铁矿接尘工人尘肺发病及死因的队列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尘肺是由于长期接触生产性粉尘引起的以肺组织纤维化为主要病理特征的疾病,是我国以及很多其他发展中国家发病最多、危害最严重的职业病。卫生部发布的年度职业病报告显示,2010年我国报告新发职业病27240例,其中尘肺病23812例,占总数的87.42%。2009年和2010年,我国报告的新发尘肺病例分别比前一年上升了33.85%和64.28%,并且群体性病例报告不断出现,严重影响社会和谐和经济的可持续发展,因此,防治尘肺是我国职业病防治的重中之重。
     生产性粉尘存在于很多行业,如矿山开采,公路桥梁建设、陶瓷生产等。其中矿山开采是生产性粉尘危害最严重的行业之一,在生产过程中的诸多环节如风钻、爆破、采矿、破碎、运输等产生的生产性粉尘浓度都很高。矿工长期吸入生产性粉尘可以引起肺泡炎症,肺间质增生,胶原沉积,最终发展为以纤维化为主要病理表现的尘肺病。
     既往研究显示,在累积粉尘暴露量和粉尘中游离二氧化硅含量接近的情况下,不同工人的尘肺发病情况不尽相同,提示尘肺的发生不仅与接触生产性粉尘有关,还受到其他因素如吸烟、患其他呼吸系统疾病、遗传易感性等的影响。
     本课题组前期研究时,选择湖北某大型国有铁矿1960年1月1日到1974年12月31日之间登记在册,并且在该铁矿工作过一年以上的所有工人建立了研究队列。1986年以前为回顾性资料收集,1986年以后为前瞻性随访,本研究在前期研究的基础上继续随访队列人群到2011年底。
     本研究目的是分析该铁矿尘肺发病规律及其影响因素,以期为铁矿及类似行业尘肺防治工作提供参考依据。同时,收集了死亡队列成员的死亡相关信息,分析生产性粉尘接触对从业工人疾病死亡率的影响,为促进工人健康,减少死亡提供指导。本研究共包括三部分:
     第一部分铁矿接尘工人尘肺发病规律及其影响因素研究
     在前期研究的基础上,本研究随访铁矿队列人群至2011年底,完成了95.93%的队列成员的终身职业史随访。尘肺病例均由具有资质的职业病诊断机构进行确诊。同时,通过铁矿历年各工作岗位粉尘浓度监测资料建立了工种-年代-总粉尘浓度矩阵,结合个人的职业史计算每个队列成员的累积粉尘接触量(cumulative dust exposure,CDE),分析铁矿接尘工人尘肺的发病规律和影响因素。
     本研究队列共7666人,男性6543人,女性1123人,到2011年底,共随访332609.88人年。其中接尘工人3658人,共随访150216.02人年,诊断尘肺328例,人年发病率0.22%。78.05%的尘肺发病年龄在40-60岁之间。
     50年代建矿之初主要接尘工作点的平均总粉尘浓度超过11mg/m3,合格率只有33%左右。随着生产工艺的改进和防尘降尘措施的采用,铁矿的总粉尘浓度迅速下降,2000年以来平均1.92 mg/m3(1.54 mg/m3-2.47 mg/m3),合格率达到90%以上。不同年代开始接尘的工人接尘量和尘肺发病有显著差异。1960年之前开始接尘的1818名工人平均累积接尘量为95.41±56.68 mg/m3-y,其中有285人被诊断为尘肺,占该铁矿诊断尘肺病例总数的86.89%;1970年之后开始接尘的865名工人的平均累积接尘量为45.51±22.84 mg/m3-y,有11人被诊断为尘肺。该铁矿尘肺的平均潜伏期为22.68年(6.92年-50.92年),其中71.34%的病例在10-30年之间。
     尘肺的发病危险性随着接尘量的增大而升高,呈现剂量反应关系,按累积接尘量将接尘工人分为高接尘组(CDE≥100 mg/m3-y)、中接尘组(50mg/m3-y≤CDE<100mg/m3-y)和低接尘组(CDE<50 mg/m3-y)后,高、中、低接尘组的尘肺累积发病率分别为22.26%、7.32%和2.92%。调整性别、吸烟、患肺结核等因素之后,高、中接尘组相对于低接尘组的危险度分别为4.83(95%CI:3.97-7.76)和2.18(95%CI:1.36-3.39)。
     校正接尘量、性别等因素后,接尘工人中吸烟者尘肺发病危险度是不吸烟者的1.74倍(p<0.01),患有结核的接尘工人尘肺发病危险度是未患结核者的12.78倍(p<0.01)。
     本部分研究结果表明,尘肺的发病危险随着累积接尘量的增加而升高,吸烟和患肺结核等也会增加尘肺发病危险度。
     第二部分铁矿尘肺发病与遗传易感性的关联
     研究显示,接尘情况类似的工人,尘肺发病存在很大差异,说明尘肺发病可能受到遗传易感性的影响。矽尘进入机体后被肺泡巨噬细胞识别和吞噬,引起活性氧(Reactive oxygen species, ROS),自由基的产生和释放,溶酶体裂解,促进Nalp3炎性体的形成和成熟,从而促进细胞凋亡蛋白酶1 (Caspase-1)的活化,活化的Caspase-1可以刺激前炎性因子如白细胞介素(interleukin, IL)-1β等前体的分化成熟,从而促进纤维化的发生发展。
     研究对象包括铁矿的182名尘肺病例、214名非尘肺接尘工人和180名不接尘工人。由经过培训的调查人员对研究对象进行问卷调查,并在空腹时采集外周静脉血5m1,肝素抗凝,用于提取基因组DNA。采用TaqMan技术测定在生产性粉尘的免疫识别和诱发炎性反应中具有重要作用的Nalp3-Caspase-1-IL-1β通路上选定的五个SNP位点的基因型,采用Logistic多元回归分析基因型与铁矿尘肺发病之间的关联。本研究得到同济医学院伦理道德委员会批准。
     调整出生年月、性别、吸烟和接尘情况等因素后,Nalp3基因SNP位点rs34298345G/-型接尘工人相对于G/G型工人的尘肺发病危险度是2.96(95%CI:1.39-6.28);Caspase-1基因SNP位点rs1042743 G/A型接尘工人相对于G/G型工人的尘肺发病危险度是3.61(95%CI:1.60-8.13)。Nalp3基因SNP位点rs1539019以及IL-1β基因SNP位点rs1143627和rs1143634突变频率与尘肺发病危险呈现负相关趋势,但差异没有统计学意义(p>0.05)。
     本部分研究表明rs34298345和rs1042743位点的突变型可能增加尘肺发病危险性,应该加强对这类工人的健康监护,减少尘肺发生。
     第三部分铁矿接尘工人死因分析
     本课题组对铁矿接尘工人队列进行了长达43.07年的随访,通过职工医院病历等收集了队列中死者的详细死亡资料,分析接尘对接尘工人死因的影响。
     根据累积粉尘接触量将接尘工人分成高、中、低接尘组,通过计算相对危险度(relative risk, RR)比较不同接尘量工人死因的差异,同时以全国城市居民年龄别疾病别死亡率为参考,计算主要疾病的标化死亡比(standardized mortality rates, SMRs)及其95%可信区间。
     铁矿共有接尘工人3658人,共随访150216.02人年,死亡1581人,累积死亡率43.22%,人年死亡率为1052.48/10万人年。铁矿接尘工人的前6位主要死因依次为恶性肿瘤、呼吸系统疾病、心血管疾病、脑血管疾病、意外事故和消化系统疾病。
     高、中、低接尘组的全死因累积死亡率依次为57.12%、43.92%和33.97%。调整性别,开始工作年龄,吸烟情况等因素后,高接尘组和中接尘组相对于低接尘组的死亡危险度分别为2.07(95%CI:1.69-2.55)和1.32(95%CI:1.11-1.56)。全死因、恶性肿瘤及其中的肺癌、心血管疾病、脑血管疾病、呼吸系统疾病及其中的COPD和尘肺的死亡率均随着接尘量的增加而升高,呈现剂量反应关系。
     诊断的328名尘肺病人中有248人死亡,累积死亡率75.61%,明显高于非尘肺接尘工人的40.03%。尘肺病人的肺癌、呼吸系统疾病和心血管疾病的死亡率分别为非尘肺接尘工人的2.01、4.81和1.49倍,差异有统计学意义(p<0.05)。
     与同期全国城市居民的平均水平相比,铁矿接尘工人死亡率升高的有全死因、肺癌、心血管疾病、脑血管疾病、呼吸系统疾病、尘肺和意外事故。
     本部分研究显示铁矿接尘工人的死亡率高于全国城市居民的平均水平,并且与接尘呈现剂量-反应关系。尘肺病人的死亡率高于非尘肺接尘工人。
     综上所述,铁矿尘肺的发病率随着接尘量的增加而升高,同时也受到吸烟、肺结核、基因多态性等的影响。加强对生产性粉尘的控制,不仅可以减少尘肺的发生,也可以降低与粉尘接触相关的疾病死亡率。
Pneumoconiosis is a fibrotic disease of lungs caused by the inhalation and deposition of occupational dust for long time. It is the most serious occupational disease in China and many other developing countries. Chinese national annual occupational disease reports which are issued by the Ministry of Health showed that, there were 27240 new occupational disease cases reported in China in 2010, including 23812 new pneumoconiosis cases, which account for 87.42% of total new occupational disease, In China, the number of new pneumoconiosis cases was reported to be increased rapidly in the past several years. It is increased 33.85% and 64.28% respectively in 2009 and 2010 compared with previous year. And group pneumoconiosis cases were reported frequently in recent years. It influent the building of harmonious society and sustainable development of economic. Therefore, pneumoconiosis prevention is very important in China.
