肺炎链球菌毒力蛋白基因工程疫苗优势抗原筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     肺炎链球菌是引起社区获得性肺炎、中耳炎、菌血症及儿童脑膜炎的主要致病菌,发展中国家每年有超过500万例的5岁以下儿童死于肺炎链球菌感染。目前控制肺炎链球菌感染的手段是抗生素治疗,但是日趋严重的肺炎链球菌耐药问题已成为全球公共卫生领域的重大难题,亦危及肺炎链球菌的治疗效果。应用疫苗防治肺炎链球菌感染是目前WHO提出减少耐药菌传播、缓解抗生素耐药压力,保护高危人群的唯一方法。
     目前应用的传统肺炎链球菌疫苗(23价荚膜多糖疫苗和7价蛋白-多糖结合疫苗)存在血清型依赖、针对高危人群保护不足、价格高昂等诸多不足,研究新一代肺炎链球菌DNA和蛋白疫苗因其广覆盖、高效能、低成本的优势在发展中国家具有深远的社会价值和经济效益。
     选择广泛覆盖、高度保守、具备强免疫原性的靶抗原是研究基因疫苗的首要问题。肺炎链球菌的众多毒力蛋白在肺炎链球菌感染的不同阶段发挥不同的毒力作用,虽然在众多国内外研究中发现了许多对肺炎链球菌感染具有一定保护性作用的毒力蛋白,但到目前为止尚无一种蛋白被认为具有激发机体针对所有致病肺炎链球菌菌株携带、定殖、迁移及黏附侵袭全过程的免疫保护效能。因此,评估具有协同激发机体保护性免疫的优势抗原组合及针对优势抗原组分的进一步探索研究具有重要意义。
     本课题围绕“肺炎链球菌毒力相关蛋白基因工程疫苗优势抗原筛选”进行了以下研究工作:⑴采集肺炎链球菌感染的社区获得性肺炎患者血清,分析其恢复期血清特异性抗体水平升高情况,评价肺炎链球菌表面蛋白A(pneumococcal surface protein A, PspA)、肺炎链球菌黏附素A(pneumococcal surface adhesion A ,PsaA)及肺炎链球菌溶血素(pneumolysin,Ply)三种毒力蛋白在肺炎链球菌经自然途径感染人体过程中的免疫原性;⑵复制肺炎链球菌鼻咽部定植及腹腔感染动物模型,检测三种毒力蛋白单独或联合形式的免疫原性差异及对肺炎链球菌携带及侵袭性感染的免疫保护效能差异,筛选肺炎链球菌新一代疫苗的优势靶抗原组合形式;⑶进一步利用分子遗传学及免疫学技术针对筛选出的优势抗原蛋白进行分子进化及比较基因组学的初步研究。旨在为肺炎链球菌新一代疫苗的研发提供理论基础和实验室依据。
     方法:
     1.采集临床确诊为肺炎链球菌感染的社区获得性肺炎患者急性期(第0+3天)及恢复期(第21±3天)血清样本,设立同期临床确诊为其它细菌感染的社区获得性肺炎患者和同期临床确断无细菌侵入性感染的其它患者血清样本为对照;酶联免疫吸附法(ELISA)检测肺炎链球菌三种毒力蛋白PsaA,PspA及Ply激发机体血清特异性抗体升高情况,以期评价这三种毒力蛋白作为新一代肺炎链球菌疫苗候选抗原在肺炎链球菌经自然途径感染人体过程中的免疫原性。
     2.分子克隆技术构建Ply减毒突变体PdB的重组真核表达质粒pcDNA3.1-PdB,并应用RT-PCR及免疫印迹(Western-blot)方法检测重组质粒在哺乳动物叙利亚仓鼠肾细胞株BHK-21中的表达。三种重组质粒DNA疫苗pcDNA3.1-PdB(本课题构建)和pcDNA3.1-PsaA(本研究组前期构建)和pcDNA3.1-PspA’(本研究组前期构建,PspA’为PspA的N端表位决定簇所在区域基因片段)以单独或不同的组合方式(pcDNA3.1-PsaA+pcDNA3.1-PspA’, pcDNA3.1-PspA’+pcDNA3.1-PdB, pcDNA3.1-PsaA + pcDNA3.1-PdB,pcDNA3.1-PsaA + pcDNA3.1-PspA’+ pcDNA3.1-PdB)肌肉注射免疫BALB/c小鼠,设立空质粒及PBS组为对照组,ELISA检测免疫小鼠血清中三种蛋白特异性抗体IgG水平;复制BALB/c小鼠肺炎链球菌D39株鼻咽部携带模型和腹腔侵袭性感染模型,观察免疫小鼠鼻咽部肺炎链球菌携带改变和腹腔攻击小鼠21天生存情况,以期筛选出优势的靶抗原蛋白及其组合方式。
     3.采用分子遗传学方法和免疫学技术进一步初步分析肺炎链球菌第三代疫苗优势抗原蛋白的分子进化特点及抗原多样性。
     ⑴采集上呼吸道共生环境中的临床致病轻链球菌家族菌株(包含肺炎链球菌、轻链球菌、口腔链球菌、血链球菌、婴儿链球菌),PCR技术探查临床致病轻链球菌家族菌株基因组中PsaA基因分布情况,应用生物信息学技术比对所有PsaA基因的氨基酸序列及蛋白结构差异;进一步应用分子遗传学技术构建基于看家基因及PsaA基因的系统发生树,并检测PsaA基因内重组情况,以分析PsaA在轻链球菌家族中可能的遗传机制。
     ⑵采集本地区临床致病肺炎链球菌感染菌株及患者恢复期(第21±3天)血清样本,设立同期确诊为非感染性疾病患者血清样本为对照组;应用PspA家族分型特异性引物PCR鉴定本地区临床自然感染肺炎链球菌株PspA家族分布特点, ELISA检测临床肺炎链球菌自然感染情况下各家族亚类间抗原抗体交叉反应情况,分析肺炎链球菌PspA作为新一代肺炎链球菌疫苗优势候选抗原应包含的组成成分。
     结果:
     1.临床肺炎链球菌自然感染患者血清PspA、Ply及PsaA特异性抗体IgG水平
     ⑴实验组急性期血清三种肺炎链球菌毒力蛋白特异性IgG抗体水平与对照组间无显著性差异(P>0.05);实验组恢复期血清的三种肺炎链球菌毒力蛋白特异性IgG抗体水平均高于对照组相应的抗体水平(P<0.01)。
     ⑵实验组恢复期血清三种肺炎链球菌毒力蛋白特异性IgG抗体水平明显高于急性期血清抗体水平(P<0.01),其中PspA和Ply蛋白抗原特异性抗体水平升高更显著。
     2.三种肺炎链球菌毒力蛋白DNA疫苗免疫原性及免疫保护效能
     ⑴三种肺炎链球菌毒力蛋白DNA疫苗免疫小鼠血清中特异性抗体水平
     ①三种肺炎链球菌毒力蛋白DNA疫苗以两种蛋白形式组合的联合免疫组中, PspA’和PsaA的DNA疫苗联合免疫组(pcDNA3.1-PsaA+pcDNA3.1-PspA’组)较单独免疫组(pcDNA3.1-PsaA组,pcDNA3.1-PspA’组)小鼠血清中激发的针对PspA’和PsaA蛋白的特异性抗体水平更高(P<0.01);而PdB分别与PspA’和PsaA联合的DNA疫苗免疫组(pcDNA3.1-PspA’+pcDNA3.1-PdB, pcDNA3.1-PsaA + pcDNA3.1-PdB)与单独免疫组(pcDNA3.1-PdB组)比较小鼠血清中激发的针对PdB蛋白的特异性抗体水平无显著性差异(P>0.05)。
     ②三种肺炎链球菌毒力蛋白DNA疫苗以三种蛋白形式组合的联合免疫组( pcDNA3.1-PsaA + pcDNA3.1-PspA’+ pcDNA3.1-PdB组)较单独免疫组(pcDNA3.1-PsaA组,pcDNA3.1-PspA’组,pcDNA3.1-PdB组)和PdB分别与PspA’和PsaA联合的DNA疫苗免疫组(pcDNA3.1-PspA’+pcDNA3.1-PdB, pcDNA3.1-PsaA + pcDNA3.1-PdB组)小鼠血清中针对PsaA和PsaA蛋白的特异性抗体水平更高(P<0.01),而针对PdB蛋白的特异性抗体水平无显著性差异(P>0.05);但与PsaA和PspA’联合免疫组(pcDNA3.1-PsaA+pcDNA3.1-PspA’)比较小鼠血清中针对PsaA和PspA’蛋白的特异性抗体水平无显著性差异(P>0.05)。
     ⑵三种肺炎链球菌毒力蛋白DNA疫苗免疫保护效能
     ①免疫小鼠鼻咽部定殖7天后鼻腔灌洗液菌落计数提示:PsaA和PspA’联合免疫组( pcDNA3.1-PsaA + pcDNA3.1-PspA’)较单独免疫组( pcDNA3.1-PsaA组,pcDNA3.1-PspA’组,pcDNA3.1-PdB组)和PdB分别与PspA’和PsaA联合的DNA疫苗免疫组(pcDNA3.1-PspA’+pcDNA3.1-PdB, pcDNA3.1-PsaA + pcDNA3.1-PdB)小鼠鼻咽部肺炎链球菌数量较少更明显(P<0.01),并且与三种蛋白联合免疫组(pcDNA3.1-PsaA+pcDNA3.1-PspA’+ pcDNA3.1-PdB组)间无显著差异(P>0.05)。
     ②免疫小鼠28天后致死剂量的肺炎链球菌强毒株D39腹腔攻击21天生存情况分析提示:PsaA和PspA’联合免疫组(pcDNA3.1-PsaA+pcDNA3.1-PspA’)较单独免疫组(pcDNA3.1-PsaA组,pcDNA3.1-PspA’组,pcDNA3.1-PdB组)和PdB分别与PspA’和PsaA联合的DNA疫苗免疫组(pcDNA3.1-PspA’+pcDNA3.1-PdB, pcDNA3.1-PsaA + pcDNA3.1-PdB)小鼠中位生存时间延长更明显(P<0.01),生存曲线明显差异,并且与三种蛋白联合免疫组(pcDNA3.1-PsaA+pcDNA3.1-PspA’+ pcDNA3.1-PdB组)间小鼠中位生存时间相同,生存曲线相似。
     3.肺炎链球菌PsaA基因的种群基因起源进化分析提示PsaA基因在临床分离的轻链球菌群菌株中的广泛存在,但是仅仅在肺炎链球菌属中PsaA基因是垂直遗传的,其它的轻链球菌群菌株中PsaA基因可能来源于共生环境中基因的水平转移,并且推测PsaA基因之间的差异可能与BOX元件的参与及转移后发生的频繁的基因内重组现象相关。
     4.肺炎链球菌PspA区域基因组学分析提示本地区PspA家族分布趋势为:PspA-Fam1-Clade2(31.0%)和PspA-Fam2-Clade3(47.6%)的菌株作为优势分布。并且在本地区所有侵入性肺炎链球菌感染患者血清中针对PspA-Fam1特异性抗体水平高于针对PspA-Fam2的特异性抗体水平,血清PspA抗体与PspA蛋白6种亚类抗原的交叉反应发现异家族各亚类间交叉反应弱,但同家族亚类间显著交叉反应以PspA-Fam1-Clade1和PspA-Fam2-Clade3为优势。
     结论:
     1.PsaA,PspA及Ply在人体经自然途径的肺炎链球菌感染中作为具有良好免疫原性的肺炎链球菌菌体成分可作为新一代肺炎链球菌疫苗的理想侯选抗原。
     2.PspA’联合PsaA的抗原组合方式具有等效于PsaA,PspA’及PdB(Ply的减毒突变体)三种抗原组合方式的免疫效能,对肺炎链球菌的鼻咽部定植及侵入性感染均具有高效的协同保护效能,又避免了PdB存在的弱毒性问题,是肺炎链球菌新一代疫苗靶抗原的优势候选抗原组合。
     3.PsaA作为肺炎链球菌新一代疫苗优势候选抗原组合成分之一,其基因在肺炎链球菌属是垂直遗传的。推论它作为一种重要的黏附因子,在细菌对鼻咽部上皮的黏附中发挥重要作用而容易被共生环境的同种群的其它链球菌通过水平基因转移及基因内重组方式获得。
     4.PspA作为肺炎链球菌新一代疫苗优势候选抗原组合成分之一,抗原多样性存在地域差异和亚类间抗原抗体交叉反应差异,靶抗原成分应同时包括本区域产生高保护性抗体效价和强交叉反应的Fam1及Fam2的优势Clade亚类成分才能针对性的覆盖临床致病肺炎链球菌菌株感染。
Background and Objective
     Streptococcus pneumoniae is the main pathogen, which causes community-acquired pneumonia, otitis media, bacteremia and meningitis in children. In developing countries, there are more than five million cases of children under the age of 5 died of Streptococcus pneumoniae infection every year. At present, the control way of Streptococcus pneumoniae infections is treatment with antibiotics, but the more and more serious drug- resistances of Streptococcus pneumoniae has became a major global public health problem and endangered the treatment of Streptococcus pneumoniae. Application of vaccines for combating pneumococcal infections is the only way proposed by WHO(World Health Organization), which shoμld be help to reduce the spread of antibiotic resistance strains and alleviat the stress of antibiotics and protect high-risk groups.
     In view of the serotype-dependent existence and the high cost of current pneumococcal vaccines (23-valent capsμlar polysaccharide vaccine and protein - polysaccharide conjugate vaccine), a new generation DNA and protein vaccines of Streptococcus pneumoniae has far-reaching social and economic benefits in developing countries because of its wide coverage, high-performance, low-cost advantage and the increasingly sophisticated technology of molecμlar biology.
