DcR3对Fas/FasL介导的大鼠肺泡上皮细胞(CCL-149)凋亡及肺纤维化动物模型的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间质性肺疾病(ILD)是以弥漫性肺实质、肺泡炎症和间质纤维化为病理基本病变,以活动性呼吸困难、X线胸片弥漫性浸润阴影、限制性通气障碍、弥散(DLCO)功能降低和低氧血症为临床表现的不同种类疾病群构成的临床-病理实体的总称。肺纤维化的发病率呈逐年上升的趋势,至今无有效的药物逆转肺纤维化的自然过程及其终末结局。
     ILD确切的发病机制尚未完全阐明。假设ILD的演变过程可区分为三个阶段,即启动阶段、进展阶段和结局阶段。启动ILD的致病因子通常是毒素和(或)抗原,一旦暴露和接触了最初的致病因子,则产生一个复杂的炎症过程——肺泡炎,这是ILD发病的中心环节,炎性及免疫细胞的活化,不仅释放氧自由基等毒性物质,直接损伤I型肺泡上皮细胞和毛细血管内皮细胞,还释放蛋白酶等直接损伤间质、胶原组织和基底膜等。同时释放各种炎性介质,若炎症广泛和损伤严重,肺泡壁中成纤维细胞聚集和增殖,胶原组织增生、修复紊乱并沉积,肺泡壁增厚,瘢痕和纤维化形成,这种受损的肺泡壁将难以修复和恢复。
     肺泡上皮细胞损伤后引起大量肺泡上皮细胞凋亡,而参与凋亡调节的Fas/FasL途径是导致细胞凋亡的因素,DcR3可以通过与FasL结合阻断这一途径而减轻凋亡,我们假设在间质性肺疾病早期给予DcR3,通过减轻肺泡上皮细胞凋亡从而阻止肺纤维化的进一步形成。在本研究的第一部分中,体外培养大鼠肺泡上皮细胞株(CCL-149),用FasL诱导细胞凋亡,同时用DcR3进行干预,通过MTT法及流式细胞术检测细胞凋亡情况,通过RT-PCR法及Western blot检测FasL及caspase3表达情况,结果显示:DcR3干预组肺泡上皮细胞的凋亡百分率低于FasL处理组,具有显著性差异(p<0.05),DcR3干预组Fas及caspase3表达低于FasL处理组。说明DcR3在一定程度上抑制了大鼠肺泡上皮细胞的凋亡。
     第二部分研究通过气管内灌注博来霉素复制大鼠肺纤维化模型,同时静脉注射DcR3进行干预,通过病理观察不同时期肺泡炎及肺纤维化程度的变化,ELISA法检测羟脯氨酸含量测定肺纤维化程度,采用Western blot方法及免疫组织化学法检测Fas、FasL及Caspase3等凋亡因子的表达,TUNEL法检测肺组织细胞凋亡情况,观察DcR3对大鼠肺纤维化模型的影响。病理结果显示:正常对照组:光镜观察可见大鼠肺结构清晰,各观察点均未出现明显改变,Masson染色未见绿色胶原沉积;肺泡炎的程度和肺纤维化程度在各个时间点无明显变化;博来霉素组:7天时肺泡结构清晰,多量中性粒细胞及巨噬细胞浸润,Masson染色可见极少量绿色胶原出现;至28天时炎性细胞减少,肺泡结构破坏,肺泡壁显著增厚,成纤维细胞增多,肺间质纤维化瘢痕形成;Masson染色可见肺泡间隔内有大量绿色胶原沉积。DcR3干预组:7天时以中性粒细胞浸润为主,较博来霉素组炎细胞浸润较轻,Masson染色未见绿色胶原沉积;至28天时部分标本表现局灶性改变,部分组织表现为肺泡间隔轻度增厚、少量成纤维细胞增生,部分可见肺组织成纤维细胞增多明显,肺泡结构破坏;Masson染色可见绿色胶原沉积及梭形的成纤维细胞。博来霉素组各时间点炎症程度高于对照组,与对照组比较均有显著性差异(p<0.05); DcR3干预组肺泡炎的程度低于博来霉素组,具有统计学差异(p<0.05),且高于对照组具有显著性差异(p<0.05)。对照组肺纤维化程度在各个时间点无明显变化;博来霉素组肺纤维化程度逐渐加重,各时间点与对照组比较均具有显著性差异(p<0.05);DcR3干预组肺纤维化程度也逐渐加重,与对照组比较差异有显著性(p<0.05),28天时肺纤维程度低于博来霉素组,有显著性差异(p<0.05)。ELISA法检测羟脯氨酸结果:博来霉素组羟脯氨酸含量高于对照组,DcR3干预组羟脯氨酸含量高于对照组但低于博来霉素组,具有统计学差异(p<0.05)。Western blot法及免疫组织化学法检测Fas、FasL及caspase3表达情况显示:博来霉素组上述因子表达高于对照组,具有统计学意义(p<0.05),DcR3组高于对照组而低于博来霉素组,且具有统计学意义(p<0.05)。TUNEL法结果显示博来霉素组肺组织细胞凋亡指数高于正常对照组,有显著性差异(p<0.05),DcR3干预组肺组织细胞凋亡指数低于博来霉素组,有显著性差异(p<0.05),但高于正常对照组,有显著性差异(p<0.05)。
     结合以上实验结果:DcR3可以在体外抑制Fas/FasL诱导的大鼠肺泡上皮细胞(CCL-149)的凋亡,动物实验发现DcR3干预组肺泡炎程度和肺纤维化程度低于博来霉素组,且DcR3干预组Fas、FasL及caspase3表达低于博来霉素组,因此我们推测,在博莱霉素的肺纤维化动物模型中,早期给予DcR3可能通过抑制Fas/FasL介导的肺泡上皮细胞的凋亡而减轻肺纤维化的发展过程,该研究不仅完善了肺纤维的发病机制,也对指导临床治疗有重大的意义。
The interstitial lung diseases (ILDs) represent a large number of conditionsthat involve the parenchyma of the lung. This group of disorders is classifiedtogether because of similar clinical manifestations of exertional dyspnea,roentgenographic diffuse infiltration, restrictive pulmonary function,decreasedDLCO and hypoxemia, and pathologic manifestations of alveolitis and fibrosis.