     Exposure to occupational dust occurs in a variety of industries, such as metal mining, constructing of highway and bridge, ceramics making. Metal mining of is one of industries which have high concentration of occupational dust in workplaces. A lot of job in the process of mining can produce occupational dust, such as drilling, mining, crushing, blasting, transporting. The workers in mine industry, who have long-term exposure to occupational dust can occur inflammation in alveolar, and sustained inflammation will cause pulmonary interstitial hyperplasia and collagen deposition, and finally developed into fibrosis, which is the main pathological features of pneumoconiosis.
     Many previous studies have shown that the incidence of pneumoconiosis varied among individuals while have similar cumulative dust exposure and free silica content in dust. Researches have suggested that the development of pneumoconiosis not only affected by dust exposure, but also by other factors such as smoking status, combining other respiratory diseases, and genetic susceptibility.
     In the preliminary study, a cohort of silica-exposed workers was established in a large state-owned iron mine located in Hubei province. The cohort included all workers registered and worked at least one year between January 1,1960 and December 31,1974 in the iron mine. Retrospective data collection before 1986 and prospectively followed up after 1986. In this study, we followed up to December 31,2011 on the basis of preliminary study.
     The objects of this study were to analyze the characteristic and influencing factors of pneumoconiosis in iron mine, and to provide reference to the prevention and treatment of pneumoconiosis in iron mine or similar industries. At the same time, in order to promote workers'health and reduce death, detailed information about deaths was collected to analyze the relation between occupational dust exposure and cause-specific mortalities in workers. This study includes three parts:
     Part I The characteristics and influencing factors of pneumoconiosis among dust exposure workers in iron mine
     On the basis of preliminary studies, we followed up the subjects to December 31,2011, and completed lifelong occupational history for 95.93 %of the subjects in this study. All pneumoconiosis cases were diagnosed by qualified occupational disease diagnosis group. Meanwhile, we established the job-year-total dust concentration matrix using the monitoring data of dust concentration in every job over years, and calculated cumulative dust exposure (CDE) for each worker. The characteristics and influencing factors of pneumoconiosis in iron mine were analyzed.
     There are 7666 subjects in the cohort, including 6453 men and 1123 women, and 332,609.88 person-years were followed up till December 31,2011. There were 3658 workers have been exposed to occupational dust in workplace in this study, and followed up 150,216.02 person-years in total. A total of 328 pneumoconiosis cases were diagnosed during the period of follow up. The cumulative incidence of pneumoconiosis was 8.97% and morbidity was 0.22%. Among the pneumoconiosis cases in the iron mine,78.05% cases were diagnosed between 40 to 60 years old.
     The total dust concentration in the iron mine decreased gradually. In the 1950s, when the iron mine just rebuilt, the average total dust concentration was higher than llmg/m3 and only 33% monitor point did not exceed the national occupational standard. With the improvement of production process and the adoption of more dust controlling measures, the total dust concentration decreased dramatically. From 2000 to 2011, the average total dust concentration was 1.92 mg/m3 (1.54 mg/m3~2.47 mg/m3) and dust concentration of more than 90% monitor points were lower than the national occupational standard. There had significant difference in cumulative dust exposure and incidence of pneumoconiosis among workers began to dust exposure at different era. The average cumulative dust exposure was 95.41±56.68 mg/m3-y for 1818 workers who started dust exposure before 1960. There were 285 workers were diagnosed with pneumoconiosis in those people, accounting for 86.89% of the total pneumoconiosis cases. While the average cumulative dust exposure was 45.51±22.84 mg/m3-y for 865 workers who started dust exposure after 1970. There were only 11 workers were diagnosed with pneumoconiosis in those people. The average latency of all pneumoconiosis cases was 22.68 years (6.92years-50.92years) in the iron mine, and the latencies of 71.34% cases were between 10 to 30 years.
     The incidence of pneumoconiosis in iron miners increased with cumulative dust exposure, and there was a dose-response relationship. When classified dust exposure workers into three group, high dust exposure group (CDE≥100 mg/m3-y), median dust exposure group (50 mg/m3-y≤CDE≤100 mg/m3-y) and low dust exposure group (CDE<50 mg/m3-y), the cumulative morbidities of pneumoconiosis were 22.26%,7.32% and 2.92% respectively. After adjusted for gender, smoking status and the prevalence of tuberculosis, the relative risk of pneumoconiosis for workers in high dust exposure group and median dust exposure group were 4.83 (95% CI:3.97-7.76) and 2.18 (95%CI: 1.36-3.39) respectively when compared with workers in low dust exposure group.
     The results showed that the relative risk of pneumoconiosis in smokers was 1.74 when compared with non-smokers in this study (p<0.01), and the risk of pneumoconiosis in dust-exposed workers with tuberculosis was 12.78 time higher than those without tuberculosis (p<0.01) after adjusted for other factors.
     In this part, we found that the incidence of pneumoconiosis increased with cumulative dust exposure in iron mine, and some other factors such as smoking and tuberculosis could increase the risk of pneumoconiosis.
     PartⅡAssociation between the risk of pneumoconiosis and genetic susceptibility
     Some studies have shown that the incidence of pneumoconiosis varied greatly among workers have similar cumulative dust exposure, indicating that genetic susceptibility played roles in developing of pneumoconiosis. Silica dust was recognized and phagocytosed by alveolar macrophage after inhalation, and induce the release of reactive oxygen species and free radical, destabilization of lysosomal, and then stimulate the formation and activation of Nalp3 inflammasome. The Nalp3 inflammasome is required for caspase-1 activation, which mediated IL-1βand IL-18 secretion and maturation in response to the stimulation of dust. IL-1βplay an important role in the development of fibrosis.
     The subjects included 182 pneumoconiosis cases,214 non-pneumoconiosis dust exposure workers and 180 non-dust exposure workers. Basic information, medical history and occupational history information of everyone were collected by trained investigators using questionnaire. At the same time,5ml peripheral blood were collected when in the fasting and heparin is used as anticoagulant. The blood was used for genomic DNA extraction. The genotypes of five selected single nucleotide polymorphism (SNP) locus in Nalp3-Caspase-1-IL-1βpathway were determined by TaqMan technique. Multivariable unconditional logistic regression was used to analyzed the relation between incidence of pneumoconiosis and genotypes of the five SNPs among iron mine workers. This study was approved by the Tongji Medical College Institutional Review Board.