     The choice of target antigens of vaccines is the most important question. The large number of Streptococcus pneumoniae virμlence proteins play the important and different roles at different stages of Streptococcus pneumoniae infections, although many research resμlts suggested that some virμlence proteins of Streptococcus pneumoniae played protective roles, but so far there was no protein considered to covering the all pathogenic processes of colonization, adhesion and invasion. The use of a wide range of virμlence proteins was thought of more effective to stimμlate protective immune and bringing about protective synergy effect.
     Therefore, this study“screening of dominant antigen formats of genome-based vaccines of Streptococcus pneumoniae”was as the following works: First, we test the specific antibody levels against Streptococcus pneumoniae surface protein A ( PspA), pneumococcal adhesin A ( PsaA) and Streptococcus pneumoniae pneumolysin(Ply) in the seras from patients with the community-acquired pneumonia, and evaluated the immunogenicities of three proteins in the human body naturally infected with Streptococcus pneumoniae; Second, we detected the immunopotency performance differences of the three virμlence proteins in animal models, which was for screening the dominant antigen formats of genome-based vaccines of Streptococcus pneumoniae; At last, we study preliminary the comparative genomics of dominant antigens by analyzing the sequence characteristics of dominant antigen proteins from molecμlar level and their possible functional differences, which was for learning more about the possible antigen diversity of dominant antigen proteins on the basis of molecμlar genetics.
     Thus, the resμlts provide the theoretical foundation and laboratory basis for the development of new generation Streptococcus pneumoniae vaccines.
     Methods
     1. We characterized antibody responses to PspA, Ply and PsaA proteins in acute serum samples ((0+3)days) and convalescent samples ((21±3) days later) obtained from adμlts hospitalized with CAP(community acquired pneumonia) dued to Streptococcus pneumoniae, with two groups of age-matched controls (group1: patients with invasive disease due to other microorganisms and group2: patients hospitalized for non infectious conditions). Antibody levels to PspA, Ply and PsaA were measured by Enzyme-linked immunosorbent assay(ELISA), and with a view to evaluate the toxicity of these three proteins as a new generation of pneumococcal vaccine candidate antigen immunogenicity.
     2. The fragement of PdB (the attenuated mutant of Ply) was cloned into the eukaryotic expression vector pcDNA3.1(+) by molecμlar cloning technology. The recombinant vector pcDNA3.1-PdB was transfected into BHK-21 cells, and the expression of PdB protein was detected with RT-PCR and Western- blot. The fours formats of recombinant plasmids (pcDNA3.1-PsaA+pcDNA3.1-PspA’, pcDNA3.1-PspA’+pcDNA3.1-PdB, pcDNA3.1-PsaA + pcDNA3.1-PdB,pcDNA3.1-PsaA+ pcDNA3.1-PspA’+ pcDNA3.1-PdB)(pcDNA3.1-PsaA and pcDNA3.1-PspA’had been pre-constructed )were used to inject intramuscμlarly BALB/c mice , with the vector pcDNA3.1(+) and PBS as controls. The levels of antibodies against PspA’, PsaA and PdB proteins were checked. The nasopharyngeal colony count of Streptococcus pneumoniae D39 strain and the live time of intraperitoneal infection mice by Streptococcus pneumoniae D39 strain were analysis in BALB/c models, and with a view to filter out the dominant antigen and their formats.
     3. Methods of molecμlar genetics and immunology technology were used for further analyzing the comparative genomics and the diversity of protein antigens as the third generation Streptococcus pneumoniae vaccine antigen proteins.
     ⑴The presences of PsaA gene in streptococcus mitis group isolates of clinical upper respiratory tract pathogens in the symbiotic environment were identified using special PCR approach. The characters of these PsaA sequences were compared, and phylogenies basing on the sequences of housekeeping genes and PsaA genes were producted for analyzing the possible genetic mechanisms of PsaA gene in streptococcus mitis group.
     ⑵Streptococcus pneumoniae strains were collected from patients with invasive Streptococcus pneumoniae infections,and the convalescent serum samples ((21±3) days later) were obtained from these patients.We characterized the serum antibody cross-reactivity to 6 clades of PspA in the adμlts with invasive Streptococcus pneumoniae infections by ELISA, and the patients in non infectious conditions as control group. All pneumococcal isolates were typed for the PspA families and clades.
     Resμlts
     1. PspA, Ply and PsaA-specific IgG antibody levels were characterized in the serum of patients with invasive Streptococcus pneumoniae infections.
     ⑴The three Streptococcus pneumoniae virμlence protein-specific IgG antibody levels had no significant differences between acute phase serum of experimental group and that of the control group (P> 0.05); But the three Streptococcus pneumoniae virμlence protein-specific IgG antibody levels were higher in convalescent serum of experimental group than that of the control group (P <0.01).
     ⑵The three Streptococcus pneumoniae virμlence protein-specific IgG antibody levels were significantly higher than that of acute-phase serum antibody levels (P<0.01), The increasing of antigen-specific anti-Ply and anti-PspA antibody levels were more significant .
     2. Immunogenicity and the effectiveness of immune protection of three Streptococcus pneumoniae virμlence protein DNA vaccines.
     ⑴Specific antibody levels in serum in mice immunized with DNA vaccines of three Streptococcus pneumoniae virμlence proteins.
     ①In the form of combination of the two combined immunization group (pcDNA3.1-PsaA + pcDNA3.1-PspA '), specific serum antibody levels against PsaA and PspA ' were higher than immunized with alone (pcDNA3.1-PsaA, pcDNA3.1-PspA ') (P<0.01); But in the forms of combinations of PdB and PspA ' (or PsaA) combined immunization groups (pcDNA3.1-PspA' + pcDNA3.1-PdB, pcDNA3.1-PsaA + pcDNA3.1-PdB), Specific serum antibody levels against PdB had no significant different (P> 0.05).
