糯玉米农艺性状航空诱变效应及遗传模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配合力是评价玉米育种材料的重要指标,主要农艺性状的遗传表达特点可为农艺性状的选择提供理论依据。本文以糯玉米自交系S147(CK)及其航空处理诱变系M562、M563、M564、M566、M567、M568、M569为母本,以糯玉米自交系S181(CK)及其航空处理诱变M571、M573、M574、M575、M576作父本,按照NCⅡ不完全双列杂交试验设计,分析航空处理对糯玉米自交系S147、S181农艺性状配合力的诱变效应;采用LSD法,比较诱变系农艺性状的GCA与未处理(对照)GCA的差异显著性。以组合M578(P2)×S147(P1)的P1、P2、F1、B_1、B_2、F_2六世代群体为材料,用植物数量性状主基因+多基因世六代联合分析方法,分析株高、穗位高、雄穗主轴长度、雄穗分枝个数、穗粗五个性状的遗传模型、主基因和多基因遗传效应,估计了相关遗传参数。研究的主要结果如下:
     ①空间诱变可使纯合玉米自交系农艺性状和配合力产生变化,两个糯玉米自交系对航空诱变处理反应有很大的差异。
     ②在父本组中,株高、穗位高、穗长三个性状的GCA方差分析差异显著。采用LSD法多重比较,各个选系的株高的GCA效应与对照S181差异不显著;选系M573、M574的穗位高的GCA与对照差异极显著;有4个诱变系的穗长性状GCA效应与S181差异极显著,其中M571、M573、M574三个诱变系的GCA为正效应,用其作亲本可得到长穗型组合。在母本组中,出苗-抽雄、出苗-吐丝、出苗-成熟、抽雄-吐丝、株高、穗位高、穗长、秃尖、穗行数、行粒数、单穗粒重、百粒重、出籽率13个主要性状的GCA方差分析差异达显著或极显著水平。采用LSD法多重比较,诱变系M562、M563、M564、M566、M567、M568、M569诱变系分别有9个、8个、6个、6个、7个、10个、11个性状的GCA与对照S147的GCA差异显著或极显著。在7个诱变系中,M564、M569的单穗粒重的GCA为正效应,用其作亲本,可获得高产组合。父母本双亲间的SCA,有出苗-成熟、单穗重、单穗粒重三个性状差异达显著水平;出苗-抽雄、出苗-吐丝差异达极显著水平,其余9个性状双亲间SCA差异不显著。
     ③在组合M578×S147中,株高的最优遗传模型为E-1模型,即株高的遗传符合两对加性-显性-上位性主基因+加性-显性多基因混合遗传模型。雄穗主轴长度最优遗传模型为D-2,即符合一对加性主基因+加性-显性多基因遗传模型。穗位高、雄穗分枝个数、穗粗的遗传均符合C-0模型,即符合加性-显性-上位性多基因遗传模型。
     ④株高的主基因遗传率在B_1、B_2、F_2群体中分别为12.07%、39.88%、48.38%,多基因遗传率在B_1、B_2、F_2群体中分别为50.64%、0.00%、15.25%。雄穗主轴长度主基因遗传率在B_1、B_2、F_2群体中分别为0.20%、1.80%、21.40%,多基因遗传率在B_1、B_2、F_2群体中分为43.20%、21.20%、0.00%。穗位高的多基因遗传率在B_1、B_2、F_2群体中分别为31.97%、34.69%、19.80%。雄穗分枝个数的多基因遗传率在B_1、B_2、F_2群体中分别为25.02%、3.08%、3.63%。穗粗的多基因遗传率在B_1、B_2、F_2群体中分别为35.48%、44.47%、42.19%。
     ⑤最后,对航空诱变基础材料的选择、组合农艺性状遗传模型双亲的选择、农艺性状的遗传模型、基因遗传率、分析方法,诱变系的利用进行了探讨。
Combining ability, which is an important index for maize breeding material, as well as characteristic of genetic expression in main agronomic characters, can provide theoretical foundation for selecting the agronomic characters. In this thesis, Fourteen waxy maize inbred lines, which included eight females(S147 together with its mutation lines M562、M563、M564、M566、M567、M568、M569 )and six males(S181 together with its mutation lines M571、M573、M574、M575、M576), were crossed in a North Carolina designⅡ(NCⅡ). Effects of GCA (general combining ability) and SCA (special combining ability) were analyzed and mutation effect on agronomic characters of waxy maize inbred lines S147 and S181 were discussed. And then, the method of least significant difference (LSD) was used to compare difference of combining ability between mutated inbred lines and its CK. What’s more, The six generations (P1, P2, F1, B_1, B_2 and F_2) from cross M578(P2)×S147(P1) were also used in this study. The genetic models of plant height, ear height, tassel length, tassel branch number, and ear diameter were established using series of mixed inheritance models of quantitative traits of major genes plus polygene. Finally, the major genetic effect, polygene effect and inheritance parameters were studied on the basis of such models. And the results indicated that:
     ①Space radiation can led to changes on main agronomic characters and combining ability of offspring lines. Responses to space mutation between waxy maize inbred lines S181and S147 were very significant difference.
     ②Analysis showed that the GCA variance of plant height, ear height and ear length in male parents were notable. By means of LSD analysis, the differences of GCA effects of plant height between S181 and its five mutation lines was not reach significant level. The differences of GCA effects of ear height of M573and M574 were reach significant level. As for ear length , four mutation lines had notable difference compared to S181, there into, M571、M573、M574 had positive GCA effect. So long ear hybrids could probably be screened from crosses combined by those.
     Similarly, Analysis showed that the GCA variance of emergence-teaseling, emergence-silking, emergence-maturity, teaseling- silking, plant height, ear height , ear length , bald top length of ear, ear row, number of kernel per row, grain weight per ear, 100-grain weight, ratio of kernel dry weight per ear in female parents were prominence. By using LSD method, nine characters were discovered notable difference between S147 and its mutated line M562, As for M563, M564, M566, M567, M568 and M569; eight, six, six, seven, ten, eleven characters were detected respectively. Furthermore, the positive GCA effects for grain weight per ear in maize mutation lines M564 and M569 indicated that high yield hybrids can be obtained by using them as parents.
     Results also revealed significant or highly significant differences in SCA variance for emergence-teaseling, emergence-silking, emergence-maturity, weight per ear, and grain weight per ear among male and female parents.
     ③The optimum genetic model of plant height was E-1,the inheritance were controlled by two pairs additive-dominance-epitasis major gene plus additive-dominance polygene. The optimum genetic model of tassel length was D-2,the inheritance was controlled by one pair additive major gene plus additive-dominance polygene. The optimum genetic models of ear height, tassel branch number and ear diameter were C-0, the inheritance were controlled by additive-dominance-epitasis polygene.
     ④The major genetic heritability of plant height in B_1, B_2 and F_2 were12.07%,39.88% and48.38% respectively,and the polygenetic heritability in B_1,B_2 and F_2 were 50.64%,0.00%and 15.24% respectively. The major genetic heritability of tassel length in B_1, B_2 and F_2 were0.20%,1.80% and21.40% respectively,and the polygenetic heritability in B_1,B_2 and F_2 were 43.20%,21.20%and 0.00% respectively; The polygenetic heritability of ear height in B_1, B_2 and F_2 were 31.97 %, 34.69% and19.80% respectively. The polygenetic heritability of tassel branch number in B_1, B_2 and F_2 were 25.02%, 3.08% and3.63% respectively. The polygenetic heritability of ear diameter in B_1, B_2 and F_2 were 35.48%, 44.47% and42.19% respectively.