     The results showed that the workers with G/-genotype at rs34298345 in Nalp3 had a 2.96-fold risk of developing pneumoconiosis when compared workers with G/G genotype (95% CI:1.39-6.28); the workers with G/A genotype at rs1042743 in Caspase-1 had a 3.61-fold risk of developing pneumoconiosis when compared workers with G/G genotype (95% CI:1.60-8.13) after adjusted for birth date, sex, smoking status and cumulative dust exposure. It seems that the mutation frequency of rs1539019 in Nalp3, rs1143627 and rs1143634in IL-1βwas negatively related with the incidence of pneumoconiosis, but the difference had no statistical significant (p>0.05).
     In this part, we found that the mutation at rs34298345 and rs 1142743 were associated with increased risk of pneumoconiosis in workers in iron mine. More attention should be paid to the workers'heath care with mutation at these two locus.
     PartⅢMortality study of dust exposed workers in iron mine
     In this study, we followed up the dust exposed workers in iron mine for 43.07 years, and collected cause of death from medical records in the iron mine hospital. The influence on mortality of dust exposure were analyzed in dust exposed workers.
     We classified workers into three cumulative dust exposure groups, and then relative risks (RRs) were calculated. Standardized mortality rates (SMRs) and corresponding 95% confidential interval were calculated using national average death rate data (1970 to 2009) as reference.
     There were 3658 workers exposed to dust in the iron mine, and 1581 workers died during the period of followed up. The cumulative mortality was 43.22% and mortality was 1052.48 per 100,000 person-years. The first six causes of death included malignant tumors, respiratory diseases, cardiovascular diseases, cerebrovascular diseases, accidents and digestive diseases.
     The all-cause cumulative mortalities of high dust exposure group, median dust exposure group and low dust exposure were 57.12%,43.92% and 33.97% respectively. After adjusted for gender, start-working age and smoking status, The relative risk of death for workers in high dust exposure group and median dust exposure group were 2.07 (95%CI:1.69-2.55) and 1.32 (95%CI:1.11-1.56) respectively, when compared with workers in low dust exposure group. The mortalities from all-cause, cancer, lung cancer, cardiovascular disease, cerebrovascular disease, respiratory disease, COPD and pneumoconiosis were increased with cumulative dust exposure, and a dose-response relationship exist between the mortalities of these diseases and cumulative dust exposure.
     There were 248 deaths among 328 pneumoconiosis cases. The cumulative mortality rate was 75.61%, which was greatly higher than that in non-pneumoconiosis dust exposure workers (40.03%). The mortalities of lung cancer, respiratory disease and cardiovascular disease in pneumoconiosis cases were 2.01,4.81 and 1.49 times higher than those in non-pneumoconiosis dust exposure workers (p<0.05).
     In this part, the study showed that the mortality of dust exposure workers in iron mine is higher than that of national average mortality. There was dose-response relationship between mortalities and cumulative dust exposure. The mortality of pneumoconiosis cases was higher than that of non-pneumoconiosis workers.
     In summary, the incidence of pneumoconiosis increased with increasing cumulative dust exposure. The development of pneumoconiosis was affected by smoking status, tuberculosis and gene polymorphism. Control dust concentrations in workplaces will be help to reduce pneumoconiosis and related death caused from dust exposure.
引文
1. WHO, Elimination of silicosis. GOHNET newsletter.2007. p.1-18.
    2. Mossman, B.T. and Churg, A., Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med,1998.157(5 Pt 1):p.1666-80.
    3. Fujimura, N., Pathology and pathophysiology of pneumoconiosis. Curr Opin Pulm Med,2000.6(2):p.140-4.
    4. 陈锐.我国职业病防治工作现状及工作重点.in 第十次全国劳动卫生与职业病学术会议.2009.浙江杭州.
    5. 欧文,卫生部通报2010年职业病防治工作情况和2011年重点工作.安全与健康:上半月,2011(7):p.31.
    6. 无,2009年全国职业病情况公布尘肺病占据其中八成.中国健康月刊,2010(5):p.18.
    7. 无,卫生部办公厅关于2008年全国职业卫生监督管理工作情况的通报.职业卫生与应急救援,2009.27(4):p.172-173.
    8. 周永波,“开胸验肺”挑战职业病诊断.中国社会保障,2009(9):p.52.
    9. 刘秉慈and李玉瑞,我国尘肺发病机制研究的概况与展望.中国工业医学杂志,2007.20(1):p.3-5.
    10. Cassel, S.L., Eisenbarth, S.C. and Iyer, S.S., et al., The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A,2008.105(26):p. 9035-40.
    11. Valiante, D.J., Schill, D.P. and Rosenman, K.D., et al., Highway repair:a new silicosis threat Am J Public Health,2004.94(5):p.876-80.
    12. Onder, M. and Onder, S., Evaluation of occupational exposures to respirable dust in underground coal mines. Ind Health,2009.47(1):p.43-9.
    13. 大冶铁矿志编委会,大治铁矿志三(1996—2000年).2001.
    14. Harrison, J., Chen, J.Q. and Miller, W., et al., Risk of silicosis in cohorts of Chinese tin and tungsten miners and pottery workers (Ⅱ):Workplace-specific silica particle surface composition. Am J Ind Med,2005.48(1):p.10-5.
    15. Chen, W., Hnizdo, E. and Chen, J.Q., et al., Risk of silicosis in cohorts of Chinese tin and tungsten miners, and pottery workers (Ⅰ):an epidemiological study. Am J Ind Med,2005.48(1):p.1-9.
    16. Kolb, M., Margetts, P.J. and Anthony, D.C., et al., Transient expression of IL-lbeta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest,2001.107(12):p.1529-36.
    17. 范雪云,闫兆凤and闫进德,et al.,白细胞介素-1基因多态性与尘肺易感性的关系.中华劳动卫生职业病杂志,2006.24(9):p.526-530.
    18. Fang, G.F., Fan, X.Y. and Shen, F.H., The Relationship between Polymorphisms of Interleukin-4 Gene and Silicosis. Biomed Environ Sci,2011.24(6):p.678-82.
    19. 苏良平,关宏宇and赵立凡, et al.,铁矿工人队列死因研究.中华劳动卫生职业病杂志,2006.24(6):p.360-363.
    20. Chen, J., McLaughlin, J.K. and Zhang, J.Y., et al., Mortality among dust-exposed Chinese mine and pottery workers. J Occup Med,1992.34(3):p.311-6.
    21. 张钧岳陈镜琼,大型职业流行病学调查中如何抓质量控制,in接尘工人矽肺和肺癌研究,陈镜琼,Edito.1991,同济医科大学.p.117-119.
    22. Frank J. Hearl, W.Z.C.J., Environmential Sampling Strategies Used in the Peoples Republic of China for Prevention of Slicosis and other Pneumoconiosis, in接尘工人矽肺和肺癌研究,陈镜琼,Edito.1991,同济医科大学:武汉.p.22-30.
    23. 吴植恩彭开良陈镜琼,金属矿山和瓷厂的粉尘及有害因素分析,in接尘工人矽肺和肺癌研究,陈镜琼,Edito.1991,同济医科大学:武汉.p.103-110.
    24. 孙敬智,王正伦and毛革诗,et al.,三种不同粉尘采样器及采样方法测定结果的比较.工业卫生与职业病,2006.32(6):p.373-376.
    25. 杨磊,陈卫红and王正伦, et al.,工作场所空气中粉尘采样的一些理论和技术问题.中华劳动卫生职业病杂志,2007.25(1):p.54-57.
    26. Chen, W., Zhuang, Z. and Attfield, M.D., et al., Exposure to silica and silicosis among tin miners in China:exposure-response analyses and risk assessment Occup Environ Med,2001.58(1):p.31-7.
    27. Chen, W., Yang, J. and Chen, J., et al., Exposures to silica mixed dust and cohort mortality study in tin mines:exposure-response analysis and risk assessment of lung cancer. Am J Ind Med,2006.49(2):p.67-76.
