler B, Cogoli M, Cogoli A. Gravitional effects on mammalian cells. Physiologist 1988; 31(1 Suppl); S144-7
    Novak I. ATP as a Signaling Molecule: the Exocrine Focus. 2003 News Physiol Sci. 18: 12-17
    Roman RM, Feranchak AP, Davison A,Schwiebert EM and Fitz JG. Evidence for Gd (3+) inhibition of membrane ATP permeability and purinergic signaling. Am J Physiol. 1999 Dec; 277(6 Pt 1):G1222-30.
    
    Schwiebert EM. ATP release mechanisms, ATP receptors and purinergic signalling along the nephron. Clin Exp Pharmacol Physiol. 2001 Apr; 28(4):340-50.
    Machesky LM and Cooper JA. Bare bones of the cytoskeleton. Nature. 1999. 401:542-543
    Andriianov IV & Smirnov VP. The enhanced lethality of cells in suspension during simultaneous exposure to pulse electrical and shock-wave acoustic fields. Izv Akad Nauk Ser Biol 1999 Jul-Aug;(4): 390-5
    Burnstock G, Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol.1985,16: 433-440.
    Abbracchio MP, Burnstock G. Purinoceptors: arethere families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994; 64:445-475.
    Lustig KD, Shiau AK, Brake AJ, Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1993; 90:5113-5117.
    Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, Burnstock G, Barnard EA. Cloning and functional expression of a brain G-proteincoupled ATP receptor. FEBS Lett. 1993; 324: 219-225.
    Brake AJ, Wagenbach MJ, Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature. 1994; 371: 519-523.
    Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G. A new class of ligand-gated ion channels defined by P2X receptor for extracellular ATP. Nature. 1994; 371: 516-519.
    Buell G, Collo G, Rassendren F. P2X receptors: an emerging channel family. Eur J Neurosci. 1996; 8: 2221-2228.
    Soto F, Garcia-Guzman M, Stuhmer W. Cloned ligand-gated channels activated by extracellular ATP (P2X receptors). J Membr Biol. 1997; 160:91-100.
    Inscho E.W. P2 receptors in regulation of renal microvascular function. Am J Physiol Renal Physiol. 2001.280: F927–F944,
    Leipziger J. Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol. 2003 284: F419–F432
    Gregory SH, Kern M. Adenosine and adenine nucleotides
    
    
    are mitogenic for mouse thymocytes. Biochem Biophys Res Commun.1978; 83: 1111-1116.
    Cowen DS, Berger M, Nuttle L, Dubyak GR. Chronic treatment with P2-purinergic receptor agonists induces phenotypic modulation of the HL-60 and U937 human myelogenous leukemia cell lines. J Leukoc Biol. 1991; 50:109-122.
    Jorgensen NR, Geist ST, Civitelli R, Steinberg TH. ATP and gap junction-dependent intercellular calcium signalling in osteoblastic cells. J Cell Biol.1997; 139: 497-506.
    Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F. Purinergic modulation of interleukin-1b release from microglial cells stimulated with bacterial endotoxin. J Exp Med. 1997; 185: 579-582.
    Tonetti M, Sturla L, Giovine M, Benatti U, De Flora A. Extracellular ATP enhances mRNA levels of nitric oxice synthase and TNFa in lipopolysaccharide-treated RAW 264.7 murine macrophages. Biochem Biophys Res Commun. 1995; 214:125-130.
    Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F. Extracellular ATP triggers IL-1b release by activating the purinergic P2Z receptor of human macrophages. J Immunol. 1997; 159: 1451-1458.
    Molloy A, Laochumroonvorapong P, Kaplan G. Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin. J Exp Med. 1994; 180:1499-1509.
    Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS. ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z/P2X7 receptors. Immunity. 1997; 7:433-444.
    Hu Y, Fisette PL, Denlinger LC, Guadarrama AG, Sommer JA, Proctor RA, Bertics PJ. Purinergic receptor modulation of lipopolysaccharide signaling and inducible nitric-oxide synthase expression in Raw 264.7 macrophages. J Biol Chem. 1998; 273:27170-27175.
    Denlinger LC, Fisette PL, Garis KA, Kwon G, Vazquez-Torres A, Simon AD, Nguyen B, Proctor RA, Bertics PJ, Corbett JA. Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J Biol Chem. 1996; 271: 337-342.
    Tonetti M, Sturla L, Bistolfi T, Benatti U, De Flora A.
    
    
    Extracellular ATP potentiates nitric oxide synthase expression induced by lipopolysaccharide in RAW 264.7 murine macrophages. Biochem Biophys Res Commun. 1994; 203:430-435.
    Zimmermann H. Two novel families of ectonucleotidases: molecular structures, catalytic properties and a search for function.Trends Pharmacol Sci. 1999 Jun;20(6):231-6.
    Baricordi OR, Melchiorri L, Adinolfi E, Falzoni S, Chiozzi P, Buell G, Di Virgilio F. Increased proliferation rate of lymphoid cells transfected with the P2X7 ATP receptor. J Biol Chem. 1999; 274:33206-33208.
    Huiskes R. If bone is the answer, then what is the question?J Anat. 2000 Aug;197 ( Pt 2):145-56.
    Lee TC, Taylor D. Bone remodelling: should we cry Wolff? Ir J Med Sci. 1999 Apr-Jun; 168(2):102-5.
    Seeman E. and Delmas PD. Reconstructing the skeleton with intermittent parathyroid hormone. TRENDS in Endocrinology & Metabolism. 2001, September, 12 (7): 281-283
    Pedersen S, Pedersen SF, Nilius B, Lambert IH, Hoffmann EK.Mechanical stress induces release of ATP from Ehrlich ascites tumor cells. Biochim Biophys Acta. 1999 Jan 12; 1416(1-2):271-84.
    Yegutkin G, Bodin P, Burnstock G.Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5'-nucleotidase along with endogenous ATP from vascular endothelial cells. Br J Pharmacol. 2000 Mar; 129(5):921-6.
    Ostrom RS, Gregorian C, Insel PA. Cellular release of and response to ATP as key determinants of the set-point of signal transduction pathways. J Biol Chem. 2000 Apr 21; 275(16):11735-9.
    Bowler, W. B., Dixon, C. J., Halleux, C., Maier, R., Bilbe, G., Fraser, W. D., Gallagher, J. A., and Hipskind, R. A. Signaling in human osteoblasts by extracellular nucleotides: Their weak induction of the c-fos protoncogene via Ca21 mobilization is strongly potentiated by a parathyroid hormone/cAMPdependent protein kinase pathway independently of mitogen-activated protein kinase. J Biol Chem 274:14315–14324; 1999.
    Short, A. D. and Taylor, C. T. Parathyroid hormone controls the size of the intracellular Ca21 stores available to receptors linked to inositol triphosphate formation. J Biol
    
    
    Chem 275:1807–1813; 2000.
    Inscho E.W. P2 receptors in regulation of renal microvascular function. Am J Physiol Renal Physiol. 2001.280: F927–F944
    Leipziger J. Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol. 2003 284: F419–F432
    Inscho E.W. P2 receptors in regulation of renal microvascular function. Am J Physiol Renal Physiol. 2001.280: F927–F944,
    Leipziger J. Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol. 2003 284: F419–F432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700