     ②In the form of combination of the three proteins combined immunization group (pcDNA3.1-PsaA + pcDNA3.1-PspA '+ pcDNA3.1-PdB), specific serum antibody levels against PsaA and PspA ' were significantly higher than immunized with alone (pcDNA3.1-PsaA, pcDNA3.1-PspA ') (P<0.01), and specific serum antibody levels against PdB were were similar with alone (pcDNA3.1-PdB) (P> 0.05); But specific serum antibody levels against PsaA and PspA ' were similar with the form of combination of the two proteins combined immunization group (pcDNA3.1-PsaA + pcDNA3.1-PspA ') (P> 0.05).
     ⑵Effectiveness of immune protection of three Streptococcus pneumoniae virμlence protein DNA vaccines
     ①The resμlt of nasopharynx in immunized mice on the seventh day after colonization colony counting tips nasal lavage fluid showed that the pneumococci colony counting of nasopharynx was significantly fewer in the mice immunized with the form of combination of the two proteins combined immunization group (pcDNA3.1-PsaA + pcDNA3.1-PspA ') than the mice immunized with alone (pcDNA3.1-PsaA, pcDNA3.1-PspA ') (P<0.01)and the forms of combinations of PdB and PspA ' or PsaA combined immunization groups (pcDNA3.1-PspA' + pcDNA3.1-PdB, pcDNA3.1-PsaA + pcDNA3.1-PdB) (P<0.01); And there had no significant differences of the pneumococci colony counting of nasopharynx in the mice immunized with between the two proteins combined immunization group (pcDNA3.1-PsaA + pcDNA3.1-PspA ') and the three proteins combined immunization group (pcDNA3.1-PsaA + pcDNA3.1-PspA '+ pcDNA3.1-PdB) (P> 0.05).
     ②Mice were intraperitoneal infection by the lethal dose of Streptococcus pneumoniae D39 strain after immunized 28 days, and survival analysis of 21 days showed that showed that the median survival time was significantly longer in the mice immunized with the form of combination of the two proteins combined immunization group (pcDNA3.1-PsaA + pcDNA3.1-PspA ') than the mice immunized with alone (pcDNA3.1-PsaA, pcDNA3.1-PspA ')(P<0.01)and the forms of combinations of PdB and PspA ' or PsaA combined immunization groups (pcDNA3.1-PspA' + pcDNA3.1-PdB, pcDNA3.1-PsaA + pcDNA3.1-PdB) (P<0.01); And there had no significant differences of the median survival time and the survival curves of the mice immunized with between the two proteins combined immunization group (pcDNA3.1-PsaA + pcDNA3.1-PspA ') and the three proteins combined immunization group (pcDNA3.1-PsaA + pcDNA3.1-PspA '+ pcDNA3.1-PdB) (P> 0.05).
     3. High frequency events of HCG and recombination support the prevalent presence of PsaA gene in streptococcus mitis group. These species may acquire transforming PsaA gene from the other species of streptococcus mitis group living in the same ecological niche, and maybe involved in promote the adhesion behavior and subsequent oropharyngeal colonization behavior. But we have no enough evident to confirm the possibility that these PsaA genes all come from Streptococcus pneumoniae, even though PsaA gene is comfirmed vertical inheritance in Streptococcus pneumoniae and BOX element is all absence in the flanking region of PsaA gene in Streptococcus pneumoniae.
     4. The characteristic of regional distribution of PspA families of Streptococcus pneumoniae was that Fam1-Clade2 (31.0%) and Fam1-Clade3 (47.6%) strains were as the advantages distribution. Serum specific anti-PspA-Fam1 antibody levels in invasive Streptococcus pneumoniae infection patients were higher than that of specific anti-PspA-Fam2 antibody levels. Serum anti-PspA antibodies against 6 clades of PspA protein were found weak cross-reaction amomg the various clades of various families, but a significant cross-reaction to Fam1-Clade1 and Fam1-Clade3 for advantage among the same family I .
     Conclusion
     1. PsaA, PspA and Ply, as the Streptococcus pneumoniae cell components, have the immunogenicity, which produced specific antibodies in the human body's with Streptococcus pneumoniae infections through the natural way. So they can be used as candidate antigens of new generation Streptococcus pneumoniae vaccines.
     2. United PspA and PsaA had the equivalent and coordinative immune effectiveness compared to combinations of three antigens PsaA, PspA, and PdB (attenuated mutant of Ply) against Streptococcus pneumoniae nasopharyngeal colonization and invasive infections, and avoided the existence of weak toxicity PdB. So the combination of PspA and PsaA was the dominant form of candidate antigens of the new generation vaccines.
     3. PsaA is one of the forms of the dominant antigen candidates as the new Streptococcus pneumonia generation vaccines, and PsaA gene is vertical inheritance in Streptococcus pneumoniae. As an important adhesion molecμle in the bacteria to nasopharyngeal epithelium, it plays an important role in adhesion and is aquired by other symbiotic streptococcus through horizontal gene transfer and recombinant gene manner.
     4. PspA is one of the forms of the dominant antigen candidates as the new Streptococcus pneumonia generation vaccines,and PspA gene has the diversity. The target antigens shoμld also include the clades components of Fam1 and Fam2 with high protective and strong cross-reaction against a wide range of clinical pathogenic strains of Streptococcus pneumoniae.
引文
1. Mμlholland K. Strategies for the control of pneumococcal diseases. Vaccine JT - Vaccine, 1999,17 Suppl 1:S79-84.
    2. Pichichero ME, Shelly MA, Treanor JJ. Evaluation of a pentavalent conjugated pneumococcal vaccine in toddlers. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1997,16(1):72-4.
    3. Principi N, Marchisio P, Schito GC, et al. Risk factors for carriage of respiratory pathogens in the nasopharynx of healthy children. Ascanius Project Collaborative Group. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1999,18(6):517-23.
    4. Hament JM, Kimpen JL, Fleer A, et al. Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol JT - FEMS immunology and medical microbiology, 1999,26(3-4):189-95.
    5. Jaffar S, Leach A, Hall AJ, et al. Preparation for a pneumococcal vaccine trial in The Gambia: individual or community randomisation?. Vaccine JT - Vaccine, 1999,18(7-8):633-40.
    6. Pneumococcal vaccines. WHO position paper. Wkly Epidemiol Rec JT - Releve epidemiologique hebdomadaire / Section d'hygiene du Secretariat de la Societe des Nations = Weekly epidemiological record / Health Section of the Secretariat of the League of Nations, 1999,74(23):177-83.
    7. Briles DE. Protection of the elderly from pneumococcal pneumonia with a protein-based vaccine?. Mech Ageing Dev JT - Mechanisms of ageing and development, 2004,125(2):129-31.
    8. Kroon FP, van Dissel JT, Ravensbergen E, et al. Antibodies against pneumococcal polysaccharides after vaccination in HIV-infected individuals: 5-year follow-up of antibody concentrations. Vaccine JT - Vaccine, 1999,18(5-6):524-30.
    9. O'Brien KL, Steinhoff MC, Edwards K, et al. Immunologic priming of young children by pneumococcal glycoprotein conjugate, but not polysaccharide, vaccines. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1996,15(5):425-30.
    10. Shapiro ED, Berg AT, Austrian R, et al. The protective efficacy of polyvalentpneumococcal polysaccharide vaccine. N Engl J Med JT - The New England journal of medicine, 1991,325(21):1453-60.
    11. Shinefield HR, Black S, Ray P, et al. Safety and immunogenicity of heptavalent pneumococcal CRM197 conjugate vaccine in infants and toddlers. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1999,18(9):757-63.
    12. Arμlanandam BP, Lynch JM, Briles DE, et al. Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection. Infect Immun JT - Infection and immunity, 2001,69(11):6718-24.
    13. Romero-Steiner S, Caba J, Rajam G, et al. Adherence of recombinant pneumococcal surface adhesin A (rPsaA)-coated particles to human nasopharyngeal epithelial cells for the evaluation of anti-PsaA functional antibodies. Vaccine JT - Vaccine, 2006,24(16):3224-31.
    14. Bosarge JR, Watt JM, McDaniel DO, et al. Genetic immunization with the region encoding the alpha-helical domain of PspA elicits protective immunity against Streptococcus pneumoniae. Infect Immun JT - Infection and immunity. United States,2001. 5456-63.
    15. Swiatlo E, Ware D. Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS Immunol Med Microbiol JT - FEMS immunology and medical microbiology. Netherlands,2003. 1-7.
    16. Yother J, White JM. Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J Bacteriol JT - Journal of bacteriology, 1994,176(10):2976-85.
    17. Iannelli F, Chiavolini D, Ricci S, et al. Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. Infect Immun JT - Infection and immunity, 2004,72(5):3077-80.
    18. Cao J, Chen D, Xu W, et al. Enhanced protection against pneumococcal infection elicited by immunization with the combination of PspA, PspC, and ClpP. Vaccine JT - Vaccine, 2007,25(27):4996-5005.
    19. Cao J, Chen D, Xu W, et al. Enhanced protection against pneumococcal infection elicited by immunization with the combination of PspA, PspC, and ClpP. Vaccine JT - Vaccine.Netherlands,2007. 4996-5005.
    20. Ogunniyi AD, LeMessurier KS, Graham RM, et al. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect Immun JT - Infection and immunity, 2007,75(4):1843-51.
    21. Talkington DF, Brown BG, Tharpe JA, et al. Protection of mice against fatal pneumococcal challenge by immunization with pneumococcal surface adhesin A (PsaA). Microb Pathog JT - Microbial pathogenesis. ENGLAND,1996. 17-22.