     ⑤At last, some problems which included maize materials for space radiation, parents used for genetic models analysis, heritability of agronomic characters, analysis means of major gene plus polygene inheritance model were discussed, and utilization mutation lines were also mentioned.
引文
[1]李玉玲,余永亮,刘艳霞等.两份太空诱变玉米雄性不育突变体的遗传研究[J].遗传,2007,29(6):738~744.
    [2]赵林姝,刘录祥.俄罗斯空间植物学研究进展[J].核农学报,1998,12(4):252~256.
    [3]刘录祥.空间技术育种现状与展望[J].国际太空,2001年7月号:52~53.
    [4]谢华安,王乌齐,陈炳焕等.超级杂交稻恢复系“航1号”的选育与应用[J].中国农业科学,1998,31(6):1~5.
    [5]张国民,孙野青,李贤明等.航天诱变水稻对叶瘟和稻瘟的抗性鉴定[J].植物保护,2003,29(2):36~39.
    [6]陈忠正,刘向东,陈志强等.水稻空间诱变雄性不育新种质的细胞学研究[J].中国水稻科学,2002,16(3):199~205.
    [7]魏力辛,辛平,罗成飞等.神州三号飞船搭载水稻种子M1代变化的分析[J].哈尔宾工业大学学报,2003,35(6):641~643.
    [8]易继财,庄楚雄,姚涓等.空间搭载诱导水稻种子突变的分子标记多太性分析[J].生物物理学报,2002,18(4):478~483.
    [9]俆建龙,李春寿,王俊敏等.空间环境诱发水稻多蘖矮杆突变体的筛选与鉴定[J].核农学报,2003,17(2):90~94.
    [10]徐建龙,王俊敏,骆荣挺等.空间诱变水稻大粒型突变体的遗传育种研究[J].遗传,2002,24(4):431~433.
    [11]邢金鹏,陈受宜,朱立煌等.水稻种子经卫星搭载后大粒型突变体的分子生物学分析[J].航天医学与医学工程,1995,8(2):109~113.
    [12]周峰,易继财,张群宇等.水稻空间诱变后代的微卫星多态性分析[J].华南农业大学学报,2001,22(4):55~57.
    [13]龚振平,刘自华,刘根齐等.高粱空间诱变效应研究[J].中国农学通报,2003.19(6):16~19,24.
    [14]刘自华,刘根齐,龚振平.高粱空间诱变效应研究初探[J].北京农学院学报,1999,14(1):15~18.
    [15]孙野青,李玉芬,陈岩等.空间环境对青椒和番茄遗传诱变研究[J].植物研究,1997.17(2):184~189.
    [16]朱方红,喻小洪,徐小军.西甜瓜航天育种研究初报[J].江西园艺,2000,5:36~37.
    [17]喻树迅,范术丽,原日红等.棉花航天诱变试验初报[J].中国棉花,1998,25(11):11~13.
    [18]谢克强,杨良波,张香莲等.白莲二次搭载的选育研究[J].核农学报,2004,18(4):300~302.
    [19]翁德宝,汪海峰.高空环境对鸡冠花黄酮类化合物合成的诱变效应[J].中国医学生物技术应用杂志,2003,1:26~31.
    [20]贾淑芹.大豆近地空间诱变育种的M1M2代研究通报[J].大豆通报,1994,3:15.
    [21]邱芳,李金国,翁曼丽等.空间诱变绿豆长荚型突变系的分子生物学分析[J].中国农业科学,1998,31(6):1~5.
    [22]刘中申,都晓伟,丁桂清等.中药黄芩航天育种的初步实验研究[J].中医药信息.1998,第1期:22~24.
    [23]彭云承,马学明.几个常用玉米自交系主要数量性状的配合力分析[J].杂粮作物,2001,21(4):1~4.
    [24]毛金雄,何川,刘代惠等.几个矮秆玉米自交系的配合力分析[J].杂粮作物,2000,20(4):11~13.