     It is not clarified clearly about the pathogenesis of ILD. Usually theoccurrence is divided into three phases, initiation stage, progression stage and endstage. Pathogenic factors are usually toxins and antigens. Exposure to thepathogenic factors can lead to alveolitis which is the most important part ofILD.The activation of inflammatory cells and immunocytes can release oxygenradicals and other toxins and injure typeⅠalveolar epithelial cells and capillaryendothelial cells. Alveolitis also can lead to injury of interstitium, collagen tissueand basement membrane by releasing proteinase.When alveolitis progress andlead to severe injury in the lungs, there may be fibroblasts proliferations, collagendeposit and formation of fibrosis.When the fibrosis produce, the injury ofalveolar wall can not be repaired.
     The injury of alveolar epithelial cells can lead apoptosis of large number ofalveolar epithelial cells, and Fas/FasL signal pathway is an important reason forthe apoptosis. While DcR3can bind to FasL and block the Fas/FasL pathway,thenreduce the apoptosis. We suppose that the administration of DcR3to the ILDpatient in the early stage may reduce the apoptosis of alveolar epithelial cells andprevent the progression of pulmonary fibrosis.
     In the first part of the study, the CCL-149cells were cultured in vitro. Threegroups were designed: control group, FasL group and DcR3group.The cellswere incubated with FasL to induce apoptosis in FasL group, and in DcR3group the cells were incubated with FasL and DcR3together. The cells were gated andanalyzed by MTT and flow cytometry for apoptosis. The expression of Fas andcaspase3were analyzed by RT-PCR and Western blot. MTT and flow cytometryresults showed: apoptosis percentage of DcR3group were lower than FasL groupand there was significant difference (p<0.05). RT-PCR and Western blot resultsshowed: the expression of Fas of DcR3group is lower than FasL group. Theresults suggest that DcR3can inhibit the apoptosis of CCL-149cells induced byFasL.
     In the second part, we established pulmonary fibrosis model in rat byinstillation with bleomycin into the tracheal. The rats are divided into threegroups: control group, bleomycin group, and DcR3group.The rats in controlgroup and bleomycin group were injected intravenously with normal saline0.5mlevery other day and the rats in DcR3group were injected intravenously withDcR3protein(3.33μg/kg) every other day from the beginning of the model. Therats were sacrificed at the time of7d,21d and28d respectively. The right lungswere submerged in10%paraformaldehyde solution, paraffin-embedded, stainedsections in order to organize staining. The left lungs were saved for the detectionof Fas、FasL and caspase3by Western blot. The serum were collected for thedetection of hydroxyproline by ELLISA.
     Histopathology results showed: control group: the structure of lungs arenormal at all the time of7d,14d and28d and Masson staining showed no greencollagen deposit. Bleomycin group: At7d,the structure of alveolar was clear andinfiltrated with large number of neutrophils and macrophages. At14d, alveolarseptum were thick and infiltrated with neutrophils,there were small amount offibroblasts in the interstitium.Masson staining showed small amount of greencollagen deposit. At28d, the inflammatory cells reduced and the structure ofalveolar were destroyed.The alveolar septum were significantly thickened,andthere were large amount of fibroblasts proliferation and fibrosis produced.Masson staining showed large amount of green collagen deposit.DcR3groups: the degrees the alveolitis and fibrosis were lower than bleomycin group andhigher than control group. Pathological assessment: the extent of alveolitis ofDcR3group manifested as a gradual reducing, the degree of inflammation werelower than the bleomycin group, there was significant difference (p<0.05); theextent of pulmonary fibrosis of DcR3group were lower than the bleomycingroup and there was significantly different (p<0.05).
     The result of hydroxyproline content in serum by ELISA showed: thehydroxyproline content of DcR3group was lower than bleomycin group buthigher than control group, there were significantly different (p<0.05). Westernblot results showed: At28d,the expression of Fas,FasL and caspase3inbleomycin group were higher than control group, there was significantly different(p<0.05), the expression of Fas, FasL and caspase3in DcR3group were lowerthan bleomycin group, and there were significantly different (p<0.05). TheImmunohistochemistry results showed: the expression of Fas, FasL and caspase3in the lungs of DcR3group are lower than bleomycin group but higher thancontrol group, and there were significantly different (p<0.05). The TUNELresults showed:the cell apoptosis index of DcR3group are lower than bleomycingroup but higher than control group, and there were significantly different(p<0.05).