    28. 关宏宇张浩苏良平刘跃伟翁少凡,铁矿工人尘肺发病及影响因素分析.中华劳动卫生职业病杂志,2012.30(1):p.36-40.
    29. Qiu, B., Li, T. and Zhang, M., et al., [Analysis of direct medical cost on pneumoconiosis patients with questionnaires in an iron & steel enterprise]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2009.27(4):p.203-6.
    30. Chen, W., Hnizdo, E. and Chen, J.Q., et al., Risk of silicosis in cohorts of Chinese tin and tungsten miners, and pottery workers (I):an epidemiological study. Am J Ind Med,2005.48(1):p.1-9.
    31. 陈安珞,刘建安and陈镜琼,钨矿接尘工矽肺危险度.职业与健康,2003.19(12):p.1-3.
    32. 陈卫红and傅长汉,锡矿工人接尘与矽肺危险度评价.中华劳动卫生职业病杂志,1999.17(3):p.131-134.
    33. Lesur, O., Cantin, A.M. and Tanswell, A.K., et al., Silica exposure induces cytotoxicity and proliferative activity of type II pneumocytes. Exp Lung Res,1992. 18(2):p.173-90.
    34. 史廷明,Fubini, B. and翁少凡,et al.,游离二氧化硅粉尘致病性研究进展.中华劳动卫生职业病杂志,2008.26(7):p.439-442.
    35. Wallace, W.E.,陈镜琼and王海椒,et al.,瓷厂与锡矿及钨矿石英粉尘表面铝硅酸盐包裹的测定和分析.中华劳动卫生职业病杂志,2006.24(9):p.537-539.
    36. 马秀玲,宁静and于莉,et al.,肺结核患者免疫状态与菌群交替症的关系.国外医学:临床生物化学与检验学分册,2005.26(9):p.672.
    37. 宋峰and张学,肺结核对矽肺进展和死亡率影响的观察与分析.职业与健康,2003.19(5):p.60-61.
    38. Rees, D. and Murray, J., Silica, silicosis and tuberculosis. Int J Tuberc Lung Dis, 2007.11(5):p.474-84.
    39. Ross, J., Ehrlich, R.I. and Hnizdo, E., et al., Excess lung function decline in gold miners following pulmonary tuberculosis. Thorax,2010.65(11):p.1010-5.
    40. Naidoo, R. and Rees, D.,南非煤工尘肺与矽肺的防治经验.中华劳动卫生职业病杂志,2007.25(3):p.187-189.
    41. 陈卫红,粉尘的危害与控制.2005,北京:化学工业出版社.47-71.
    42. Zhuang, Z., Hearl, F.J. and Odencrantz, J., et al., Estimating historical respirable crystalline silica exposures for Chinese pottery workers and iron/copper, tin, and tungsten miners. Ann Occup Hyg,2001.45(8):p.631-42.
    43. 杨永利,刘宏志and孙世奎,et al.,铁法大明矿煤工尘肺发病趋势的预测.职业与健康,2007.23(17):p.1484-1486.
    44. 丘创逸,张东辉and陈建雄,et al.,某地集装箱制造企业电焊工尘肺的流行病学调查.中华劳动卫生职业病杂志,2009.27(4):p.215-217.
    45. Moolgavkar, S.H., Holford, T.R. and Levy, D.T., et al., Impact of reduced tobacco smoking on lung cancer mortality in the United States during 1975-2000. J Natl Cancer Inst,2012.104(7):p.541-8.
    46. Huxley, R.R., Yatsuya, H. and Lutsey, P.L., et al., Impact of Age at Smoking Initiation, Dosage, and Time Since Quitting on Cardiovascular Disease in African Americans and Whites:The Atherosclerosis Risk in Communities Study. Am J Epidemiol,2012.
    47. 王冬梅,李为民and李静, et al.,吸烟与肺癌关系的Meta分析.中国呼吸与危重监护杂志,2009.8(3):p.229-233.
    48. The health consequences of involuntary tobacco smoke:A report of the Surgeon General..2006, U.S. Department of Health and Human Services, Office of the Surgeon General.
    49. Hessel, P.A., Gamble, J.F. and Nicolich, M., Relationship between silicosis and smoking. Scand J Work Environ Health,2003.29(5):p.329-36.
    50. Hedley, A.J., Lam, T.H. and McGhee, S.M., et al., Passive smoking:secondhand smoke does cause respiratory disease. BMJ,2003.327(7413):p.502; author reply 504-5.
    51. Cohen, D., Arai, S.F. and Brain, J.D., Smoking impairs long-term dust clearance from the lung. Science,1979.204(4392):p.514-7.
    52. Nelson, G., Girdler-Brown, B. and Ndlovu, N., et al., Three decades of silicosis: disease trends at autopsy in South African gold miners. Environ Health Perspect,2010. 118(3):p.421-6.
    53. Finishing the euchromatic sequence of the human genome. Nature,2004. 431(7011):p.931-45.
    54. Roberts, L., Human genome research. SNP mappers confront reality and find it daunting. Science,2000.287(5460):p.1898-9.
    55. Cargill, M., Altshuler, D. and Ireland, J., et al., Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet,1999. 22(3):p.231-8.
    56. Chanock, S., Candidate genes and single nucleotide polymorphisms (SNPs) in the study of human disease. Dis Markers,2001.17(2):p.89-98.
    57. 杨晓波and邬堂春,单核苷酸多态性研究在职业卫生中的应用现状和展望.中华劳动卫生职业病杂志,2007.25(10):p.637-封3.
    58. Ziemsen, B., Angerer, J. and Lehnert, G., et al., Polymorphism of delta-aminolevulinic acid dehydratase in lead-exposed workers. Int Arch Occup Environ Health,1986.58(3):p.245-7.
    59. Viezzer, C, Norppa, H. and Clonfero, E., et al., Influence of GSTM1, GSTT1, GSTP1, and EPHX gene polymorphisms on DNA adduct level and HPRT mutant frequency in coke-oven workers. Mutat Res,1999.431(2):p.259-69.
    60. 张忠彬,顾寿永and万俊香,et al.,环氧化物水解酶基因多态性与慢性苯中毒易感性关系的研究.中华劳动卫生职业病杂志,2004.22(3):p.176-180.
    61. Zhou, F., Wang, F. and Li, F., et al., Association of hsp70-2 and hsp-hom gene polymorphisms with risk of acute high-altitude illness in a Chinese population Cell Stress Chaperones,2005.10(4):p.349-56.
    62. 李旭东,刘移民and刘斌,et al.,噪声性听力损失易感性与SOD2单核苷酸多态性的关联.中华劳动卫生职业病杂志,2009.27(4):p.211-214.
    63. Steenland, K. and Brown, D., Silicosis among gold miners:exposure--response analyses and risk assessment Am J Public Health,1995.85(10):p.1372-7.
    64. Kreiss, K. and Zhen, B., Risk of silicosis in a Colorado mining community. Am J Ind Med,1996.30(5):p.529-39.
    65. Dostert, C, Petrilli, V. and Van Bruggen, R., et al., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica Science,2008.320(5876): p.674-7.
    66. Cassel, S.L., Eisenbarth, S.C. and Iyer, S.S., et al., The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A,2008.105(26):p. 9035-40.
    67. Yamasaki, K., Muto, J. and Taylor, K.R., et al., NLRP3/cryopyrin is necessary for interleukin-lbeta (IL-lbeta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem,2009.284(19):p.12762-71.
    68. Sutterwala, F.S., Ogura, Y. and Szczepanik, M., et al., Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity,2006.24(3):p.317-27.
    69. Dehghan, A., Yang, Q. and Peters, A., et al., Association of novel genetic Loci with circulating fibrinogen levels:a genome-wide association study in 6 population-based cohorts. Circ Cardiovasc Genet,2009.2(2):p.125-33.
    70. Rueda, B., Zhernakova, A. and Lopez-Nevot, M.A., et al., Association study of functional genetic variants of innate immunity related genes in celiac disease. BMC Med Genet,2005.6:p.29.
    71. Opitz, B., van Laak, V. and Eitel, J., et al., Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med,2010.181(12):p. 1294-309.