    [25]王大春,张宝石,薛玉梅.11个玉米自交系主要性状的配合力分析[J].玉米科学,2006,14(4):64~65.
    [26]任洪,郑常祥,郭大维.11个常用玉米自交系主要数量性状配合力分析[J].贵州农业科学,1993,(3):21~26.
    [27]孙海艳,蔡一林,王国强等.10个玉米自交系穗部性状的配合力分析[J].玉米科学,2006,14(4):61~63.
    [28]王元东,陈绍江,段民孝等.玉米P群自交系与国内传统骨干系的杂种优势表现及其配合力分析[J].玉米科学,2006,14(4):21~25.
    [29]薛林,印志同,胡加如等.玉米自交系414配合力及杂优模式分析[J].江苏农业学报,2006,22(2):184~185.
    [30]陈范骏,米国华,张福锁.低磷胁迫下玉米自交系配合力分析[J].玉米科学,2006,14(3):74~77.
    [31]柯永培,石海春,牛应泽等.玉米营养品质性状的遗传与配合力分析[J].四川大学学报,2006,43(5):1146~1153.
    [32]祁新,赵颖君.玉米主要品质性状的配合力分析[J].玉米科学,2001,9(1):26~30.
    [33]刘祥久,姜敏,李哲等.玉米品质性状配合力研究[J].杂粮作物, 2004, 24 (5):258~260.
    [34]赖仲铭,杨克诚.玉米自交系籽粒蛋白质含量的配合力及遗传力的研究[J].四川作物, 1985,(1):30~34.
    [35]吴健聪,陈洪梅,张培高等.优质蛋白玉米自交系与普通玉米自交系产量配合力分析及其遗传关系研究[J].西南农业学报,2006,(3):351~354.
    [36]张洋,姜海鹰,刘明等.高油玉米自交系产量性状的配合力及聚类分析[J].玉米科学,2006,14(3):25~29.
    [37]张曦,张宝石,张磊.3个热带、亚热带玉米群体配合力效应研究[J].玉米科学,2006,14(3):56~59.
    [38] Mather,K,&J,L,Jink.Biometrical Genetics(3nd,ed)[M]. Chapman and hall lt.1982.
    [39] Mather,K,&J,L,Jink.Introduction to Biometrical Genetics[M]. Chapman and hall ltd.1997.
    [40]高之仁.数量遗传学[M].成都:四川大学出版社,1986.
    [41]荣廷昭,潘光堂,黄玉碧.数量遗传学[M].北京:中国科学技术出版社,2003.
    [42]莫惠栋,胡雪华,骆亦其.玉米数量遗传分析I我国玉米自交系的遗传潜势及其利用[J].遗传学报,1984,11(4):270~275.
    [43]许自成.玉米数量性状遗传模型和基因效因的研究Ⅱ.基因效应及其与环境互作分析[J].河南农业大学学报,1989,23(4):464~475.
    [44]吴子恺.玉米10个数量性状的基因效应分析[J].玉米科学,1995,6:11~17.
    [45]杨伟光,苏颖,张建华等.玉米株高和穗位遗传模型测验[J].吉林农业大学学报, 2000,22(4):28~31,44.
    [46]霍仕平,晏庆九,许明陆等.玉米主要株型数量性状的基因效应分析[J].玉米科学, 2001,9(1):12~15.
    [47]王秀全,陈光明,刘昌明等.玉米株型育种亲本选配的遗传规律研究[J].西南农业学报,2000,13(1):50~54.
    [48]王克胜,孔繁玲,杜曼·依马买地.玉米株型性状的遗传表达和自交系与杂交种的聚类分析[J].北京农业大学学报,1993,19(3):19~27.
    [49]尹燕枰,童玉森.玉米主要性状的基因效应与其杂种优势关系的研究[J].山东农业大学学报,1987,18(1):19~32.