     Combining the results of experiments, the following conclusions can bedrawn: DcR3can reduce the apoptosis of alveolar epithelial cells induced byFas/FasL pathway in CCL-149in vitro. In the pulmonary fibrosis animalmodel,the degree of alveolitis and the pulmonary fibrosis in DcR3group werelower than bleomycin group.Thus,in the pulmonary fibrosis animal modelinduced by bleomycin,the administration of DcR3may reduce the progression ofpulmonary fibrosis through inhibiting the apoptosis of alveolar epithelial cellsinduced by Fas/FasL signal pathway. The study improved the pathogenesis ofpulmonary fibrosis, and also has great significance to the clinical treatment.
引文
[1] Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, et al.Genomic amplification of a decoy receptor for Fas ligand in lung and coloncancer. Nature1998;396:699–703.
    [2] Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS. A newly identifiedmember of tumor necrosis factor receptor superfamily (TR6) suppressesLIGHT-mediated apoptosis. J Biol Chem1999;274:13733–6.
    [3] Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, et al. TL1A is aTNF-like ligand for DR3and TR6/DcR3and functions as a T cellcostimulator. Immunity2002;16:479–92.
    [4] Bai C, Connolly B, Metzker ML, Hilliard CA, Liu X, Sandig V, et al.Overexpression of M68/DcR3in human gastrointestinal tract tumorsindependent of gene amplification and its location in a four-gene cluster.Proc Natl Acad Sci USA2000;97:1230–5.
    [5] Bridgham JT, Johnson AL. Characterization of chicken TNF-αsuperfamilydecoy receptors. DcR3and osteoprotegerin. Biochem Biophys ResCommun2003;307:956–61.
    [6] Liu L, Fujiki K, Dixon B, Sundick RS. Cloning of a novel rainbow trout(Oncorhynchus mykiss) CC chemokine with a fractalkine-like stalk and aTNF decoy receptor using cDNA fragments containing AU-rich elements.Cytokine2002;17:71–81.
    [7] Tsutsui S, Yoshino Y, Matsui S, Nakamura O, Muramoto K, WatanabeT.Isolation of epidermal cells and cDNA cloning of TNF decoy receptor3of conger eel, Conger myriaster. Fish Shellfish Immunol2008;24:366–71.
    [8] Inoue Y, Morinaga A, Takizawa F, Saito T, Endo M, Haruta C, et al.Molecular cloning and preliminary expression analysis of banded dogfish(Triakis scyllia) TNF decoy receptor3(TNFRSF6B). Fish ShellfishImmunol2008;24:360–5.
    [9] Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in theimmune system. Immunity2009;30:180–92.
    [10] Ware CF. Targeting lymphocyte activation through the lymphotoxin andLIGHT pathways. Immunol Rev2008;223:186–201.
    [11] Ware CF. Targeting the LIGHT–HVEM pathway. Adv Exp Med Biol2009;647:146–55.
    [12] Sethi G, Sung B, Aggarwal BB. Therapeutic potential of VEGI/TL1A inautoimmunity and cancer. Adv Exp Med Biol2009;647:207–15.
    [13] Bayry J. Immunology: TL1A in the inflammatory network in autoimmunediseases. Nat Rev Rheumatol2010;6:67–8.
    [14] Barnhart BC, Alappat EC, Peter ME. The CD95type I/type II model. SeminImmunol2003;15:185–93.
    [15] Whiteside TL. The role of death receptor ligands in shaping tumormicroenvironment. Immunol Invest2007;36:25–46.
    [16] Kondo T, Suda T, Fukuyama H, Adachi M, Nagata S. Essential roles of theFas ligand in the development of hepatitis. Nat Med1997;3:409–13.
    [17] Kuwano K, Hagimoto N, Kawasaki M, Yatomi T, Nakamura N, Nagata S, etal. Essential roles of the Fas–Fas ligand pathway in the development ofpulmonary fibrosis. J Clin Invest1999;104:13–9.
    [18] Palao G, Santiago B, Galindo MA, Rullas JN, Alcami J, Ramirez JC, et al.Fas activation of a proinflammatory program in rheumatoid synoviocytesand its regulation by FLIP and caspase8signaling. Arthritis Rheum2006;54:1473–81.
    [19] Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, Yu GL, et al.LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha areligands for herpesvirus entry mediator. Immunity1998;8:21–30.
    [20] Crowe PD, VanArsdale TL, Walter BN, Ware CF, Hession C, Ehrenfels B, etal. A lymphotoxin-beta-specific receptor. Science1994;264:707–10.
    [21] Chen MC, Hwang MJ, Chou YC, Chen WH, Cheng G, Nakano H, et al. Therole of apoptosis signal-regulating kinase1in lymphotoxin-betareceptor-mediated cell death. J Biol Chem2003;278:16073–81.
    [22] Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D, et al.Modulation of T-cell-mediated immunity in tumor and graft-versus-hostdisease models through the LIGHT co-stimulatory pathway. Nat Med2000;6:283–9.
    [23] Tumanov AV, Christiansen PA, Fu YX. The role of lymphotoxin receptorsignaling in diseases. Curr Mol Med2007;7:567–78.
    [24] Wang J, Fu YX. Tumor necrosis factor family members and inflammatorybowel disease. Immunol Rev2005;204:144–55.
    [25] Lee WH, Kim SH, Lee Y, Lee BB, Kwon B, Song H, et al. Tumor necrosisfactor receptor superfamily14is involved in atherogenesis by inducingproinflammatory cytokines and matrix metalloproteinases. ArteriosclerThromb Vasc Biol2001;21:2004–10.