    72. Yamasaki, K., Muto, J. and Taylor, K.R., et al., NLRP3/cryopyrin is necessary for interleukin-lbeta (IL-lbeta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem,2009.284(19):p.12762-71.
    73. Dehghan, A., Yang, Q. and Peters, A., et al., Association of novel genetic Loci with circulating fibrinogen levels:a genome-wide association study in 6 population-based cohorts. Circ Cardiovasc Genet,2009.2(2):p.125-33.
    74. Ben-Sasson, S.Z., Caucheteux, S. and Crank, M., et al, IL-1 acts on T cells to enhance the magnitude of in vivo immune responses. Cytokine,2011.56(1):p.122-5.
    75. Srivastava, K.D., Rom, W.N. and Jagirdar, J., et al., Crucial role of interleukin-lbeta and nitric oxide synthase in silica-induced inflammation and apoptosis in mice. Am J Respir Crit Care Med,2002.165(4):p.527-33.
    76. Campa, D., Hashibe, M. and Zaridze, D., et al., Association of common polymorphisms in inflammatory genes with risk of developing cancers of the upper aerodigestive tract Cancer Causes Control,2007.18(4):p.449-55.
    77. Liu, X., Wang, Z. and Yu, J., et al., Three polymorphisms in interleukin-lbeta gene and risk for breast cancer:a meta-analysis. Breast Cancer Res Treat,2010.124(3): p.821-5.
    78. Pontillo, A., Oshiro, T.M. and Girardelli, M, et al., Polymorphisms in inflammasome'genes and susceptibility to HIV-1 infectioa J Acquir Immune Defic Syndr,2012.59(2):p.121-5.
    79. Kiyohara, C, Horiuchi, T. and Takayama, K., et al., IL1B rs1143634 polymorphism, cigarette smoking, alcohol use, and lung cancer risk in a Japanese populatioa J Thorac Oncol,2010.5(3):p.299-304.
    80. Levy, H., Murphy, A. and Zou, F., et al., IL1B polymorphisms modulate cystic fibrosis lung disease. Pediatr Pulmonol,2009.44(6):p.580-93.
    81. Kanneganti, T.D., Ozoren, N. and Body-Malapel, M., et al., Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature,2006. 440(7081):p.233-6.
    82. Sutterwala, F.S., Ogura, Y. and Szczepanik, M., et al., Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity,2006.24(3):p.317-27.
    83. Pope, C.R., Burnett, R.T. and Thun, M.J., et al., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA,2002.287(9): p.1132-41.
    84. Perera, F., Hemminki, K. and Jedrychowski, W., et al., In utero DNA damage from environmental pollution is associated with somatic gene mutation in newborns. Cancer Epidemiol Biomarkers Prev,2002.11(10 Pt 1):p.1134-7.
    85. Soberanes, S., Urich, D. and Baker, C.M., et al., Mitochondrial complex Ⅲ-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution. J Biol Chem,2009.284(4):p. 2176-86.
    86. Cohen, R.A., Patel, A. and Green, F.H., Lung disease caused by exposure to coal mine and silica dust Semin Respir Crit Care Med,2008.29(6):p.651-61.
    87. Naghizadeh, A., Mahvi, A.H. and Jabbari, H., et al., Exposure assessment to dust and free silica for workers of Sangan iron ore mine in Khaf, Iran. Bull Environ Contam Toxicol,2011.87(5):p.531-8.
    88. Calvert, G.M., Rice, F.L. and Boiano, J.M., et al., Occupational silica exposure and risk of various diseases:an analysis using death certificates from 27 states of the United States. Occup Environ Med,2003.60(2):p.122-9.
    89. Vuylsteek, K. and Depoorter, A.M., Smoking, occupational dust exposure and chronic non-specific lung disease. Bronchopneumologie,1978.28(1):p.31-8.
    90. 中华人民共和国卫生部,2009年城市居民年龄别疾病死亡率.2010:北京.
    91. Cao, Y., Kenfield, S. and Song, Y., et al., Cigarette smoking cessation and total and cause-specific mortality:a 22-year follow-up study among US male physicians. Arch Intern Med,2011.171(21):p.1956-9.
    92. 中国疾控中心控烟办公室,2011年中国控制吸烟报告.2011.
    93. Dockery, D.W., Pope, C.R. and Xu, X., et al., An association between air pollution and mortality in six U.S. cities. N Engl J Med,1993.329(24):p.1753-9.
    94. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans:Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils. Lyon,15-22 October 1996. IARC Monogr Eval Carcinog Risks Hum,1997.68:p.1-475.
    95. Merlo, F., Costantini, M. and Reggiardo, G., et al., Lung cancer risk among refractory brick workers exposed to crystalline silica:a retrospective cohort study. Epidemiology,1991.2(4):p.299-305.
    96. Steenland, K. and Brown, D., Mortality study of gold miners exposed to silica and nonasbestiform amphibole minerals:an update with 14 more years of follow-up. Am J Ind Med,1995.27(2):p.217-29.
    97. Rafnsson, V. and Gunnarsdottir, H., Lung cancer incidence among an Icelandic cohort exposed to diatomaceous earth and cristobalite. Scand J Work Environ Health, 1997.23(3):p.187-92.
    98. Checkoway, H., Hughes, J.M. and Weill, H., et al, Crystalline silica exposure, radiological silicosis, and lung cancer mortality in diatomaceous earth industry workers. Thorax,1999.54(1):p.56-9.
    99. Steenland, K. and Sanderson, W., Lung cancer among industrial sand workers exposed to crystalline silica Am J Epidemiol,2001.153(7):p.695-703.
    100. Yu, I.T., Tse, L.A. and Leung, C.C., et al., Lung cancer mortality among silicotic workers in Hong Kong-no evidence for a link. Ann Oncol,2007.18(6):p.1056-63.
    101. De Matteis, S., Consonni, D. and Lubin, J.H., et al., Impact of occupational carcinogens on lung cancer risk in a general population Int J Epidemiol,2012.
    102. Wild, P., Gonzalez, M. and Bourgkard, E., et al., Occupational risk factors have to be considered in the definition of high-risk lung cancer populations. Br J Cancer,2012. 106(7):p.1346-52.
    103. Preller, L., van den Bosch, L.M. and van den Brandt, P.A., et al., Occupational exposure to silica and lung cancer risk in the Netherlands. Occup Environ Med,2010. 67(10):p.657-63.
    104. Nakagawa, H., Nishijo, M. and Tabata, M., et al., Dust exposure and lung cancer mortality in tunnel workers. J Environ Pathol Toxicol Oncol,2000.19(1-2):p.99-101.
    105. Checkoway, H., Hughes, J.M. and Weill, H., et al., Crystalline silica exposure, radiological silicosis, and lung cancer mortality in diatomaceous earth industry workers. Thorax,1999.54(1):p.56-9.
    106. Rice, F.L., Park, R. and Stayner, L., et al., Crystalline silica exposure and lung cancer mortality in diatomaceous earth industry workers:a quantitative risk assessment Occup Environ Med,2001.58(1):p.38-45.
    107. Chen, W., Yang, J. and Chen, J., et al., Exposures to silica mixed dust and cohort mortality study in tin mines:exposure-response analysis and risk assessment of lung cancer. Am J Ind Med,2006.49(2):p.67-76.
    108. Kurihara, N. and Wada, O., Silicosis and smoking strongly increase lung cancer risk in silica-exposed workers. Ind Health,2004.42(3):p.303-14.
    109. Hamilton, R.J., Thakur, S.A. and Holian, A., Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med,2008.44(7):p.1246-58.
    110. McCabe, M.J., Mechanisms and consequences of silica-induced apoptosis. Toxicol Sci,2003.76(1):p.1-2.
    111. Mi, L. and Chung, F.L., Binding to protein by isothiocyanates:a potential mechanism for apoptosis induction in human non small lung cancer cells. Nutr Cancer, 2008.60 Suppl 1:p.12-20.
    112. Kumar, H., Kawai, T. and Akira, S., Pathogen recognition by the innate immune system. Int Rev Immunol,2011.30(1):p.16-34.