    [50]杨安贵.玉米三个株型性状的基因效应[J].西南农学院学报,1983,(4):1~9.
    [51]张晓峰,金益,张永林等.东农-2玉米改良群体的遗传结构分析[J].中国农业科学,2000,33(增刊):105~112.
    [52]金益.玉米株形和穗部性状的遗传规律及其选择方案[J].沈阳农学院学报,1985,16(4):25~36.
    [53]赵延明,王玲,苏维洲等.玉米株型性状的遗传参数研究[J].杂粮作物,2000,20(2):1~5.
    [54]郭平仲,C.O.Gardner, M.Obaidi.玉米单株穗数及其它数量性状的基因效应与遗传变异分析[J].遗传学报,1986,13(1):35~42.
    [55]赖仲铭,杨克诚,雷本鸣等.玉米几个自交系株型数量性状遗传的研究[J].中国农业科学,1981,(4):28~36.
    [56] Gamble EE.Gene effect in corn (zea mays L.)Ⅱ.Relative importance of gene effects for plant height and certain component attributes of yield[J]. Canadian Journal of Plant Science,1962,42:349~358.
    [57] Elston RC,and John Steward.The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data[J].Genetics,1973,73:695~711.
    [58] Gorsline G.W..Phenotypic epistasis for ten quantitative characters in maize[J]. Crop Science,1967,1:55~58.
    [59] Hallauer Arand Miranda JB.Quantitative genetics in maize breeding[M]. Ames:Iowa State University Press,1981.
    [60] Ruth PKOESTER,Paul H.Sisco, and Charles W. Stuber.Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize[J].Crop Science,1993,33:1209~1216.
    [61] Terry G.Berke and Torbert R.Rocheford.Quantitative trait loci for flowering.plant and ear height,and kernel traits in maize[J]. Crop Science,1995,35:1542~1549.
    [62]黄开健,杨华栓,吴永升等.12个玉米自交系主要农艺性状的配合力分析[J].玉米科学,2002,2(1):19~21.
    [63]马玉波,马玉凤,修维忠等.高赖氨酸玉米株高性状的遗传分析[J].吉林农业科学,1996,(4):27~29.
    [64]张彪,陈宛秋,康继伟等.玉米种质资源的评价及利用研究Ⅱ.玉米自交系株型性状配合力分析及其应用[J].四川农业大学学报,1994,12(3):438~442.
    [65]张彪,张启行,兰发盛.玉米几个自交系组配高产紧湊型杂交种的研究[J].玉米科学,2000,8(3):33~36.
    [66] Bauman LF.Evidence of non-allelic gene interaction in determining yield,ear height, and kernel row number in corn[J].Agronomy Journal,1959,51:531~534.
    [67] Thompson,DL,Hanson WD and Shaw AW.Ear height inheritance estimates and linkage bias among generartion means of corn[J]. Crop Science,1971,11:328~331.
    [68] Harville BG,Josephson LM,,and Kincer HC.Diallel analysis of ear height and associated characters in corn[J]. Crop Science,1978,18:273~275.
    [69]覃兰秋,程伟东,文仁来等.13个糯玉米自交系主要性状的遗传规律及利用分析[J].广西农业科学,2006,(2):101~103.
    [70]刘鹏,任英,王洪秋.玉米几个主要农艺性状的遗传研究[J].吉林农业科学,2004,(6):3~8.
    [71]宋锡章,张宝石.春玉米主要穗部性状配合力及遗传参数分析[J].中国农学通报,2007,(6):245~249.
    [72]陈永欣,翟广谦,李彦良等.糯玉米主要性状的遗传规律研究[J].玉米科学,2002,(1):15~17.
    [73]伍少云,孙荣,奉有壁等.云南地方糯玉米自交系产量性状的遗传效应分析[J].玉米科学,2007,(2):39~43,48.
    [74]韩立军,杨伟光,王奇.玉米穗粗的遗传研究[J].吉林农业大学学报,2001,(1):12~15.