    [26] Lo JC,WangY,TumanovAV, Bamji M,Yao Z,ReardonCA, et al.Lymphotoxinbeta receptor-dependent control of lipid homeostasis. Science2007;316:285–8.
    [27] Edwards JR, Sun SG, Locklin R, Shipman CM, Adamopoulos IE, AthanasouNA, et al. LIGHT (TNFSF14), a novel mediator of bone resorption, iselevated in rheumatoid arthritis. Arthritis Rheum2006;54:1451–62.
    [28] Anders RA, Subudhi SK, Wang J, Pfeffer K, Fu YX. Contribution of thelymphotoxin beta receptor to liver regeneration. J Immunol2005;175:1295–300.
    [29] Yang CR, Hsieh SL, Teng CM, Ho FM, SuWL, Lin WW. Soluble decoyreceptor3induces angiogenesis by neutralization of TL1A, a cytokinebelonging to tumor necrosis factor superfamily and exhibiting angiostaticaction. Cancer Res2004;64:1122–9
    [30] Chew LJ, Pan H, Yu J, Tian S, Huang WQ, Zhang JY, et al. A novel secretedsplice variant of vascular endothelial cell growth inhibitor. FASEB J2002;16:742–4.
    [31] Bamias G, Kaltsa G, Siakavellas SI, Papaxoinis K, Zampeli E, MichopoulosS, et al. High intestinal and systemic levels of decoy receptor3(DcR3) andits ligand TL1A in active ulcerative colitis. Clin Immunol2010;137:242–9.
    [32] Bamias G, Siakavellas SI, Stamatelopoulos KS, Chryssochoou E,Papamichael C, Sfikakis PP. Circulating levels of TNF-like cytokine1A(TL1A) and its decoy receptor3(DcR3) in rheumatoid arthritis. ClinImmunol2008;129:249–55.
    [33] Bamias G, Mishina M, Nyce M, Ross WG, Kollias G, Rivera-Nieves J, et al.Role of TL1A and its receptor DR3in two models of chronic murine ileitis.Proc Natl Acad Sci USA2006;103:8441–6.
    [34] Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H, Jewell D, etal. Single nucleotide polymorphisms in TNFSF15confer susceptibility toCrohn’s disease. Hum Mol Genet2005;14:3499–506.
    [35] Green DR. Apoptosis. Death deceiver. Nature1998;396:629–30.
    [36] Roth W, Isenmann S,NakamuraM, Platten M, Wick W, Kleihues P, et al.Soluble decoy receptor3is expressed by malignant gliomas and suppressesCD95ligand-induced apoptosis and chemotaxis. Cancer Res2001;61:2759–65.
    [37] Connolly K, Cho YH, Duan R, Fikes J, Gregorio T, LaFleur DW, et al. Invivo inhibition of Fas ligand-mediated killing by TR6, a Fas ligand decoyreceptor. J Pharmacol Exp Ther2001;298:25–33.
    [38] Tsuji S, Hosotani R, Yonehara S,Masui T, Tulachan SS, Nakajima S, et al.Endogenousdecoyreceptor3blocks the growthinhibitionsignalsmediatedbyFas ligand in human pancreatic adenocarcinoma. Int JCancer2003;106:17–25.
    [39] Chen PH, Yang CR. Decoy receptor3expression in AsPC-1humanpancreatic adenocarcinoma cells via the phosphatidylinositol3-kinase-,Akt-, and NFkappa B-dependent pathway. J Immunol2008;181:8441–9.
    [40] Zhang J, Salcedo TW,Wan X, Ullrich S, Hu B, Gregorio T, et al. Modulationof Tcell responses to alloantigens by TR6/DcR3. J Clin Invest2001;107:1459–68.
    [41] Han B,WuJ. DcR3protects islet beta cells from apoptosis throughmodulating Adcyap1and Bank1expression. J Immunol2009;183:8157–66.
    [42] Hsu TL, Chang YC, Chen SJ, Liu YJ, Chiu AW, Chio CC, et al. Modulationof dendritic cell differentiation and maturation by decoy receptor3. JImmunol2002;168:4846–53.
    [43] Hsu TL, Wu YY, Chang YC, Yang CY, Lai MZ, Su WB, et al. Attenuation ofTh1response in decoy receptor3transgenic mice. J Immunol2005;175:5135–45.
    [44] Chang YC, Hsu TL, Lin HH, Chio CC, Chiu AW, Chen NJ, et al.Modulation of macrophage differentiation and activation by decoy receptor3. J Leukoc Biol2004;75:486–94.
    [45] Chang YC, Chen TC, Lee CT, Yang CY, Wang HW, Wang CC, et al.Epigenetic control of MHC class II expression in tumor-associatedmacrophages by decoy receptor3. Blood2008;111:5054–63.
    [46] Hsu MJ, Lin WW, Tsao WC, Chang YC, Hsu TL, Chiu AW, et al. Enhancedadhesion of monocytes via reverse signaling triggered by decoy receptor3.Exp Cell Res2004;292:241–51.
    [47] Yang CR, Hsieh SL, Ho FM, Lin WW. Decoy receptor3increases monocyteadhesion to endothelial cells via NF-kappa B-dependent up-regulation ofintercellular adhesion molecule-1, VCAM-1, and IL-8expression. JImmunol2005;174:1647–56.