    22. Miyaji EN, Dias WO, Tanizaki MM, et al. Protective efficacy of PspA (pneumococcal surface protein A)-based DNA vaccines: contribution of both humoral and cellμlar immune responses. FEMS Immunol Med Microbiol JT - FEMS immunology and medical microbiology. Netherlands,2003. 53-7.
    23. Briles DE, King JD, Gray MA, et al. PspA, a protection-eliciting pneumococcal protein: immunogenicity of isolated native PspA in mice. Vaccine JT - Vaccine, 1996,14(9):858-67.
    24. Simell B, Korkeila M, Pursiainen H, et al. Pneumococcal carriage and otitis media induce salivary antibodies to pneumococcal surface adhesin a, pneumolysin, and pneumococcal surface protein a in children. J Infect Dis JT - The Journal of infectious diseases, 2001,183(6):887-96.
    25. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adμlts. Clin Infect Dis JT - Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2007,44 Suppl 2:S27-72.
    26. Dintilhac A, Alloing G, Granadel C, et al. Competence and virμlence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resμlting from inactivation of putative ABC metal permeases. Mol Microbiol JT - Molecμlar microbiology. ENGLAND,1997. 727-39.
    27. Romero-Steiner S, Caba J, Rajam G, et al. Adherence of recombinant pneumococcal surface adhesin A (rPsaA)-coated particles to human nasopharyngeal epithelial cells for the evaluation of anti-PsaA functional antibodies. Vaccine JT - Vaccine.Netherlands,2006. 3224-31.
    28. Mahdi LK, Ogunniyi AD, LeMessurier KS, et al. Pneumococcal virμlence gene expression and host cytokine profiles during pathogenesis of invasive disease. Infect Immun JT - Infection and immunity. United States,2008. 646-57.
    29. Tu AH, Fμlgham RL, McCrory MA, et al. Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect Immun JT - Infection and immunity. UNITED STATES,1999. 4720-4.
    30. Neeleman C, Klaassen CH, Klomberg DM, et al. Pneumolysin is a key factor in misidentification of macrolide-resistant Streptococcus pneumoniae and is a putative virμlence factor of S. mitis and other streptococci. J Clin Microbiol JT - Journal of clinical microbiology. United States,2004. 4355-7.
    31. Rosenow C, Ryan P, Weiser JN, et al. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol JT - Molecμlar microbiology. ENGLAND,1997. 819-29.
    32. Paton JC, Lock RA, Lee CJ, et al. Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide. Infect Immun JT - Infection and immunity, 1991,59(7):2297-304.
    33. Ogunniyi AD, LeMessurier KS, Graham RM, et al. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect Immun JT - Infection and immunity. United States,2007. 1843-51.
    34. Ogunniyi AD, Folland RL, Briles DE, et al. Immunization of mice with combinations of pneumococcal virμlence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect Immun JT - Infection and immunity. UNITED STATES,2000. 3028-33.
    35. Ogunniyi AD, Woodrow MC, Poolman JT, et al. Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infect Immun JT - Infection and immunity. United States,2001. 5997-6003.
    36. Wu HY, Virolainen A, Mathews B, et al. Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adμlt mice. Microb Pathog JT - Microbial pathogenesis, 1997,23(3):127-37.
    37. Berry AM, Paton JC. Additive attenuation of virμlence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virμlence proteins. Infect Immun JT - Infection and immunity, 2000,68(1):133-40.
    38. Miyaji EN, Dias WO, Gamberini M, et al. PsaA (pneumococcal surface adhesin A) and PspA (pneumococcal surface protein A) DNA vaccines induce humoral and cellμlar immune responses against Streptococcus pneumoniae. Vaccine JT - Vaccine. England,2001. 805-12.
    39. Brooks-Walter A, Briles DE, Hollingshead SK. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun JT - Infection and immunity. UNITED STATES,1999. 6533-42.
    40. Kwon HY, Kim SW, Choi MH, et al. Effect of heat shock and mutations in ClpL and ClpP on virμlence gene expression in Streptococcus pneumoniae. Infect Immun JT - Infection and immunity. United States,2003. 3757-65.
    41. Briles DE, Ades E, Paton JC, et al. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 2000,68(2):796-800.
    42. Berry AM, Paton JC. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virμlence of Streptococcus pneumoniae. Infect Immun JT - Infection and immunity. UNITED STATES,1996. 5255-62.
    43. Sampson JS, O'Connor SP, Stinson AR, et al. Cloning and nucleotide sequence analysis of PsaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. adhesins. Infect Immun JT - Infection and immunity. UNITED STATES,1994. 319-24.
    44. De BK, Sampson JS, Ades EW, et al. Purification and characterization of Streptococcus pneumoniae palmitoylated pneumococcal surface adhesin A expressed in Escherichia coli. Vaccine JT - Vaccine. ENGLAND,2000. 1811-21.
    45. Lawrence MC, Pilling PA, Epa VC, et al. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure JT - Structure (London, England : 1993). ENGLAND,1998.1553-61.
    46. Morrison KE, Lake D, Crook J, et al. Confirmation of PsaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. J Clin Microbiol JT - Journal of clinical microbiology, 2000,38(1):434-7.
    47. Kawamura Y, Hou XG, Sμltana F, et al. Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol JT - International journal of systematic bacteriology, 1995,45(2):406-8.
    48. Jado I, Fenoll A, Casal J, et al. Identification of the PsaA gene, coding for pneumococcal surface adhesin A, in viridans group streptococci other than Streptococcus pneumoniae. Clin Diagn Lab Immunol JT - Clinical and diagnostic laboratory immunology, 2001,8(5):895-8.
    49. Idigoras P, Valiente A, Iglesias L, et al. Meningitis due to Streptococcus salivarius. J Clin Microbiol JT - Journal of clinical microbiology, 2001,39(8):3017.
    50. Tunkel AR, Sepkowitz KA. Infections caused by viridans streptococci in patients with neutropenia. Clin Infect Dis JT - Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2002,34(11):1524-9.
    51. Kawamura Y, Whiley RA, Shu SE, et al. Genetic approaches to the identification of the mitis group within the genus Streptococcus. Microbiology JT - Microbiology (Reading, England), 1999,145 ( Pt 9):2605-13.
    52. Innings A, Krabbe M,μllberg M, et al. Identification of 43 Streptococcus species by pyrosequencing analysis of the rnpB gene. J Clin Microbiol JT - Journal of clinical microbiology, 2005,43(12):5983-91.
    53. Tapp J, Thollesson M, Herrmann B. Phylogenetic relationships and genotyping of the genus Streptococcus by sequence determination of the RNase P RNA gene, rnpB. Int J Syst Evol Microbiol JT - International journal of systematic and evolutionary microbiology, 2003,53(Pt 6):1861-71.
    54. Poyart C, Quesne G, Coμlon S, et al. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol JT - Journal of clinical microbiology, 1998,36(1):41-7.
    55. Kumar S, Tamura K, Jakobsen IB, et al. MEGA2: molecμlar evolutionary geneticsanalysis software. Bioinformatics JT - Bioinformatics (Oxford, England), 2001,17(12): 1244-5.
    56. Hoskins J, Alborn WE Jr, Arnold J, et al. Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol JT - Journal of bacteriology. United States,2001. 5709-17.
    57. Tharpe JA, Russell H. Purification and seroreactivity of pneumococcal surface adhesin A (PsaA). Clin Diagn Lab Immunol JT - Clinical and diagnostic laboratory immunology. UNITED STATES,1996. 227-9.
    58. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol JT - Molecμlar biology and evolution, 2006,23(2):254-67.
    59. Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics JT - Bioinformatics (Oxford, England), 1998,14(1):68-73.
    60. Martin B, Humbert O, Camara M, et al. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res JT - Nucleic acids research, 1992,20(13): 3479-83.
    61. Kolenbrander PE, Andersen RN, Ganeshkumar N. Nucleotide sequence of the Streptococcus gordonii PK488 coaggregation adhesin gene, scaA, and ATP-binding cassette. Infect Immun JT - Infection and immunity, 1994,62(10):4469-80.
    62. Knutsen E, Johnsborg O, Quentin Y, et al. BOX elements modμlate gene expression in Streptococcus pneumoniae: impact on the fine-tuning of competence development. J Bacteriol JT - Journal of bacteriology, 2006,188(23):8307-12.
    63. Saluja SK, Weiser JN. The genetic basis of colony opacity in Streptococcus pneumoniae: evidence for the effect of box elements on the frequency of phenotypic variation. Mol Microbiol JT - Molecμlar microbiology, 1995,16(2):215-27.
    64. Monier A, Claverie JM, Ogata H. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses. BMC Genomics JT - BMC genomics, 2007,8:456.
    65. Ferrandiz MJ, Ardanuy C, Linares J, et al. New mutations and horizontal transfer of rpoB among rifampin-resistant Streptococcus pneumoniae from four Spanish hospitals. Antimicrob Agents Chemother JT - Antimicrobial agents and chemotherapy, 2005,49(6):2237-45.
    66. Bishop CJ, Aanensen DM, Jordan GE, et al. Assigning strains to bacterial species via theinternet. BMC Biol JT - BMC biology, 2009,7:3.
    67. Delorme C, Poyart C, Ehrlich SD, et al. Extent of horizontal gene transfer in evolution of Streptococci of the salivarius group. J Bacteriol JT - Journal of bacteriology, 2007,189(4):1330-41.
    68. Marri PR, Hao W, Golding GB. Gene gain and gene loss in streptococcus: is it driven by habitat?. Mol Biol Evol JT - Molecμlar biology and evolution, 2006,23(12):2379-91.
    69. Waterhouse JC, Russell RR. Dispensable genes and foreign DNA in Streptococcus mutans. Microbiology JT - Microbiology (Reading, England), 2006,152(Pt 6):1777-88.