    113. Cavariani, F., Carneiro, A.P. and Leonori, R., et al., [Silica in ceramic industry: exposition and pulmonary diseases]. G Ital Med Lav Ergon,2005.27(3):p.300-2.
    114. Bugge, M.D., Foreland, S. and Kjaerheim, K., et al., Mortality from non-malignant respiratory diseases among workers in the Norwegian silicon carbide industry: associations with dust exposure. Occup Environ Med,2011.68(12):p.863-9.
    115. Girod, C.E. and King, T.J., COPD:a dust-induced disease? Chest,2005.128(4):p. 3055-64.
    116. Pope, C.R., Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk? Environ Health Perspect,2000.108 Suppl 4:p. 713-23.
    117. Mannino, D.M. and Buist, A.S., Global burden of COPD:risk factors, prevalence, and future trends. Lancet,2007.370(9589):p.765-73.
    118. De Zotti, R., [Chronic obstructive pulmonary disease (COPD) and occupational exposure to mineral dust]. G Ital Med Lav Ergon,2002.24(2):p.144-6.
    119. Baur, X. and Latza, U., [COPD due to occupational exposure to silica dust (SiO2, especially quartz)]. Pneumologie,2004.58(4):p.201-3.
    120. Bergdahl, I.A., Toren, K. and Eriksson, K., et al., Increased mortality in COPD among construction workers exposed to inorganic dust Eur Respir J,2004.23(3):p. 402-6.
    121. Beamer, C.A., Migliaccio, C.T. and Jessop, F., et al., Innate immune processes are sufficient for driving silicosis in mice. J Leukoc Biol,2010.88(3):p.547-57.
    122. Bang, K.M., Attfield, M.D. and Wood, J.M., et al., National trends in silicosis mortality in the United States,1981-2004. Am J Ind Med,2008.51(9):p.633-9.
    123. 中华人民共和国卫生部,2008年城市年龄别疾病别死亡率.2009.
    124. Hedlund, U., Jonsson, H. and Eriksson, K., et al., Exposure-response of silicosis mortality in Swedish iron ore miners. Ann Occup Hyg,2008.52(1):p.3-7.
    125. Marinaccio, A., Scarselli, A. and Gorini, G., et al., Retrospective mortality cohort study of Italian workers compensated for silicosis. Occup Environ Med,2006.63(11): p.762-5.
    126. Riediker, M., Cascio, W.E. and Griggs, T.R., et al., Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men Am J Respir Crit Care Med,2004.169(8):p.934-40.
    127. Landen, D.D., Wassell, J.T. and McWilliams, L., et al., Coal dust exposure and mortality from ischemic heart disease among a cohort of U.S. coal miners. Am J Ind Med,2011.54(10):p.727-33.
    128. Mossman, B.T., Borm, P.J. and Castranova, V., et al., Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Part Fibre Toxicol,2007.4:p.4.
    1. Mossman, B.T. and Churg, A., Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med,1998.157(5 Pt 1):p.1666-80.
    2. Fujimura, N., Pathology and pathophysiology of pneumoconiosis. Curr Opin Pulm Med,2000.6(2):p.140-4.
    3. Nasrullah, M., Mazurek, J.M. and Wood, J.M., et al., Silicosis mortality with respiratory tuberculosis in the United States,1968-2006. Am J Epidemiol,2011.174(7): p.839-48.
    4. 欧文,卫生部通报2010年职业病防治工作情况和2011年重点工作.安全与健康:上半月,2011(7):p.31.
    5. 无,2009年全国职业病情况公布尘肺病占据其中八成.中国健康月刊,2010(5):p.18.
    6. 无,卫生部办公厅关于2008年全国职业卫生监督管理工作情况的通报.职业卫生与应急救援,2009.27(4):p.172-173.
    7. 周永波,“开胸验肺”挑战职业病诊断.中国社会保障,2009(9):p.52.
    8. Beamer, C.A., Migliaccio, C.T. and Jessop, F., et al., Innate immune processes are sufficient for driving silicosis in mice. J Leukoc Biol,2010.88(3):p.547-57.
    9. 周芸,周婷and郭嘉丽,et al., Nalp3炎性体在矽尘致机体损伤中的作用研究进展.中华劳动卫生职业病杂志,2010.28(10):p.795-798.
    10. Zhang, Z., Shen, H.M. and Zhang, Q.F., et al., Involvement of oxidative stress in crystalline silica-induced cytotoxicity and genotoxicity in rat alveolar macrophages. Environ Res,2000.82(3):p.245-52.
    11. Cho, Y.J., Seo, M.S. and Kim, J.K., et al., Silica-induced generation of reactive oxygen species in Rat2 fibroblast:role in activation of mitogen-activated protein kinase. Biochem Biophys Res Commun,1999.262(3):p.708-12.
    12. Fubini, B., Giamello, E. and Volante, M., et al., Chemical functionalities at the silica surface determining its reactivity when inhaled. Formation and reactivity of surface radicals. Toxicol Ind Health,1990.6(6):p.571-98.
    13. Shi, X.L., Dalai, N.S. and Hu, X.N., et al., The chemical properties of silica particle surface in relation to silica-cell interactions. J Toxicol Environ Health,1989. 27(4):p.435-54.
    14. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature,2007.449(7164):p.819-26.
    15. Janeway, C.J. and Medzhitov, R., Innate immune recognition. Annu Rev Immunol, 2002.20:p.197-216.
    16. Kumar, H., Kawai, T. and Akira, S., Pathogen recognition in the innate immune response. Biochem J,2009.420(1):p.1-16.
    17. Fu, Y., Ding, Y. and Zhou, T., et al., Plasmodium yoelii blood-stage primes macrophage-mediated innate immune response through modulation of toll-like receptor signalling. Malar J,2012.11(1):p.104.
    18. Wang, J., Nikrad, M.P. and Travanty, E.A., et al., Innate Immune Response of Human Alveolar Macrophages during Influenza A Infection PLoS One,2012.7(3):p. e29879.
    19. Pernis, B., Silica and the immune system Acta Biomed,2005.76 Suppl 2:p. 38-44.
    20. Vanhee, D., Gosset, P. and Boitelle, A., et al., Cytokines and cytokine network in silicosis and coal workers'pneumoconiosis. Eur Respir J,1995.8(5):p.834-42.
    21. Governa, M., Fenoglio, I. and Amati, M., et al., Cleavage of the fifth component of human complement and release of a split product with C5a-like activity by crystalline silica through free radical generation and kallikrein activation Toxicol Appl Pharmacol, 2002.179(3):p.129-36.
    22. Fenoglio, I., Prandi, L. and Tomatis, M., et al., Free radical generation in the toxicity of inhaled mineral particles:the role of iron speciation at the surface of asbestos and silica Redox Rep,2001.6(4):p.235-41.
    23. 夏沈宁,矽肺发病机制的研究进展.中外医疗,2009.28(2):p.167-168.
    24. Hamilton, R.J., Thakur, S.A. and Mayfair, J.K., et al., MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J Biol Chem,2006. 281(45):p.34218-26.
    25. Thelen, T., Hao, Y. and Medeiros, A.I., et al., The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. J Immunol,2010. 185(7):p.4328-35.
    26. Arredouani, M.S., Palecanda, A. and Koziel, H., et al., MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol,2005.175(9):p.6058-64.
    27. Cox, L.J., An exposure-response threshold for lung diseases and lung cancer caused by crystalline silica Risk Anal,2011.31(10):p.1543-60.
    28. Sims, J.E. and Smith, D.E., The IL-1 family:regulators of immunity. Nat Rev Immunol,2010.10(2):p.89-102.
    29. Piguet, P.F., Vesin, C. and Grau, G.E., et al., Interleukin 1 receptor antagonist (IL-1ra) prevents or cures pulmonary fibrosis elicited in mice by bleomycin or silica Cytokine,1993.5(1):p.57-61.
    30. Martinon, F., Burns, K. and Tschopp, J., The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta Mol Cell, 2002.10(2):p.417-26.