    [48] Tateishi K, Miura Y, Hayashi S, Takahashi M, Kurosaka M. DcR3protectsTHP-1macrophages from apoptosis by increasing integrin alpha4.Biochem Biophys Res Commun2009;389:593–8.
    [49] Yang CR, Wang JH, Hsieh SL, Wang SM, Hsu TL, Lin WW. Decoy receptor3(DcR3) induces osteoclast formation from monocyte/macrophage lineageprecursor cells. Cell Death Differ2004;11(Suppl.1):S97–107.
    [50] Tang CH, Hsu TL, Lin WW, Lai MZ, Yang RS, Hsieh SL, et al. Attenuationof bone mass and increase of osteoclast formation in decoy receptor3transgenic mice. J Biol Chem2007;282:2346–54.
    [51] Wu YY, Chang YC, Hsu TL, Hsieh SL, Lai MZ. Sensitization of cells toTRAILinduced apoptosis by decoy receptor3. J Biol Chem2004;279:44211–8.
    [52] You RI, Chang YC, Chen PM, Wang WS, Hsu TL, Yang CY, et al. Apoptosisof dendritic cells induced by decoy receptor3(DcR3). Blood2008;111:1480–8.
    [53] Chang YC, Chan YH, Jackson DG, Hsieh SL. Theglycosaminoglycan-binding domain of decoy receptor3is essential forinduction of monocyte adhesion. J Immunol2006;176:173–80.
    [54] Li H, Zhang L, Lou H, Ding I, Kim S, Wang L, et al. Overexpression ofdecoy receptor3in precancerous lesions and adenocarcinoma of theesophagus. Am J Clin Pathol2005;124:282–7.
    [55] Takahama Y, Yamada Y, Emoto K, Fujimoto H, Takayama T, Ueno M, et al.The prognostic significance of overexpression of the decoy receptor for Fasligand (DcR3) in patients with gastric carcinomas. Gastric Cancer2002;5:61–8.
    [56] Ibrahim SM, Ringel J, Schmidt C, Ringel B, Muller P, Koczan D, et al.Pancreatic adenocarcinoma cell lines show variable susceptibility toTRAIL-mediated cell death. Pancreas2001;23:72–9.
    [57] Arakawa Y, Tachibana O, Hasegawa M, Miyamori T, Yamashita J, HayashiY. Frequent gene amplification and overexpression of decoy receptor3inglioblastoma. Acta Neuropathol2005;109:294–8.
    [58] Macher-Goeppinger S, Aulmann S, Wagener N, Funke B, Tagscherer KE,Haferkamp A, et al. Decoy receptor3is a prognostic factor in renal cellcancer. Neoplasia2008;10:1049–56.
    [59] Connor JP, Felder M. Ascites from epithelial ovarian cancer contain highlevels of functional decoy receptor3(DcR3) and is associated withplatinum resistance. Gynecol Oncol2008;111:330–5.
    [60] Ohshima K, Haraoka S, Sugihara M, Suzumiya J, Kawasaki C, Kanda M, etal. Amplification and expression of a decoy receptor for fas ligand (DcR3)in virus (EBV or HTLV-I) associated lymphomas. Cancer Lett2000;160:89–97.
    [61] Chang PM, Chen PM, Hsieh SL, Tzeng CH, Liu JH, Chiou TJ, et al.Expression of a soluble decoy receptor3in patients with diffuse largeB-cell lymphoma predicts clinical outcome. Int J Oncol2008;33:549–54.
    [62] Brunetti G, Oranger A, Mori G, Centonze M, Colaianni G, Rizzi R, et al. Theformation of osteoclasts in multiple myeloma bone disease patientsinvolves the secretion of soluble decoyreceptor3.AnnNYAcadSci2010;1192:298–302.
    [63] Tu HF, Liu CJ, Liu SY, Chen YP, Yu EH, Lin SC, et al. Serum decoyreceptor3level: a predictive marker for nodal metastasis and survivalamong oral cavity cancer patients. Head Neck2011;33:396–402.
    [64] Chen G, Luo D. Expression of decoy receptor3in liver tissue microarrays.Natl Med J India2008;21:275–8.
    [65] Kim S, Kotoula V, Hytiroglou P, Zardavas D, Zhang L. Significance ofincreased expression of decoy receptor3in chronic liver disease. Dig LiverDis2009;41:591–8.
    [66] Wu Y, Han B, Sheng H, Lin M, Moore PA, Zhang J, et al. Clinicalsignificance of detecting elevated serum DcR3/TR6/M68in malignanttumor patients. Int J Cancer2003;105:724–32.
    [67] Chen J, Zhang L, Kim S. Quantification and detection of DcR3, a decoyreceptor in TNFR family. J Immunol Methods2004;285:63–70.
    [68] Simon I, Liu Y, Krall KL, Urban N, Wolfert RL, Kim NW, et al. Evaluationof the novel serum markers B7-H4, Spondin2, and DcR3for diagnosis andearly detection of ovarian cancer. Gynecol Oncol2007;106:112–8.
    [69] Mild G, Bachmann F, Boulay JL, Glatz K, Laffer U, Lowy A, et al. DCR3locus is a predictive marker for5-fluorouracil-based adjuvantchemotherapy in colorectal cancer. Int J Cancer2002;102:254–7.