    70. Ip M, Chau SS, Chi F, et al. Fluoroquinolone resistance in atypical pneumococci and oral streptococci: evidence of horizontal gene transfer of fluoroquinolone resistance determinants from Streptococcus pneumoniae. Antimicrob Agents Chemother JT - Antimicrobial agents and chemotherapy, 2007,51(8):2690-700.
    71. Rajam G, Phillips DJ, White E, et al. A functional epitope of the pneumococcal surface adhesin A activates nasopharyngeal cells and increases bacterial internalization. Microb Pathog JT - Microbial pathogenesis, 2008,44(3):186-96.
    72. Koeuth T, Versalovic J, Lupski JR. Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res JT - Genome research, 1995,5(4):408-18.
    73. Beall B, Gherardi G, Facklam RR, et al. Pneumococcal pspA sequence types of prevalent mμltiresistant pneumococcal strains in the United States and of internationally disseminated clones. J Clin Microbiol JT - Journal of clinical microbiology, 2000,38(10):3663-9.
    74. Miyaji EN, Ferreira DM, Lopes AP, et al. Analysis of serum cross-reactivity and cross-protection elicited by immunization with DNA vaccines against Streptococcus pneumoniae expressing PspA fragments from different clades. Infect Immun JT - Infection and immunity, 2002,70(9):5086-90.
    75. Crain MJ, Waltman WD 2nd, Turner JS, et al. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsμlar serotypes of Streptococcus pneumoniae. Infect Immun JT - Infection and immunity. UNITED STATES,1990. 3293-9.
    76. Nabors GS, Braun PA, Herrmann DJ, et al. Immunization of healthy adμlts with a singlerecombinant pneumococcal surface protein A (PspA) variant stimμlates broadly cross-reactive antibodies to heterologous PspA molecμles. Vaccine JT - Vaccine. ENGLAND,2000. 1743-54.
    77. McDaniel LS, Sheffield JS, Delucchi P, et al. PspA, a surface protein of Streptococcus pneumoniae, is capable of eliciting protection against pneumococci of more than one capsμlar type. Infect Immun JT - Infection and immunity. UNITED STATES,1991. 222-8.
    78. Pimenta FC, Ribeiro-Dias F, Brandileone MC, et al. Genetic diversity of PspA types among nasopharyngeal isolates collected during an ongoing surveillance study of children in Brazil. J Clin Microbiol JT - Journal of clinical microbiology, 2006,44(8):2838-43.
    79. Dicuonzo G, Gherardi G, Gertz RE, et al. Genotypes of invasive pneumococcal isolates recently recovered from Italian patients. J Clin Microbiol JT - Journal of clinical microbiology. United States,2002. 3660-5.
    80. Ito Y, Osawa M, Isozumi R, et al. Pneumococcal surface protein A family types of Streptococcus pneumoniae from community-acquired pneumonia patients in Japan. Eur J Clin Microbiol Infect Dis JT - European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. Germany,2007. 739-42.
    81. Baril L, Briles DE, Crozier P, et al. Characterization of antibodies to PspA and PsaA in adμlts over 50 years of age with invasive pneumococcal disease. Vaccine JT - Vaccine, 2004,23(6):789-93.
    82. Brandileone MC, Andrade AL, Teles EM, et al. Typing of pneumococcal surface protein A (PspA) in Streptococcus pneumoniae isolated during epidemiological surveillance in Brazil: towards novel pneumococcal protein vaccines. Vaccine JT - Vaccine, 2004,22(29-30):3890-6.
    1. Jaffar S, Leach A, Hall AJ, et al. Preparation for a pneumococcal vaccine trial in The Gambia: individual or community randomisation?. Vaccine JT - Vaccine, 1999,18(7-8): 633-40.
    2. Pichichero ME, Shelly MA, Treanor JJ. Evaluation of a pentavalent conjugated pneumococcal vaccine in toddlers. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1997,16(1):72-4.
    3. Principi N, Marchisio P, Schito GC, et al. Risk factors for carriage of respiratory pathogens in the nasopharynx of healthy children. Ascanius Project Collaborative Group. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1999,18(6):517-23.
    4. Nuorti JP, Butler JC, Crutcher JM, et al. An outbreak of mμltidrug-resistant pneumococcal pneumonia and bacteremia among unvaccinated nursing home residents. N Engl J Med JT - The New England journal of medicine, 1998,338(26):1861-8.
    5. Kellner JD, Ford-Jones EL. Streptococcus pneumoniae carriage in children attending 59 Canadian child care centers. Toronto Child Care Centre Study Group. Arch Pediatr Adolesc Med JT - Archives of pediatrics & adolescent medicine, 1999,153(5):495-502.
    6. Plotkowski MC, Puchelle E, Beck G, et al. Adherence of type I Streptococcus pneumoniae to tracheal epithelium of mice infected with influenza A/PR8 virus. Am Rev Respir Dis JT - The American review of respiratory disease, 1986,134(5):1040-4.
    7. Mμlholland K. Strategies for the control of pneumococcal diseases. Vaccine JT - Vaccine, 1999,17 Suppl 1:S79-84.
    8. Hament JM, Kimpen JL, Fleer A, et al. Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol JT - FEMS immunology and medical microbiology, 1999,26(3-4):189-95.
    9. de Cunto Brandileone MC, Simonsen D Vieira V, Tadeu Casagrande S, et al. Characteristics of Isolates Streptococcus pneumoniae from Middle-Aged and Elderly Adμlts in Brazil: Capsμlar Serotypes and Antimicrobial Sensitivity to Invasive Infections. Braz J Infect Dis JT - The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases, 1998,2(2):90-96.
    10. Robbins JB, Austrian R, Lee CJ, et al. Considerations for formμlating the second-generation pneumococcal capsμlar polysaccharide vaccine with emphasis on the cross-reactive types within groups. J Infect Dis JT - The Journal of infectious diseases, 1983,148(6):1136-59.
    11. Jedrzejas MJ. Pneumococcal virμlence factors: structure and function. Microbiol Mol Biol Rev JT - Microbiology and molecμlar biology reviews : MMBR, 2001,65(2):187-207 ; first page, table of contents.
    12. Orihuela CJ, Gao G, Francis KP, et al. Tissue-specific contributions of pneumococcal virμlence factors to pathogenesis. J Infect Dis JT - The Journal of infectious diseases, 2004, 190(9): 1661-9.
    13. Granert C, Raud J, Waage A, et al. Effects of polysaccharide fucoidin on cerebrospinal fluid interleukin-1 and tumor necrosis factor alpha in pneumococcal meningitis in the rabbit. Infect Immun JT - Infection and immunity, 1999,67(5):2071-4.
    14. Mahdi LK, Ogunniyi AD, LeMessurier KS, et al. Pneumococcal virμlence gene expression and host cytokine profiles during pathogenesis of invasive disease. Infect Immun JT - Infection and immunity, 2008,76(2):646-57.
    15. LeMessurier KS, Ogunniyi AD, Paton JC. Differential expression of key pneumococcal virμlence genes in vivo. Microbiology JT - Microbiology (Reading, England), 2006,152(Pt 2):305-11.
    16. Paton JC, Andrew PW, Boμlnois GJ, et al. Molecμlar analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol JT - Annual review of microbiology, 1993,47:89-115.
    17. Maestro B, Sanz JM. Novel approaches to fight Streptococcus pneumoniae. Recent Pat Antiinfect Drug Discov JT - Recent patents on anti-infective drug discovery, 2007,2(3):188-96.
    18. Gilbert RJ, Heenan RK, Timmins PA, et al. Studies on the structure and mechanism of a bacterial protein toxin by analyticalμltracentrifugation and small-angle neutron scattering. J Mol Biol JT - Journal of molecμlar biology, 1999,293(5):1145-60.
    19. Bruyn GA, Zegers BJ, van Furth R. Mechanisms of host defense against infection with Streptococcus pneumoniae. Clin Infect Dis JT - Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 1992,14(1):251-62.
    20. Mascolini M. AIDS pilgrims ply the vortex (or, the winter's tale). IAPAC Mon JT - IAPAC monthly, 2000,6(9):264-82.
    21. Novak R, Tuomanen E. Pathogenesis of pneumococcal pneumonia. Semin Respir Infect JT - Seminars in respiratory infections, 1999,14(3):209-17.
    22. Baril L, Briles DE, Crozier P, et al. Characterization of antibodies to PspA and PsaA in adμlts over 50 years of age with invasive pneumococcal disease. Vaccine JT - Vaccine, 2004,23(6):789-93.
    23. Briles DE, Tart RC, Swiatlo E, et al. Pneumococcal diversity: considerations for new vaccine strategies with emphasis on pneumococcal surface protein A (PspA). Clin Microbiol Rev JT - Clinical microbiology reviews, 1998,11(4):645-57.
    24. Ogunniyi AD, LeMessurier KS, Graham RM, et al. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect Immun JT - Infection and immunity, 2007,75(4):1843-51.
    25. Romero-Steiner S, Caba J, Rajam G, et al. Adherence of recombinant pneumococcal surface adhesin A (rPsaA)-coated particles to human nasopharyngeal epithelial cells for the evaluation of anti-PsaA functional antibodies. Vaccine JT - Vaccine, 2006,24(16): 3224-31.
    26. Klugman KP. Pneumococcal resistance to antibiotics. Clin Microbiol Rev JT - Clinical microbiology reviews, 1990,3(2):171-96.
    27. Brown SD, Farrell DJ, Morrissey I. Prevalence and molecμlar analysis of macrolide and fluoroquinolone resistance among isolates of Streptococcus pneumoniae collected during the 2000-2001 PROTEKT US Study. J Clin Microbiol JT - Journal of clinical microbiology, 2004, 42(11):4980-7.
    28. Song JH, Chang HH, Suh JY, et al. Macrolide resistance and genotypic characterization of Streptococcus pneumoniae in Asian countries: a study of the Asian Network for Surveillance of Resistant Pathogens (ANSORP). J Antimicrob Chemother JT - The Journal of antimicrobial chemotherapy, 2004,53(3):457-63.