    31. Sutterwala, F.S., Ogura, Y. and Zamboni, D.S., et al., NALP3:a key player in caspase-1 activation. J Endotoxin Res,2006.12(4):p.251-6.
    32. Dostert, C., Petrilli, V. and Van Bruggen, R., et al., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science,2008.320(5876): p.674-7.
    33. Opitz, B., van Laak, V. and Eitel, J., et al., Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med,2010.181(12):p. 1294-309.
    34. Martinon, F., Detection of immune danger signals by NALP3. J Leukoc Biol,2008. 83(3):p.507-11.
    35. Martinon, F., Mayor, A. and Tschopp, J., The inflammasomes:guardians of the body. Annu Rev Immunol,2009.27:p.229-65.
    36. Mariathasan, S., Weiss, D.S. and Newton, K., et al., Cryopyrin activates the inflammasome in response to toxins and ATP. Nature,2006.440(7081):p.228-32.
    37. Yamasaki, K., Muto, J. and Taylor, K.R., et al., NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem,2009.284(19):p.12762-71.
    38. Schroder, K. and Tschopp, J., The inflammasomes. Cell,2010.140(6):p.821-32.
    39. Kanneganti, T.D., Ozoren, N. and Body-Malapel, M., et al., Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature,2006. 440(7081):p.233-6.
    40. Sutterwala, F.S., Ogura, Y. and Szczepanik, M., et al., Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity,2006.24(3):p.317-27.
    41. Meixenberger, K., Pache, F. and Eitel, J., et al., Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3. J Immunol,2010.184(2):p.922-30.
    42. Kanneganti, T.D., Body-Malapel, M. and Amer, A., et al., Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem,2006.281(48):p.36560-8.
    43. Cassel, S.L., Eisenbarth, S.C. and Iyer, S.S., et al., The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A,2008.105(26):p. 9035-40.
    44. Thibodeau, M.S., Giardina, C. and Knecht, D.A., et al., Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci, 2004.80(1):p.34-48.
    45. Hornung, V., Bauernfeind, F. and Halle, A., et al., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization, Nat Immunol,2008.9(8):p.847-56.
    46. Kumar, H., Kawai, T. and Akira, S., Pathogen recognition by the innate immune system. Int Rev Immunol,2011.30(1):p.16-34.
    47. Oh, W.K., Kim, S. and Choi, M., et al., Cellular uptake, cytotoxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. ACS Nano,2010.4(9):p.5301-13.
    48. Costantini, L.M., Gilberti, R.M. and Knecht, D.A., The phagocytosis and toxicity of amorphous silica PLoS One,2011.6(2):p. e14647.
    49. Arras, M., Huaux, F. and Vink, A., et al., Interleukin-9 reduces lung fibrosis and type 2 immune polarization induced by silica particles in a murine model. Am J Respir Cell Mol Biol,2001.24(4):p.368-75.
    50. Tripathi, S.S., Mishra, V. and Shukla, M., et al., IL-6 receptor-mediated lung Th2 cytokine networking in silica-induced pulmonary fibrosis. Arch Toxicol,2010.84(12): p.947-55.
    51. Murakami, S., Nishimura, Y. and Maeda, M, et al., Cytokine alteration and speculated immunological pathophysiology in silicosis and asbestos-related diseases. Environ Health Prev Med,2009.14(4):p.216-22.
    52. Goshen, I. and Yirmiya, R., Interleukin-1 (IL-1):a central regulator of stress responses. Front Neuroendocrinol,2009.30(1):p.30-45.
    53. 高衍新and王瑞,矽尘致肺纤维化机制及细胞因子在矽肺纤维化中的作用.中国工业医学杂志,2008.21(1):p.31-35.
    54. Ben-Sasson, S.Z., Caucheteux, S. and Crank, M, et al., IL-1 acts on T cells to enhance the magnitude of in vivo immune responses. Cytokine,2011.56(1):p.122-5.
    55. Kline, J.N., Schwartz, D.A. and Monick, M.M., et al., Relative release of interleukin-1 beta and interleukin-1 receptor antagonist by alveolar macrophages. A study in asbestos-induced lung disease, sarcoidosis, and idiopathic pulmonary fibrosis. Chest,1993.104(1):p.47-53.
    56. Srivastava, K.D., Rom, W.N. and Jagirdar, J., et al., Crucial role of interleukin-1 beta and nitric oxide synthase in silica-induced inflammation and apoptosis in mice. Am J Respir Crit Care Med,2002.165(4):p.527-33.
    57. Souvannavong, V. and Adam, A., Macrophages from C3H/HeJ mice require an additional step to produce monokines:synergistic effects of silica and poly(I:C) in the release of interleukin 1. J Leukoc Biol,1990.48(2):p.183-92.
    58. Sarih, M., Souvannavong, V. and Brown, S.C., et al., Silica induces apoptosis in macrophages and the release of interleukin-1 alpha and interleukin-1 beta J Leukoc Biol,1993.54(5):p.407-13.
    59. Kolb, M., Margetts, P.J. and Anthony, D.C., et al., Transient expression of IL-lbeta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest,2001.107(12):p.1529-36.
    60. Yucesoy, B., Vallyathan, V. and Landsittel, D.P., et al., Association of tumor necrosis factor-alpha and interleukin-1 gene polymorphisms with silicosis. Toxicol Appl Pharmacol,2001.172(1):p.75-82.
    61. 范雪云,闫兆凤 and 闫进德,et al.,白细胞介素-1基因多态性与尘肺易感性的关系.中华劳动卫生职业病杂志,2006.24(9):p.526-530.
    62. Boyman, O. and Sprent, J., The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol,2012.12(3):p.180-90.
    63. Waldmann, T.A., The IL-2/IL-2 receptor system:a target for rational immune interventioa Immunol Today,1993.14(6):p.264-70.
    64. Liao, W., Lin, J.X. and Leonard, W.J., IL-2 family cytokines:new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiatioa Curr Opin Immunol,2011.23(5):p.598-604.
    65. Homolka, J., Ziegenhagen, M.W. and Gaede, K.I., et al., Systemic immune cell activation in a subgroup of patients with idiopathic pulmonary fibrosis. Respiration, 2003.70(3):p.262-9.
    66. Garn, H., Friedetzky, A. and Kirchner, A., et al., Experimental silicosis:a shift to a preferential IFN-gamma-based Thl response in thoracic lymph nodes. Am J Physiol Lung Cell Mol Physiol,2000.278(6):p. L1221-30.
    67. Hayashi, H., Maeda, M. and Murakami, S., et al., Soluble interleukin-2 receptor as an indicator of immunological disturbance found in silicosis patients. Int J Immunopathol Pharmacol,2009.22(1):p.53-62.
    68. Levings, M.K. and Schrader, J.W., IL-4 inhibits the production of TNF-alpha and IL-12 by STAT6-dependent and-independent mechanisms. J Immunol,1999.162(9):p. 5224-9.
    69. Li, Z., Chen, L. and Qin, Z., Paradoxical roles of IL-4 in tumor immunity. Cell Mol Immunol,2009.6(6):p.415-22.
    70. Kopf, M., Le Gros, G. and Bachmann, M., et al., Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature,1993.362(6417):p.245-8.
    71. Sakkas, L.I., New developments in the pathogenesis of systemic sclerosis. Autoimmunity,2005.38(2):p.113-6.
    72. Fang, G.F., Fan, X.Y. and Shen, F.H., The Relationship between Polymorphisms of Interleukin-4 Gene and Silicosis. Biomed Environ Sci,2011.24(6):p.678-82.
    73. Schoenhaut, D.S., Chua, A.O. and Wolitzky, A.G., et al., Cloning and expression of murine IL-12. J Immunol,1992.148(11):p.3433-40.
    74. Gee, K., Guzzo, C. and Che, M.N., et al., The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets, 2009.8(1):p.40-52.
    75. Xu, H., Kurihara, H. and Ito, T., et al., IL-12 enhances lymphoaccumulation by suppressing cell death of T cells in MRL-lpr/lpr mice. J Autoimmun,2001.16(2):p. 87-95.