    [70] Shen HW, Gao SL, Wu YL, Peng SY. Overexpression of decoy receptor3inhepatocellular carcinoma and its association with resistance to Fasligandmediated apoptosis. World J Gastroenterol2005;11:5926–30.
    [71] Buffart TE, van Grieken NC, Tijssen M, Coffa J, Ylstra B, Grabsch HI, et al.High resolution analysis of DNA copy-number aberrations ofchromosomes8,13, and20in gastric cancers. Virchows Arch2009;455:213–23.
    [72] Xiong G, Guo H, Wang K, Hu H, Wang D, Xu X, et al. Polymorphisms ofdecoy receptor3are associated with risk of esophageal squamous cellcarcinoma in Chinese Han. Tumour Biol2010;31:443–9.
    [73] Douet-Guilbert N, Lai JL, Basinko A, Gueganic N, Andrieux J, Pollet B, etal. Fluorescence in situ hybridization characterization of ider(20q) inmyelodysplastic syndrome. Br J Haematol2008;143:716–20.
    [74] Otsuki T, Tomokuni A, Sakaguchi H, Aikoh T, Matsuki T, Isozaki Y, et al.Overexpression of the decoy receptor3(DcR3) gene in peripheral bloodmononuclear cells (PBMC) derived from silicosis patients. Clin ExpImmunol2000;119:323–7.
    [75] Kim S, McAuliffe WJ, Zaritskaya LS, Moore PA, Zhang L, Nardelli B.Selective induction of tumor necrosis receptor factor6/decoy receptor3release by bacterial antigens in human monocytes and myeloid dendriticcells. Infect Immun2004;72:89–93.
    [76] Funke B, Autschbach F, Kim S, Lasitschka F, Strauch U, Rogler G, et al.Functional characterisation of decoy receptor3in Crohn’s disease. Gut2009;58:483–91.
    [77] Lee CS, Hu CY, Tsai HF, Wu CS, Hsieh SL, Liu LC, et al. Elevated serumdecoy receptor3with enhanced T cell activation in systemic lupuserythematosus. Clin Exp Immunol2008;151:383–90.
    [78] Chen CC, Yang YH, Lin YT, Hsieh SL, Chiang BL. Soluble decoy receptor3: increased levels in atopic patients. J Allergy Clin Immunol2004;114:195–7.
    [79] Chen SJ, Wang YL, Kao JH, Wu SF, Lo WT, Wu CC, et al. Decoy receptor3ameliorates experimental autoimmune encephalomyelitis by directlycounteracting local inflammation and downregulating Th17cells. MolImmunol2009;47:567–74.
    [80] Ka SM, Sytwu HK, Chang DM, Hsieh SL, Tsai PY, Chen A. Decoy receptor3ameliorates an autoimmune crescentic glomerulonephritis model in mice.J Am Soc Nephrol2007;18:2473–85.
    [81] Chen CY, Yang KY, Chen MY, Chen HY, Lin MT, Lee YC, et al. Decoyreceptor3levels in peripheral blood predict outcomes of acute respiratorydistress syndrome. Am J Respir Crit Care Med2009;180:751–60.
    [82] Hou YQ, Xu P, Zhang M, Han D, Peng L, Liang DY, Yang S, ZhangZ, Hong J, Lou XL, Zhang L, Kim S. Serum decoy receptor3, a potentialnew biomarker for sepsis. Clin Chim Acta.2012Apr11;413(7-8):744-8.
    [83] Ho CH, Hsu CF, Fong PF, Tai SK, Hsieh SL, Chen CJ. Epstein–Barr virustranscription activator Rta upregulates decoy receptor3expression bybinding to its promoter. J Virol2007;81:4837–47.
    [84] Kim S, Fotiadu A, Kotoula V. Increased expression of soluble decoyreceptor3in acutely inflamed intestinal epithelia. Clin Immunol2005;115:286–94.
    [85] Fayad R, Brand MI, Stone D, Keshavarzian A, Qiao L. Apoptosis resistancein ulcerative colitis: high expression of decoy receptors by lamina propriaT cells. Eur J Immunol2006;36:2215–22.
    [86] Maeda T, Hao C, Tron VA. Ultraviolet light (UV) regulation of the TNFfamily decoy receptors DcR2and DcR3in human keratinocytes. J CutanMed Surg2001;5:294–8.
    [87] Bobe J, Goetz FW. A tumor necrosis factor decoy receptor homologue isupregulated in the brook trout (Salvelinus fontinalis) ovary at thecompletion of ovulation. Biol Reprod2000;62:420–6.
    [88] Chen HF, Chen JS, Shun CT, Tsai YF, Ho HN. Decoy receptor3expressionduring the menstrual cycle and pregnancy, and regulation by sex steroids inendometrial cells in vitro. Hum Reprod2009;24:1350–8.
    [89] Sugimoto M, Kagawa N, Morita M, Kume S,Wongpanit K, Jin H, et al.Changes in the expression of decoy receptor3in granulosa cells duringfollicular atresia in porcine ovaries. J Reprod Dev2010;56:467–74
    [90] Gill RM, ColemanNM, Hunt JS. Differential cellular expression of LIGHTand its receptors in early gestation human placentas. J Reprod Immunol2007;74:1–6.
    [91] Wu SF, Liu TM, Lin YC, Sytwu HK, Juan HF, Chen ST, et al.Immunomodulatory effect of decoy receptor3on the differentiation andfunction of bone marrowderived dendritic cells in nonobese diabetic mice:from regulatory mechanism to clinical implication. J Leukoc Biol2004;75:293–306.