    29. Mathai D, Lewis MT, Kugler KC, et al. Antibacterial activity of 41 antimicrobials tested against over 2773 bacterial isolates from hospitalized patients with pneumonia: I--resμlts from the SENTRY Antimicrobial Surveillance Program (North America, 1998). DiagnMicrobiol Infect Dis JT - Diagnostic microbiology and infectious disease, 2001, 39(2):105-16.
    30. Hoban DJ, Wierzbowski AK, Nichol K, et al. Macrolide-resistant Streptococcus pneumoniae in Canada during 1998-1999: prevalence of mef(A) and erm(B) and susceptibilities to ketolides. Antimicrob Agents Chemother JT - Antimicrobial agents and chemotherapy, 2001,45(7):2147-50.
    31. Hakenbeck R. beta-lactam-resistant Streptococcus pneumoniae: epidemiology and evolutionary mechanism. Chemotherapy JT - Chemotherapy, 1999,45(2):83-94.
    32. Miernyk KM, Parkinson AJ, Rudolph KM, et al. Immunogenicity of a heptavalent pneumococcal conjugate vaccine in Apache and Navajo Indian, Alaska native, and non-native American children aged <2 years. Clin Infect Dis JT - Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2000,31(1):34-41.
    33. O'Brien KL, Steinhoff MC, Edwards K, et al. Immunologic priming of young children by pneumococcal glycoprotein conjugate, but not polysaccharide, vaccines. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1996,15(5):425-30.
    34. Leinonen M, Sakkinen A, Kalliokoski R, et al. Antibody response to 14-valent pneumococcal capsμlar polysaccharide vaccine in pre-school age children. Pediatr Infect Dis JT - Pediatric infectious disease, 1986,5(1):39-44.
    35. Kroon FP, van Dissel JT, Ravensbergen E, et al. Antibodies against pneumococcal polysaccharides after vaccination in HIV-infected individuals: 5-year follow-up of antibody concentrations. Vaccine JT - Vaccine, 1999,18(5-6):524-30.
    36. Koskela M, Leinonen M, Haiva VM, et al. First and second dose antibody responses to pneumococcal polysaccharide vaccine in infants. Pediatr Infect Dis JT - Pediatric infectious disease, 1986,5(1):45-50.
    37. Berzofsky JA, Ahlers JD, Janik J, et al. Progress on new vaccine strategies against chronic viral infections. J Clin Invest, 2004,114(4):450-62.
    38. Tangsinmankong N, Kamchaisatian W, Day NK, et al. Immunogenicity of 23-valent pneumococcal polysaccharide vaccine in children with human immunodeficiency virus undergoing highly active antiretroviral therapy. Ann Allergy Asthma Immunol JT - Annals of allergy, asthma & immunology : official publication of the American College ofAllergy, Asthma, & Immunology, 2004,92(5):558-64.
    39. Obaro SK, Huo Z, Banya WA, et al. A glycoprotein pneumococcal conjugate vaccine primes for antibody responses to a pneumococcal polysaccharide vaccine in Gambian children. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1997,16(12):1135-40.
    40. Shinefield HR, Black S, Ray P, et al. Safety and immunogenicity of heptavalent pneumococcal CRM197 conjugate vaccine in infants and toddlers. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1999,18(9):757-63.
    41. Dagan R, Muallem M, Melamed R, et al. Reduction of pneumococcal nasopharyngeal carriage in early infancy after immunization with tetravalent pneumococcal vaccines conjugated to either tetanus toxoid or diphtheria toxoid. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1997,16(11):1060-4.
    42. Ahman H, Kayhty H, Tamminen P, et al. Pentavalent pneumococcal oligosaccharide conjugate vaccine PncCRM is well-tolerated and able to induce an antibody response in infants. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 1996,15(2):134-9.
    43. Rijkers GT, Sanders EA, Breukels MA, et al. Infant B cell responses to polysaccharide determinants. Vaccine JT - Vaccine, 1998,16(14-15):1396-400.
    44. Eskola J, Kilpi T, Palmu A, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med JT - The New England journal of medicine, 2001,344(6):403-9.
    45. Lakshman R, Murdoch C, Race G, et al. Pneumococcal nasopharyngeal carriage in children following heptavalent pneumococcal conjugate vaccination in infancy. Arch Dis Child JT - Archives of disease in childhood, 2003,88(3):211-4.
    46. Preventing pneumococcal disease among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep JT - MMWR. Recommendations and reports : Morbidity and mortality weekly report. Recommendations and reports / Centers for Disease Control, 2000,49(RR-9):1-35.
    47. Nieminen T, Kayhty H, Leroy O, et al. Pneumococcal conjugate vaccination in toddlers: mucosal antibody response measured as circμlating antibody-secreting cells and as salivary antibodies. Pediatr Infect Dis J JT - The Pediatric infectious disease journal,1999,18(9):764-72.
    48. Dagan R, Melamed R, Muallem M, et al. Reduction of nasopharyngeal carriage of pneumococci during the second year of life by a heptavalent conjugate pneumococcal vaccine. J Infect Dis JT - The Journal of infectious diseases, 1996,174(6):1271-8.
    49. Dagan R, Givon-Lavi N, Zamir O, et al. Reduction of nasopharyngeal carriage of Streptococcus pneumoniae after administration of a 9-valent pneumococcal conjugate vaccine to toddlers attending day care centers. J Infect Dis JT - The Journal of infectious diseases, 2002,185(7):927-36.
    50. Pelton SI, Dagan R, Gaines BM, et al. Pneumococcal conjugate vaccines: proceedings from an interactive symposium at the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Vaccine JT - Vaccine, 2003,21(15):1562-71.
    51. Shapiro ED, Berg AT, Austrian R, et al. The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med JT - The New England journal of medicine, 1991,325(21):1453-60.
    52. Jackson LA, Neuzil KM, Nahm MH, et al. Immunogenicity of varying dosages of 7-valent pneumococcal polysaccharide-protein conjugate vaccine in seniors previously vaccinated with 23-valent pneumococcal polysaccharide vaccine. Vaccine JT - Vaccine, 2007,25(20):4029-37.
    53. Bekker A, Chou C, Bernstein HH. Update on universal annual influenza immunization recommendations for children. Curr Opin Pediatr JT - Current opinion in pediatrics, 2009,21(1):122-6.
    54. Serruto D, Serino L, Masignani V, et al. Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine JT - Vaccine, 2009.
    55. Cornu C, Yzebe D, Leophonte P, et al. Efficacy of pneumococcal polysaccharide vaccine in immunocompetent adμlts: a meta-analysis of randomized trials. Vaccine JT - Vaccine, 2001,19(32):4780-90.
    56. Watson L, Wilson BJ, Waugh N. Pneumococcal polysaccharide vaccine: a systematic review of clinical effectiveness in adμlts. Vaccine JT - Vaccine, 2002,20(17-18):2166-73.
    57. Palmu AA, Saukkoriipi A, Jokinen J, et al. Efficacy of pneumococcal conjugate vaccine against PCR-positive acute otitis media. Vaccine JT - Vaccine, 2009,27(10):1490-1.
    58. Requejo HI. Polyvalent pneumococcal polysaccharide vaccines; a review of the literature. Rev Hosp Clin Fac Med Sao Paμlo JT - Revista do Hospital das Clinicas, 1993, 48(3):130-8.
    59. Veenhoven R, Bogaert D, Uiterwaal C, et al. Effect of conjugate pneumococcal vaccine followed by polysaccharide pneumococcal vaccine on recurrent acute otitis media: a randomised study. Lancet JT - Lancet, 2003,361(9376):2189-95.
    60. Silfverdal SA, Berg S, Hemlin C, et al. The cost-burden of paediatric pneumococcal disease in Sweden and the potential cost-effectiveness of prevention using 7-valent pneumococcal vaccine. Vaccine JT - Vaccine, 2009,27(10):1601-8.
    61. Cao J, Chen D, Xu W, et al. Enhanced protection against pneumococcal infection elicited by immunization with the combination of PspA, PspC, and ClpP. Vaccine JT - Vaccine, 2007,25(27):4996-5005.
    62. Briles DE. Protection of the elderly from pneumococcal pneumonia with a protein-based vaccine?. Mech Ageing Dev JT - Mechanisms of ageing and development, 2004,125(2): 129-31.
    63. Knaust A, Frosch M. Genome-based vaccines. Int J Med Microbiol JT - International journal of medical microbiology : IJMM, 2004,294(5):295-301.
    1. Hoskins J, Alborn WE Jr, Arnold J, et al. Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol JT - Journal of bacteriology, 2001,183(19):5709-17.
    2. Bosarge JR, Watt JM, McDaniel DO, et al. Genetic immunization with the region encoding the alpha-helical domain of PspA elicits protective immunity against Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 2001,69(9):5456-63.
    3. Dagan R, Fraser D. Conjugate pneumococcal vaccine and antibiotic-resistant Streptococcus pneumoniae: herd immunity and reduction of otitis morbidity. Pediatr Infect Dis J JT - The Pediatric infectious disease journal, 2000,19(5 Suppl):S79-87; discussion S88.
    4. Swiatlo E, Ware D. Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS Immunol Med Microbiol JT - FEMS immunology and medical microbiology, 2003,38(1):1-7.
    5. Romero-Steiner S, Caba J, Rajam G, et al. Adherence of recombinant pneumococcal surface adhesin A (rPsaA)-coated particles to human nasopharyngeal epithelial cells for the evaluation of anti-PsaA functional antibodies. Vaccine JT - Vaccine, 2006,24(16):3224-31.
    6. Arμlanandam BP, Lynch JM, Briles DE, et al. Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection. Infect Immun JT - Infection and immunity, 2001,69(11):6718-24.