    [75]李开忠,李盛旻.玉米穗部性状的遗传性研究[J].玉米科学,2006,(3):13~16.
    [76]陈岭,崔绍平,孙耀邦.玉米穗部性状的基因效应分析[J].华北农学报,1996,(2):28~32.
    [77]张向前,陈彦惠,吴连成等.玉米温热杂交种穗部性状基因效应分析[J].河南农业大学学报,2004,(4):365~369.
    [78]李继竹,王爽,郭宝贵等.玉米穗粒性状的遗传性研究[J].吉林农业大学学报,2004,(5):494~498.
    [79]霍仕平.玉米雄穗的遗传和相关性研究[J].作物学报,1993,19(6):515~519.
    [80] Mock JJ and Schuetz SH.Inheritance of tassel branch number in maize[J].Crop Science,1974,14:885~888.
    [81]朱立宏.主要农作物抗病性遗传研究进展[M].南京:江苏科学技术出版社,1990.
    [82] Simmonds N W.Principlas of Crop Improvement[M].longman Inc,1979.
    [83]高明尉.野败型杂交籼稻基因的初步分析[J].遗传学报,1991,8(1):66~74.
    [84]周天理,沈锦华,叶复初.野败型杂交籼稻基因的育性基因分析[J].作物学报,1983,9(4):241~247.
    [85]莫惠栋.谷物作物品种性状遗传研究进展[J].南京:江苏科学技术出版社,1990.
    [86] KHush G S,&I.Kumar.genet[M].1986,Ⅰ65(1&2):1~11
    [87] Vasalsk,et al.In Improvemnet of Quality of Trait of maize for Grain and Oliage Use[M].Martinus Nijhoff Publisher. The Netherlands.1980:37~71.
    [88]莫惠栋.质量一数量性状的遗传分析I [J].作物学报,1993,9(1):1~6.
    [89]莫惠栋.质量一数量性状的遗传分析II [J].作物学报,1993,9(3):193~200.
    [90]盖钧镒,管荣展,王健康.植物数量遗性状QTL检测的遗传试验方法[J].世界科技研究进展,1999,21(1):34~40
    [91]盖钧镒,王健康.利用回交世代或F2:3家世鉴定数量性状主基因+多基因混合遗传模型[J].作物学报,1998,24(4):402~409.
    [92]王健康,盖钧镒.混合模型的理论及应用[J].生物数学报,1995,10(4):87~92.
    [93]章元明,盖钧镒,王健康.利用回交B1和B2及F2群体鉴定数量性状两对主基因+多基因混合遗传模型[J].生物数学报,2000,15(3):358~366.
    [94]邓武明.玉米株型性状基因效应研究[D].四川雅安:四川农业大学硕士论文,2001.
    [95]赵刚,吴子恺,王兵伟.微胚乳超高油玉米株高和穗位高的主基因+多基因遗传模型.安徽农业科学[J].2007,35(17): 5096~5098, 5134.
    [96]吴建宇,陈颜惠,席章营等.玉米雄穗性状主基因-多基因遗传的初步研究[J].河南农业大学学报,2000,34(2):107~108,113.
    [97]向道权,黄烈健,曹永国.玉米产量性状主基因-多基因遗传效应的初步研究[J].华北学报,2001,16 (3) :1~5.
    [98]谭登峰.玉米穗粒腐病抗性遗传分析[D].四川雅安:四川农业大学硕士论文,2005.
    [99]包和平,王晓丽,李春成.玉米抗螟性主基因—多基因混合遗传分析[J].吉林农业大学学报,2007,29(3):253~255.
    [100]樊庆琦,杨克诚,乔善宝.普通玉米3个籽粒性状的遗传分析[J],西南农业学报, 2005 ,18(4):378~381.