    [92] Wang YL, Chou FC, Sung HH, Fan PL, Hsueh CW, Lin WC, et al. Decoyreceptor3protects non-obese diabetic mice from autoimmune diabetes byregulating dendritic cell maturation and function. Mol Immunol2010;47:2552–62.
    [93] SungHH, JuangJH,LinYC,KuoCH,HungJT,ChenA, et al.Transgenicexpressionof decoy receptor3protects islets from spontaneous andchemical-induced autoimmune destruction in nonobese diabetic mice. JExp Med2004;199:1143–51.
    [94] Kawamoto K, Tanemura M, Nishida T, Fukuzawa M, Ito T, Matsuda H.Significant inhibition of human CD8(+) cytotoxic T lymphocyte-mediatedxenocytotoxicity by overexpression of the human decoy Fas antigen.Transplantation2006;81:789–96.
    [95] Zhang J, Wang X, Fahmi H, Wojcik S, Fikes J, Yu Y, et al. Role of TL1A inthe pathogenesis of rheumatoid arthritis. J Immunol2009;183:5350–7.
    [96] Bull MJ,Williams AS, Mecklenburgh Z, Calder CJ, Twohig JP, Elford C, etal. The Death Receptor3–TNF-like protein1A pathway drives adversebone pathology in inflammatory arthritis. J Exp Med2008;205:2457–64.
    [97] Ishida S, Yamane S, Ochi T, Nakano S, Mori T, Juji T, et al. LIGHT inducescell proliferation and inflammatory responses of rheumatoid arthritissynovial fibroblasts via lymphotoxin beta receptor. J Rheumatol2008;35:960–8.
    [98] Mueller AM, Pedre X, Killian S, David M, Steinbrecher A. The decoyreceptor3(DcR3, TNFRSF6B) suppresses Th17immune responses and isabundant in human cerebrospinal fluid. J Neuroimmunol2009;209:57–64.
    [99] Kugathasan S, Baldassano RN, Bradfield JP, Sleiman PM, Imielinski M,Guthery SL, et al. Loci on20q13and21q22are associated withpediatric-onset inflammatory bowel disease. Nat Genet2008;40:1211–5.
    [100] Davis PB, Drumm M, Konstan MW: Cystic fibrosis. Am J Respir Crit CareMed1996,154:1229-1256.
    [101] Jindal SK, Gupta D: Incidence and recognition of interstitial pulmonaryfibrosis in developing countries. Curr Opin Pulm Med1997,3:378-383.
    [102]Katzenstein AL, Myers JL: Idiopathic pulmonary fibrosis: clinicalrelevance of pathologic classification. Am J Respir Crit Care Med1998,157:1301-1315.
    [103] Antoniou KM, Alexandrakis MG. Cytokine network in the pathogenesis ofidionpathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis,2005,22(2):91.
    [104] Ganesh Raghu, Kevin K Brown. A Placebo-controlled trail ofinterferon gamma-1b in patients with idionpathic pulmonary fibrosis. NEngl J Med,2004,350:125.
    [105] Cheryl L. Fattman. Apoptosis in Pulmonary Fibrosis:Too much or NotEnough? Antioxidants and Redox Signaling,2008,10:2,379-385.
    [106]Kuwano K,Kunitake R,Kawasaki M,Nomoto Y,Hagimoto N,NakanishiY,and Hara N. P21Waf1/Cip1/Sdi1and p53expression in association withDNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit CareMed154:477-483,1996
    [107] Uhal BD,Joshi I,Hughes WF, Ramos C, Pardo A, and Selman M. Alveolarepithelial cell death adjacent to underlying myofibroblasts in advancedfibrotic human lung. Am J Physiol,1998,275: L1192-1199.
    [108] Plataki M, Koutsopoulos AV, Darivianaki K, Delides G, Siafakas NM, andBouros D. Expression of apoptotic and antiapoptotic markers in epithelialcells in idiopathic pulmonary fibrosis. Chest2005,127:266-274.
    [109] DosReis GA and Borges VM. Role of Fas-ligand induced apoptosis inpulmonary inflammation and injury. Curr Drug Targets inflamm Allergy,2003.2:161-167.
    [110] Matute-Bello G, Liles WC, Steinberg KP, etal. Soluble Fas ligand inducesepithelial cell apoptosis in humans with acute lung injury(ARDS). JImmunol1999,163:2217-2225.
    [111] Albertine KH, Soulier MF, Wang Z, etal. Fas and fas ligand areup-regulated in pulmonary edema fluid and lung tissue of patients withacute lung injury and the acute respiratory distress syndrome. Am J Pathol161:1783-1796,2002.
    [112] Kuwano K, Miyazaki H, Hagimoto N, etal. The involvement of Fas-Fasligand pathway in fibrosing lung diseases. Am J Respir Cell Mol Biol20:53-60,1999.
    [113] Golan-Gerst lR, Wallach-Dayan SB, Amir G, Breuer R. Epithelial cellapoptosis by fasl igand-positive myofibroblasts in lung fibrosis. Am JRespir Cell Mol Biol36:270-275,2007.
    [114] Hagimoto N, KuwanoK, InoshimaI, et al. TGF-beta1as an enhancer ofFas-mediated apoptosis of lung epithelial cells. JImmunol168:6470-6478,2002.