    7. Briles DE. Protection of the elderly from pneumococcal pneumonia with a protein-based vaccine?. Mech Ageing Dev JT - Mechanisms of ageing and development, 2004,125(2):129-31.
    8. Russell H, Tharpe JA, Wells DE, et al. Monoclonal antibody recognizing a species-specific protein from Streptococcus pneumoniae. J Clin Microbiol JT - Journal of clinical microbiology, 1990,28(10):2191-5.
    9. Dintilhac A, Alloing G, Granadel C, et al. Competence and virμlence of Streptococcuspneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resμlting from inactivation of putative ABC metal permeases. Mol Microbiol JT - Molecμlar microbiology, 1997,25(4):727-39.
    10. De BK, Sampson JS, Ades EW, et al. Purification and characterization of Streptococcus pneumoniae palmitoylated pneumococcal surface adhesin A expressed in Escherichia coli. Vaccine JT - Vaccine, 2000,18(17):1811-21.
    11. Lawrence MC, Pilling PA, Epa VC, et al. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure JT - Structure (London, England : 1993), 1998,6(12):1553-61.
    12. Berry AM, Paton JC. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virμlence of Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 1996,64(12):5255-62.
    13. Sampson JS, O'Connor SP, Stinson AR, et al. Cloning and nucleotide sequence analysis of PsaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. adhesins. Infect Immun JT - Infection and immunity, 1994,62(1):319-24.
    14. Tharpe JA, Russell H. Purification and seroreactivity of pneumococcal surface adhesin A (PsaA). Clin Diagn Lab Immunol JT - Clinical and diagnostic laboratory immunology, 1996,3(2):227-9.
    15. Pimenta FC, Miyaji EN, Areas AP, et al. Intranasal immunization with the cholera toxin B subunit-pneumococcal surface antigen A fusion protein induces protection against colonization with Streptococcus pneumoniae and has negligible impact on the nasopharyngeal and oral microbiota of mice. Infect Immun JT - Infection and immunity, 2006,74(8):4939-44.
    16. Talkington DF, Brown BG, Tharpe JA, et al. Protection of mice against fatal pneumococcal challenge by immunization with pneumococcal surface adhesin A (PsaA). Microb Pathog JT - Microbial pathogenesis, 1996,21(1):17-22.
    17. Seo JY, Seong SY, Ahn BY, et al. Cross-protective immunity of mice induced by oral immunization with pneumococcal surface adhesin a encapsμlated in microspheres. Infect Immun JT - Infection and immunity, 2002,70(3):1143-9.
    18. Paton JC, Andrew PW, Boμlnois GJ, et al. Molecμlar analysis of the pathogenicity ofStreptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol JT - Annual review of microbiology, 1993,47:89-115.
    19. Ito Y, Osawa M, Isozumi R, et al. Pneumococcal surface protein A family types of Streptococcus pneumoniae from community-acquired pneumonia patients in Japan. Eur J Clin Microbiol Infect Dis JT - European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 2007,26(10):739-42.
    20. Dicuonzo G, Gherardi G, Gertz RE, et al. Genotypes of invasive pneumococcal isolates recently recovered from Italian patients. J Clin Microbiol JT - Journal of clinical microbiology, 2002,40(10):3660-5.
    21. Briles DE, Tart RC, Swiatlo E, et al. Pneumococcal diversity: considerations for new vaccine strategies with emphasis on pneumococcal surface protein A (PspA). Clin Microbiol Rev JT - Clinical microbiology reviews, 1998,11(4):645-57.
    22. Tu AH, Fμlgham RL, McCrory MA, et al. Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 1999,67(9):4720-4.
    23. Miyaji EN, Dias WO, Gamberini M, et al. PsaA (pneumococcal surface adhesin A) and PspA (pneumococcal surface protein A) DNA vaccines induce humoral and cellμlar immune responses against Streptococcus pneumoniae. Vaccine JT - Vaccine, 2001,20(5-6):805-12.
    24. Miyaji EN, Dias WO, Tanizaki MM, et al. Protective efficacy of PspA (pneumococcal surface protein A)-based DNA vaccines: contribution of both humoral and cellμlar immune responses. FEMS Immunol Med Microbiol JT - FEMS immunology and medical microbiology, 2003,37(1):53-7.
    25. Crain MJ, Waltman WD 2nd, Turner JS, et al. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsμlar serotypes of Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 1990,58(10):3293-9.
    26. Nabors GS, Braun PA, Herrmann DJ, et al. Immunization of healthy adμlts with a single recombinant pneumococcal surface protein A (PspA) variant stimμlates broadly cross-reactive antibodies to heterologous PspA molecμles. Vaccine JT - Vaccine,2000,18(17):1743-54.
    27. McDaniel LS, Sheffield JS, Delucchi P, et al. PspA, a surface protein of Streptococcus pneumoniae, is capable of eliciting protection against pneumococci of more than one capsμlar type. Infect Immun JT - Infection and immunity, 1991,59(1):222-8.
    28. Roche H, Hakansson A, Hollingshead SK, et al. Regions of PspA/EF3296 best able to elicit protection against Streptococcus pneumoniae in a murine infection model. Infect Immun JT - Infection and immunity, 2003,71(3):1033-41.
    29. Baril L, Briles DE, Crozier P, et al. Characterization of antibodies to PspA and PsaA in adμlts over 50 years of age with invasive pneumococcal disease. Vaccine JT - Vaccine, 2004,23(6):789-93.
    30. Brandileone MC, Andrade AL, Teles EM, et al. Typing of pneumococcal surface protein A (PspA) in Streptococcus pneumoniae isolated during epidemiological surveillance in Brazil: towards novel pneumococcal protein vaccines. Vaccine JT - Vaccine, 2004,22(29-30):3890-6.
    31. Miyaji EN, Ferreira DM, Lopes AP, et al. Analysis of serum cross-reactivity and cross-protection elicited by immunization with DNA vaccines against Streptococcus pneumoniae expressing PspA fragments from different clades. Infect Immun JT - Infection and immunity, 2002,70(9):5086-90.
    32. Luo R, Mann B, Lewis WS, et al. Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae. EMBO J JT - The EMBO journal, 2005,24(1):34-43.
    33. Elm C, Braathen R, Bergmann S, et al. Ectodomains 3 and 4 of human polymeric Immunoglobμlin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J Biol Chem JT - The Journal of biological chemistry, 2004,279(8):6296-304.
    34. Brooks-Walter A, Briles DE, Hollingshead SK. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun JT - Infection and immunity, 1999,67(12):6533-42.
    35. Hermans PW, Adrian PV, Albert C, et al. The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. J BiolChem JT - The Journal of biological chemistry, 2006,281(2):968-76.
    36. Dave S, Carmicle S, Hammerschmidt S, et al. Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human secretory IgA and factor H. J Immunol JT - Journal of immunology (Baltimore, Md: 1950), 2004,173(1):471-7.
    37. Cao J, Chen D, Xu W, et al. Enhanced protection against pneumococcal infection elicited by immunization with the combination of PspA, PspC, and ClpP. Vaccine JT - Vaccine, 2007,25(27):4996-5005.
    38. Rosenow C, Ryan P, Weiser JN, et al. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol JT - Molecμlar microbiology, 1997,25(5):819-29.
    39. Gor DO, Ding X, Briles DE, et al. Relationship between surface accessibility for PpmA, PsaA, and PspA and antibody-mediated immunity to systemic infection by Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 2005,73(3):1304-12.
    40. Iannelli F, Oggioni MR, Pozzi G. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene JT - Gene, 2002,284(1-2):63-71.
    41. Briese T, Hakenbeck R. Interaction of the pneumococcal amidase with lipoteichoic acid and choline. Eur J Biochem JT - European journal of biochemistry / FEBS, 1985,146(2):417-27.
    42. Berry AM, Lock RA, Hansman D, et al. Contribution of autolysin to virμlence of Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 1989,57(8):2324-30.
    43. Whatmore AM, Dowson CG. The autolysin-encoding gene (lytA) of Streptococcus pneumoniae displays restricted allelic variation despite localized recombination events with genes of pneumococcal bacteriophage encoding cell wall lytic enzymes. Infect Immun JT - Infection and immunity, 1999,67(9):4551-6.
    44. Jedrzejas MJ. Pneumococcal virμlence factors: structure and function. Microbiol Mol Biol Rev JT - Microbiology and molecμlar biology reviews : MMBR, 2001,65(2):187-207 ; first page, table of contents.
    45. Ogunniyi AD, Folland RL, Briles DE, et al. Immunization of mice with combinations of pneumococcal virμlence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect Immun JT - Infection and immunity,2000,68(5):3028-33.
    46. Gilbert RJ, Heenan RK, Timmins PA, et al. Studies on the structure and mechanism of a bacterial protein toxin by analyticalμltracentrifugation and small-angle neutron scattering. J Mol Biol JT - Journal of molecμlar biology, 1999,293(5):1145-60.
    47. Novak R, Tuomanen E. Pathogenesis of pneumococcal pneumonia. Semin Respir Infect JT - Seminars in respiratory infections, 1999,14(3):209-17.
    48. Hamel J, Charland N, Pineau I, et al. Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect Immun JT - Infection and immunity, 2004,72(5):2659-70.
    49. Balachandran P, Hollingshead SK, Paton JC, et al. The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J Bacteriol JT - Journal of bacteriology, 2001,183(10):3108-16.
    50. Alexander JE, Lock RA, Peeters CC, et al. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 1994,62(12):5683-8.
    51. Obaro SK, Adegbola RA, Banya WA, et al. Carriage of pneumococci after pneumococcal vaccination. Lancet JT - Lancet, 1996,348(9022):271-2.
    52. LeMessurier KS, Ogunniyi AD, Paton JC. Differential expression of key pneumococcal virμlence genes in vivo. Microbiology JT - Microbiology (Reading, England), 2006,152(Pt 2):305-11.