    76. Prince, P., Boulay, M.E. and Page, N., et al., Induced sputum markers of fibrosis and decline in pulmonary function in asbestosis and silicosis:a pilot study. Int J Tuberc Lung Dis,2008.12(7):p.813-9.
    77. Davis, G.S., Pfeiffer, L.M. and Hemenway, D.R., et al., Interleukin-12 is not essential for silicosis in mice. Part Fibre Toxicol,2006.3:p.2.
    78. Farrar, M.A. and Schreiber, R.D., The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol,1993.11:p.571-611.
    79. Eickelberg, O., Pansky, A. and Koehler, E., et al., Molecular mechanisms of TGF-(beta) antagonism by interferon (gamma) and cyclosporine A in lung fibroblasts. FASEB J,2001.15(3):p.797-806.
    80. Kopecky, J. and Kopecky, O., [NK cells, chemokines and chemokine receptors]. Klin Onkol,2010.23(1):p.5-9.
    81. Chen, Y., Chen, J. and Dong, J., et al., Antifibrotic effect of interferon gamma in silicosis model of rat Toxicol Lett,2005.155(3):p.353-60.
    82. Biernacka, A., Dobaczewski, M. and Frangogiannis, N.G., TGF-beta signaling in fibrosis. Growth Factors,2011.29(5):p.196-202.
    83. Yoshimura, A. and Muto, G., TGF-beta function in immune suppression. Curr Top Microbiol Immunol,2011.350:p.127-47.
    84. Venkatesan, N., Roughley, P.J. and Ludwig, M.S., Proteoglycan expression in bleomycin lung fibroblasts:role of transforming growth factor-beta(1) and interferon-gamma Am J Physiol Lung Cell Mol Physiol,2002.283(4):p. L806-14.
    85. 姚武,郝长付and王娜,et al.,转化生长因子β1基因多态性对煤工尘肺遗传易感性的影响.现代预防医学,2006.33(10):p.1875-1877.
    86. 范雪云,李娟and王欣荣,et al.,转化生长因子-β(-509、+869、+915)位点基因多态性与尘肺易感性.中华劳动卫生职业病杂志,2007.25(1):p.1-4.
    87. Ohtsuka, Y., Munakata, M. and Ukita, H., et al., Increased susceptibility to silicosis and TNF-alpha production in C57BL/6J mice. Am J Respir Crit Care Med, 1995.152(6 Pt 1):p.2144-9.
    88. Tripathi, S.S., Mishra, V. and Shukla, M., et al., IL-6 receptor-mediated lung Th2 cytokine networking in silica-induced pulmonary fibrosis. Arch Toxicol,2010.84(12): p.947-55.
    89. Bailey, D.P., Kashyap, M. and Bouton, L.A., et al., Interleukin-10 induces apoptosis in developing mast cells and macrophages. J Leukoc Biol,2006.80(3):p. 581-9.
    90. Lo, R.S., Dumoutier, L. and Couillin, I., et al., IL-17A-producing gammadelta T and Th17 lymphocytes mediate lung inflammation but not fibrosis in experimental silicosis. J Immunol,2010.184(11):p.6367-77.
    91. Davis, G.S., Pathogenesis of silicosis:current concepts and hypotheses. Lung, 1986.164(3):p.139-54.
    92. Fox, S., Leitch, A.E. and Duffin, R., et al., Neutrophil apoptosis:relevance to the innate immune response and inflammatory disease. J Innate Immun,2010.2(3):p. 216-27.
    93. Everett, H. and McFadden, G., Apoptosis:an innate immune response to virus infection.Trends Microbiol,1999.7(4):p.160-5.
    94. Danial, N.N. and Korsmeyer, S.J., Cell death:critical control points. Cell,2004. 116(2):p.205-19.
    95. Bardales, R.H., Xie, S.S. and Schaefer, R.F., et al., Apoptosis is a major pathway responsible for the resolution of type Ⅱ pneumocytes in acute lung injury. Am J Pathol, 1996.149(3):p.845-52.
    96. Matute-Bello, G., Winn, R.K. and Jonas, M., et al., Fas (CD95) induces alveolar epithelial cell apoptosis in vivo:implications for acute pulmonary inflammation. Am J Pathol,2001.158(1):p.153-61.
    97. Chen, S.L., Fang, W.W. and Ye, F., et al., Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol,2004.94(1):p.92-5.
    98. Fubini, B. and Hubbard, A., Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med, 2003.34(12):p.1507-16.
    99. Vallyathan, V., Kang, J.H. and Van Dyke, K., et al., Response of alveolar macrophages to in vitro exposure to freshly fractured versus aged silica dust:the ability of Prosil 28, an organosilane material, to coat silica and reduce its biological reactivity. J Toxicol Environ Health,1991.33(3):p.303-15.
    100. Shi, X., Mao, Y. and Daniel, L.N., et al., Silica radical-induced DNA damage and lipid peroxidatioa Environ Health Perspect,1994.102 Suppl 10:p.149-54.
    101. Santarelli, L., Recchioni, R. and Moroni, F., et al., Crystalline silica induces apoptosis in human endothelial cells in vitro. Cell Biol Toxicol,2004.20(2):p.97-108.
    102. Leigh, J., Wang, H. and Bonin, A., et al., Silica-induced apoptosis in alveolar and granulomatous cells in vivo. Environ Health Perspect,1997.105 Suppl 5:p.1241-5.
    103. Sakamaki, K. and Satou, Y., Caspases:evolutionary aspects of their functions in vertebrates. J Fish Biol,2009.74(4):p.727-53.
    104. Tumane, R.G., Pingle, S.K. and Jawade, A.A., et al., An overview of caspase: Apoptotic protein for silicosis. Indian J Occup Environ Med,2010.14(2):p.31-8.
    105. Thibodeau, M., Giardina, C. and Hubbard, A.K., Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolysis. Toxicol Sci,2003.76(1):p.91-101.
    106. Borges, V.M., Lopes, M.F. and Falcao, H., et al., Apoptosis underlies immunopathogenic mechanisms in acute silicosis. Am J Respir Cell Mol Biol,2002. 27(1):p.78-84.
    107. Langley, R.J., Mishra, N.C. and Pena-Philippides, J.C., et al., Granuloma formation induced by low-dose chronic silica inhalation is associated with an anti-apoptotic response in Lewis rats. J Toxicol Environ Health A,2010.73(10):p. 669-83.
    108. Boatright, K.M. and Salvesen, G.S., Mechanisms of caspase activation. Curr Opin Cell Biol,2003.15(6):p.725-31.
    109. Nagata, S., Apoptosis by death factor. Cell,1997.88(3):p.355-65.
    110. Nakajima, H. and Oka, T., Analysis of biochemical and biological functions of Fas-ligand (FasL) and Fas on activated T cells in allo-immune response. Transplant Proc,1997.29(1-2):p.1096-100.
    111. Hamilton, R.J., Thakur, S.A. and Holian, A., Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med,2008.44(7):p.1246-58.
    112. Hu, S., Zhao, H. and Al-Humadi, N.H., et al., Silica-induced apoptosis in alveolar macrophages:evidence of in vivo thiol depletion and the activation of mitochondrial pathway. J Toxicol Environ Health A,2006.69(13):p.1261-84.
    113. Owen-Schaub, L.B., Zhang, W. and Cusack, J.C., et al., Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol,1995. 15(6):p.3032-40.
    114. 张露新,曾锦波and杜海科,et al.,染矽尘大鼠肺组织不同时间点FasL表达与细胞凋亡.中华劳动卫生职业病杂志,2006.24(11):p.641-644.
    115. Yao, S.Q., Rojanasakul, L.W. and Chen, Z.Y., et al., Fas/FasL pathway-mediated alveolar macrophage apoptosis involved in human silicosis. Apoptosis,2011.16(12):p. 1195-204.
    116. Wu, F., Qu, Y.B. and Sun, P., et al., [Polymorphisms of FAS and FASL genes and susceptibility of silicosis]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2008. 26(1):p.7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700