    [101]兰海,高世斌,樊庆琦等.玉米种子休眠性的数量遗传分析作[J].作物学报,2006,32(10): 1586~1588.
    [102]兰海,余月,王凤格等.玉米种子休眠性数量遗传体系的判别玉米科学[J].2007, 15(2):5~8.
    [103]宋芸.玉米幼胚培养主要性状基因效应分析[D].四川雅安:四川农业大学,2004.
    [104]丘运兰,何远康,梅曼彤等.太空飞行对玉米种子的生物学效应[J].华南农业大学学报,1994,15(2):100~105.
    [105]荣廷昭,潘光堂.玉米太空处理纯系材料田间表型的观察和同工酶分析[J].空间科学学报,1996,16卷增刊:156.
    [106]曹墨菊,荣廷昭,潘光堂.空间条件对玉米主要农艺性状的影响[J].中国农学通报, 2000,16(2):14~16.
    [107]李社荣,刘雅楠,刘敏等.玉米空间诱变效应及其应用的研究Ⅰ.空间条件对玉米叶片超微结构的影响[J].核农学报,1998,12(5):274~280.
    [108] LI Sh-R, LIU M,WANG Y-X,ect. Influence of Space Conditions on Photosynthetic Pigment Contents and Chloroplast Ultra structure of Maize Leaves[J].Space Medicine & Medical Engineering,1998.11(6):396~400.
    [109]李社荣,马惠平,谷宏志等.返回式卫星搭载后玉米叶绿体色素变化的研究[J].核农学报,2001,15 (2) :75~80.
    [110]曾孟潜,曾智,吉海莲.空间特殊环境诱变致突变体的分析[J].中国空间科学技术,2003,第6期:64~68.
    [111]李玉玲,牛素贞,余永亮等.空间条件对玉米自交系主要农艺性状的影响[J].中国农学通报,2005,21(5):158~161.
    [112]曹墨菊,荣廷昭.空间条件对玉米自交系S37的诱变效应[J].中国农学通报,2001,17(1):1~3.
    [113]曹墨菊,荣廷昭.玉米太空处理后代基因雄性不育株与可育株的比较[J].四川大学学报(自然科学版),2000,37卷增刊:49~55.
    [114]曹墨菊,黄文超,潘光堂等.首例航天诱变玉米细胞核雄性不育株与可育株的株高生长分析[J].核农学报.2004,18(4):396~400.
    [115]刘福霞,曹墨菊,荣廷昭等.太空诱变玉米细胞核雄性不育基因与RAPD标记的连锁分析[J].四川农业大学学报,2005,23(1):19~23.
    [116]刘福霞,曹墨菊,荣廷昭等.用微卫星标记定位太空诱变玉米核不育基因[J].遗传学报, 2005,32 (7): 753~757.
    [117]孙祎振,张培忠,刘玉芬.关于糯玉米育种目标和策略的思考[J].中国农学通报,2004,20(5):93~95.
    [118]谢孝颐,蔡志飞,印志同等.糯玉米育种概论[J].玉米科学,2003(专刊):58-67.
    [119]谢立中,胡国宏,冯家中.试论糯玉米新的育种目标及发展战略[J].吉林农业科学,2007,32(3) :23-25, 31.
    [120]彭泽斌,田志国.我国糯玉米产业现状与发展战略[J].玉米科学,2004,12(3):116-118.
    [121]张金渝,张建华,杨晓洪等.用SSR标记划分云南糯玉米地方品种资源遗传类群的研究[J].玉米科学,2007,15(1):53~58.
    [122]史振声.玉米特异性种质资源的创新与利用[J].种子,2004,23(5):41-42.
    [123]董海合,李凤华,杨兆顺等.糯质玉米种质资源的种质类群划分[J].天津农业科学.,2005,11(1):19-21.
    [124]张胜恒,蔡成雄,杨华等.糯玉米育种研究成效及设想[J].南方农业,2007,1(3):63-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700