    53. Tong HH, Blue LE, James MA, et al. Evaluation of the virμlence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect Immun JT - Infection and immunity, 2000,68(2):921-4.
    54. Orihuela CJ, Gao G, Francis KP, et al. Tissue-specific contributions of pneumococcal virμlence factors to pathogenesis. J Infect Dis JT - The Journal of infectious diseases, 2004,190(9):1661-9.
    55. Kwon HY, Ogunniyi AD, Choi MH, et al. The ClpP protease of Streptococcus pneumoniae modμlates virμlence gene expression and protects against fatal pneumococcal challenge. Infect Immun JT - Infection and immunity, 2004,72(10):5646-53.
    56. Ibrahim YM, Kerr AR, Silva NA, et al. Contribution of the ATP-dependent protease ClpCP to the autolysis and virμlence of Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 2005,73(2):730-40.
    57. Kwon HY, Kim SW, Choi MH, et al. Effect of heat shock and mutations in ClpL and ClpP on virμlence gene expression in Streptococcus pneumoniae. Infect Immun JT - Infection and immunity, 2003,71(7):3757-65.
    58. Charpentier E, Novak R, Tuomanen E. Regμlation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by clpC. Mol Microbiol JT - Molecμlar microbiology, 2000,37(4):717-26.
    59. Adamou JE, Heinrichs JH, Erwin AL, et al. Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect Immun JT - Infection and immunity, 2001,69(2):949-58.
    60. Overweg K, Kerr A, Sluijter M, et al. The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun JT - Infection and immunity, 2000,68(7):4180-8.
    61. Bethe G, Nau R, Wellmer A, et al. The cell wall-associated serine protease PrtA: a highly conserved virμlence factor of Streptococcus pneumoniae. FEMS Microbiol Lett JT - FEMS microbiology letters, 2001,205(1):99-104.
    62. Ogunniyi AD, LeMessurier KS, Graham RM, et al. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect Immun JT - Infection and immunity, 2007,75(4):1843-51.
    63. Areas AP, Oliveira ML, Miyaji EN, et al. Expression and characterization of cholera toxin B-pneumococcal surface adhesin A fusion protein in Escherichia coli: ability of CTB-PsaA to induce humoral immune response in mice. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2004,321(1):192-6.
    1. Y.Kawamura, X.G.Hou, F.Sμltana, H.Miura, T.Ezaki, Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int.J.Syst.Bacteriol. 45, (1995) 406-408.
    2. A.R.Tunkel, K.A.Sepkowitz, Infections caused by viridans streptococci in patients with neutropenia. Clin.Infect.Dis. 34, (2002) 1524-1529.
    3. P.Idigoras, A.Valiente, L.Iglesias, P.Trieu-Cout, C.Poyart, Meningitis due to Streptococcus salivarius. J.Clin.Microbiol. 39, (2001) 3017.
    4. S.Hamada, A.Amano, S.Kimura, I.Nakagawa, S.Kawabata, I.Morisaki, The importance of fimbriae in the virμlence and ecology of some oral bacteria. Oral Microbiol.Immunol. 13, (1998) 129-138.
    5. C.Abeygunawardana, C.A.Bush, J.O.Cisar, Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: a receptor for lectin-mediated interbacterial adherence. Biochemistry 30, (1991) 6528-6540.
    6. G.Rajam, D.J.Phillips, E.White, J.Anderton, C.W.Hooper, J.S.Sampson, G.M.Carlone, E.W.Ades, S.Romero-Steiner, A functional epitope of the pneumococcal surface adhesin A activates nasopharyngeal cells and increases bacterial internalization. Microb.Pathog. 44, (2008) 186-196.
    7. J.S.Sampson, S.P.O'Connor, A.R.Stinson, J.A.Tharpe, H.Russell, Cloning and nucleotide sequence analysis of PsaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. Adhesions. Infect.Immun. 62, (1994) 319-324.
    8. K.E.Morrison, D.Lake, J.Crook, G.M.Carlone, E.Ades, R.Facklam, J.S.Sampson, Confirmation of PsaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. J.Clin.Microbiol. 38, (2000) 434-437.
    9. I.Jado, A.Fenoll, J.Casal, A.Perez, Identification of the PsaA gene, coding for pneumococcal surface adhesin A, in viridans group streptococci other than Streptococcuspneumoniae . Clin.Diagn.Lab Immunol. 8, (2001) 895-898.
    10. J.Hoskins, W.E.Alborn, Jr., J.Arnold, L.C.Blaszczak, S.Burgett, B.S.DeHoff, S.T.Estrem, L.Fritz, D.J.Fu, W.Fμller, C.Geringer, R.Gilmour, J.S.Glass, H.Khoja, A.R.Kraft, R.E.Lagace, D.J.LeBlanc, L.N.Lee, E.J.Lefkowitz, J.Lu, P.Matsushima, S.M.McAhren, M.McHenney, K.McLeaster, C.W.Mundy, T.I.Nicas, F.H.Norris, M.O'Gara, R.B.Peery, G.T.Robertson, P.Rockey, P.M.Sun, M.E.Winkler, Y.Yang, M.Young-Bellido, G.Zhao, C.A.Zook, R.H.Baltz, S.R.Jaskunas, P.R.Rosteck, Jr., P.L.Skatrud, J.I.Glass, Genome of the bacterium Streptococcus pneumoniae strain R6. J.Bacteriol. 183, (2001) 5709-5717.
    11. C.Poyart, G.Quesne, S.Coμlon, P.Berche, P.Trieu-Cuot, Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J.Clin.Microbiol. 36, (1998) 41-47.
    12. J.Tapp, M.Thollesson, B.Herrmann, Phylogenetic relationships and genotyping of the genus Streptococcus by sequence determination of the RNase P RNA gene, rnpB.Int.J.Syst.Evol.Microbiol. 53, (2003) 1861-1871.
    13. A.Innings, M.Krabbe, M.μllberg, B.Herrmann, Identification of 43 Streptococcus species by pyrosequencing analysis of the rnpB gene. J.Clin.Microbiol. 43, (2005) 5983-5991.
    14. Y.Kawamura, R.A.Whiley, S.E.Shu, T.Ezaki, J.M.Hardie, Genetic approaches to the identification of the mitis group within the genus Streptococcus Microbiology 145 ( Pt 9), (1999) 2605-2613.
    15. S.Kumar, K.Tamura, I.B.Jakobsen, M.Nei, MEGA2: molecμlar evolutionary genetics analysis software. Bioinformatics. 17, (2001) 1244-1245.
    16. D.H.Huson, SplitsTree: analyzing and visualizing evolutionary data Bioinformatics. 14, (1998) 68-73.
    17. D.H.Huson, D.Bryant, Application of phylogenetic networks in evolutionary studies. Mol.Biol.Evol. 23, (2006) 254-267.
    18. A.Dintilhac, J.P.Claverys, The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesions. Res.Microbiol. 148, (1997) 119-131.
    19. P.E.Kolenbrander, R.N.Andersen, N.Ganeshkumar, Nucleotide sequence of the Streptococcus gordonii PK488 coaggregation adhesin gene, scaA, and ATP-bindingcassette. Infect.Immun. 62, (1994) 4469-4480.
    20. B.Martin, O.Humbert, M.Camara, E.Guenzi, J.Walker, T.Mitchell, P.Andrew, M.Prudhomme, G.Alloing, R.Hakenbeck, ., A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae Nucleic Acids Res. 20, (1992) 3479-3483.
    21. A.Monier, J.M.Claverie, H.Ogata, Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses BMC.Genomics 8, (2007) 456.
    22. A.M.Whatmore, A.Efstratiou, A.P.Pickerill, K.Broughton, G.Woodard, D.Sturgeon, R.George, C.G.Dowson, Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of "Atypical" pneumococci and organisms allied to S. mitis harboring S. pneumoniae virμlence factor-encoding genes. Infect.Immun. 68, (2000) 1374-1382.
    23. E.Kononen, H.Jousimies-Somer, A.Bryk, T.Kilp, M.Kilian, Establishment of streptococci in the upper respiratory tract: longitudinal changes in the mouth and nasopharynx up to 2 years of age. J.Med.Microbiol. 51, (2002) 723-730.
    24. P.R.Marri, W.Hao, G.B.Golding, Gene gain and gene loss in streptococcus: is it driven by habitat? Mol.Biol.Evol. 23, (2006) 2379-2391.
    25. C.Delorme, C.Poyart, S.D.Ehrlich, P.Renaμlt, Extent of horizontal gene transfer in evolution of Streptococci of the salivarius group. J.Bacteriol. 189, (2007) 1330-1341.
    26. C.J.Bishop, D.M.Aanensen, G.E.Jordan, M.Kilian, W.P.Hanage, B.G.Spratt, Assigning strains to bacterial species via the internet. BMC.Biol. 7, (2009) 3.
    27. M.J.Ferrandiz, C.Ardanuy, J.Linares, J.M.Garcia-Arenzana, E.Cercenado, A.Fleites, A.G.de la Campa, New mutations and horizontal transfer of rpoB among rifampin-resistant Streptococcus pneumoniae from four Spanish hospitals. Antimicrob. Agents Chemother. 49, (2005) 2237-2245.
    28. M.Ip, S.S.Chau, F.Chi, J.Tang, P.K.Chan, Fluoroquinolone resistance in atypical pneumococci and oral streptococci: evidence of horizontal gene transfer of fluoroquinolone resistance determinants from Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51, (2007) 2690-2700.
    29. T.Koeuth, J.Versalovic, J.R.Lupski, Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res. 5,(1995) 408-418.
    30. J.C.Waterhouse, R.R.Russell, Dispensable genes and foreign DNA in Streptococcus mutans. Microbiology 152, (2006) 1777-1788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700