    [115] Yuan BJ, Liu ZZ, Ding XR, et al. Levels and clinic significance of serumsoluble Fas and soluble Fas ligand in coal workers' pneumoconiosis[J].Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2006Feb;24(2):96-8.
    [116] Li JZ, Li YJ, Li ZH, et al. Cell apoptosis and the change of Fas/FasL genein experimental pulmonary fibrosis[J].Zhonghua Jie He He Hu Xi Za Zhi,2005Mar;28(3):184-7.
    [117] Kuwano K, Hagimoto N, Kawasaki M, etal. Essential roles of theFas-Fasligand pathway in the development of pulmonary fibrosis. J Clin Invest104:13-19,1999.
    [118] Hagimoto N, Kuwano K, Miyazaki H, et al. Induction of apoptosis andpulmonary fibrosis in mice in response to ligation of Fas antigen. Am JRespir Cell Mol Biol17:272-278,1997.
    [119] Zhang K, Rekhter MD, Gordon D, Phan SH: Myofibroblasts and their rolein lung collagen gene expression during pulmonary fibrosis. A combinedimmunohistochemical and in situ hybridization study. Am J Pathol1994,145:114-125.
    [120] Zhang HY, Phan SH: Inhibition of myofibroblast apoptosis bytransforming growth factor beta(1). Am J Respir Cell Mol Biol1999,21:658-665.
    [121] Moodley YP, Caterina P, Scaffidi AK, Misso NL, Papadimitriou JM,McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA: Comparison of themorphological and biochemical changes in normal human lung fibroblastsand fibroblasts derived from lungs of patients with idiopathic pulmonaryfibrosis during FasL-induced apoptosis. J Pathol2004,202:486-495.
    [122] Moodley YP, Misso NL, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ,Laurent GJ, Thompson PJ, Knight DA: Inverse effects of interleukin-6onapoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am JRespir Cell Mol Biol2003,29:490-498.
    [123] Tanaka T, Yoshimi M, Maeyama T, Hagimoto N, Kuwano K, Hara N:Resistance to Fas-mediated apoptosis in human lung fibroblast. Eur RespirJ2002,20:359-368.
    [124] Terzaghi M, Nettesheim P, Williams ML. Repopulation of denuded trachealgrafts with normal, preneoplastic, and neoplastic epithelial cellp opulations.Cancer Res38:4546-4553,1978.
    [125] Wang R, Ramos C, Joshi I, Zagariya A, Pardo A, Selman M, and Uhal BD.Human lung myofibroblast-derived inducers of alveolar epithelialapoptosis identified as angiotensin peptides. Am J Physiol277:L1158-1164,1999.
    [126] Regina G, Shulamit B, Wallach-Dayan, Gail A and Raphael B. Epithelialcell apoptosis by Fas ligand–positive myofibroblasts in lung fibrosis Am JRespir Cell and Mol Biol.2007,36:270-275.
    [127] Connolly, K; Cho, YH; Duan, R, et al. In vivo inhibition of Fasligand-mediated killing by TR6, a Fas ligand decoy receptor. J PharmacolExp Ther.2001;298:25–33.
    [128] Wortinger MA, Foley JW, Larocque P, Witcher DR, Lahn M, JakubowskiJA, Glasebrook A, Song HY. Fas ligand-induced murine pulmonaryinflammation is reduced by a stable decoy receptor3analogue.Immunology,2003Oct;110(2):225-33.
    [129]王秀丽,尹金植,马忠森等.特发性肺间质纤维化病人外周血单核细胞中DcR3基因表达的意义[J].中国老年学杂志,2004,24(12):1129-31.
    [130] Wu CF, Ma ZS, Wang XL, Yang JL, Yang Y, Zhang Y, Tumen WL, QiaoJH. Preparation and identification of monoclonal antibodies against humanDcR3. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.2008Feb;24(2):139-41.
    [131]吴春风,马忠森,王秀丽等.人DcR3融合蛋白的表达、纯化及多克隆抗体的制备。细胞与分子免疫学杂志,2007,23(12):1160-62.
    [132] Szapiel SV,Elson NA,Fulmur JD,et al.Bleomycin-induced interstitialpulmonary disease in the nude,athymic mouse.Am Rev Respir Dis,1979,120(3):893-897.
    [133] Moeller A, Ask K, Warburton D, et al. The bleomycin animal model: auseful tool to investigate treatment options for idiopathic pulmonaryfibrosis? Int J Biochem Cell Biol.2008;40:362–382.
    [134] Hoshino T, Okamoto M, Sakazaki Y, et al. Role of proinflammatorycytokines IL-18and IL-1beta in bleomycin-induced lung injury in humansand mice. Am J Respir Cell Mol Biol.2009;41:661–670.
    [135] Chung MP, Monick MM, Hamzeh NY, et al. Role of repeated lung injuryand genetic background in bleomycin-induced fibrosis. Am J Respir CellMol Biol.2003;29:375–380.
    [136] Connolly K,Cho YH,Duan R,et al. In vivo inhibition of Fas ligand-mediated killing by TR6,a Fas ligand decoy receptor [J].J Pharmacol ExpTher,2001,298(5):25-33.
    [137] Wortinger MA,Foley JW,Larocque P,et al.Fas ligand-induced murinepulmonary inflammation is reduced by a stable decoy receptor3analogue[J].Immunology,2003,110(2):225-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700