H1N1和H3N2亚型猪流感病毒的拯救及其致病基因的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪流感是由猪流感病毒引起的一种急性呼吸道传染病,该病以传染性强、发病率高和死亡率低等为特点。猪流感病毒为A型流感病毒,该病毒的基因组为分节段的单股负链RNA。这一特点使病毒能通过基因突变和基因重配不断进化。NSl和PB1-F2蛋白是流感病毒编码的两个重要的非结构蛋白。本研究开展了H1和H3亚型猪流感病毒流行情况的血清学调查,并分析了NSl和PBl-F2蛋白的突变及基因重配对古典猪流感病毒生物学特性的影响。
     1.待宰肉猪H1和H3亚型猪流感病毒抗体血清学检测
     为了了解待宰肉猪中H1和H3亚型猪流感病毒的流行情况,采用血凝抑制试验对采集于南京市某3个肉联厂的483份血清样品进行H1和H3亚型猪流感病毒的抗体检测。实验结果表明,H1亚型抗体阳性的血清样品为32份,阳性率为6.6%;H3亚型抗体阳性的血清样品为53份,阳性率为10.9%;H1和H3亚型均为阳性的血清样品2份,阳性率为0.4%。实验结果说明被调查的待宰肉猪受到H1或H3亚型猪流感病毒不同程度的感染。
     2.猪流感病毒的拯救及体外生物学特性的分析
     为了建立猪流感病毒拯救的反向遗传操作系统,用RT-PCR方法分别扩增出猪流感病毒A/Swine/Guangdong/1/2004(GD/04)和A/Swine/Shanghai/1/2005(SH/05)的8个基因片段,通过与双向转录表达载体pBD连接,构建成含流感病毒8个基因片段的转录表达重组质粒。将含流感病毒8个基因片段的重组质粒共转染293T细胞,拯救出GD/04和SH/05病毒。拯救出的病毒分别命名为rGD/04和rSH/05。对rGD/04和rSH/05病毒的生长曲线、病毒蚀斑形态、病毒NP蛋白在细胞内的分布和全基因组测序等进行分析后证实拯救病毒的体外生物学特性和基因组均与亲本病毒保持一致。实验结果说明成功拯救出GD/04和SH/05病毒。GD/04和SH/05病毒反向遗传操作系统的成功建立为后续的研究奠定了基础。
     3.古典猪流感NS1蛋白突变病毒的构建及对小鼠的致病性分析
     序列分析表明,古典猪H1N1流感病毒的NS1蛋白在过去80年问不断进化,最显著的特征为该蛋白C-端最末尾4个氨基酸残基序列的变化和该蛋白C-端末尾11个氨基酸残基的缺失。然而,发生在NSl蛋白C-端末尾的这些变化对古典猪H1N1流感病毒的毒力是否有影响至今仍不清楚。以反向遗传学技术为基础,我们以古典猪H1N1病毒A/Swine/Shanghai/1/2005为框架构建出3株NS1蛋白突变病毒(RSEV.GSEI和EPEV)和1株野生型病毒(PEQK),并以小鼠为动物模型分析这些病毒的毒力。实验结果表明,RSEV和PEQK病毒都不能在小鼠肺脏中复制;而GSEI和EPEV病毒却不需要在小鼠体内适应就能在小鼠肺脏中复制。攻毒后第4天,GSEI和EPEV病毒组小鼠肺脏中的病毒滴度分别为2.3×103pfu/g和0.7×103pfu/g.对攻毒后第6天的GSEI和EPEV病毒组小鼠的肺脏进行病理分析后发现这两株病毒均能在小鼠肺脏中引起轻度的病毒性肺炎(肺泡壁增厚)。上述实验结果说明,古典猪H1N1流感病毒NS1蛋白C-端最末尾4个氨基酸残基序列GSEI和EPEV与该病毒在小鼠上表现出的毒力相关且能使该病毒跨越种间屏障从猪传播给小鼠。
     4.古典猪流感PB1-F2蛋白突变病毒的构建及对小鼠的致病性分析
     PB1-F2蛋白是流感病毒PB1基因编码的一个小分子量非结构蛋白。研究表明,该蛋白能增强高致病性流感病毒和实验室小鼠适应流感病毒在小鼠模型上的毒力。但PB1-F2蛋白是否也能增强低致病性流感病毒在小鼠模型上的毒力还不清楚。通过反向遗传学技术,我们以低致病性的古典猪H1N1流感病毒(PEQK)为框架,构建出一株表达PBl-F2蛋白的PEQK-F2病毒。我们先前的实验表明,PEQK病毒不能在小鼠肺脏中复制,因此我们又以能在小鼠肺脏中复制的GSEI病毒(PEQK病毒的NS1蛋白突变病毒)为框架,构建出一株表达PB1-F2蛋白的GSEI-F2病毒。实验结果表明,PEQK-F2病毒不能在小鼠肺脏中复制,GSEI-F2病毒在小鼠肺脏中的清除速度比GSEI病毒的快(接毒后第6天仍能在小鼠肺脏中分离到GSEI病毒,而GSEI-F2病毒则在接毒后第4天就分离不到)。上述结果说明,PB1-F2蛋白不能促使PEQK-F2病毒在小鼠肺脏中复制,但PB1-F2蛋白能加快病毒从肺脏中清除。
     5.古典猪流感基因重配病毒的构建及对豚鼠的致病性分析
     本实验室于2004年和2005年分别分离到两株猪流感病毒A/Swine/Gongdong/1/2004(GD/04)和A/Swine/Shanghai/1/2005(SH/05).实验表明,GD/04病毒能在豚鼠肺脏中复制,而SH/05病毒却不能。为了分析与GD/04病毒感染豚鼠有关的基因,本实验以反向遗传学技术为基础,以SH/05病毒为框架,构建出5株含GD/04病毒基因的SH-PB2(GD)、SH-NS(GD)、SH-HA,NA(GD). SH-PB2,HA,NA(GD)和SH-HA,NA,NS(GD)基因重配病毒,并分析这些基因重配病毒对豚鼠的致病性。攻毒后第3天在豚鼠的气管和肺脏中均未检测到这5株基因重配病毒。血凝抑制试验发现,SH-PB2(GD)病毒能刺激豚鼠产生针对该病毒的中和抗体。这一结果说明,GD/04病毒的PB2、HA、NA、NS基因与该毒株是否能感染豚鼠并不直接相关,进一步说明流感病毒毒力相关基因的复杂性。
Swine influenza is a acute respiratory infectious diseases caused by influenza A virus, which is characterized by highly infectivity, high morbility, and low mortality. The genome of influenza A virus is segmented negative single-stranded RNA, which enables the dynamic evolution of virus by both antigenic drift and genetic shift. Both of the NS1and PB1-F2proteins have multiple accessory functions during viral infection. In the present study, serologic surveillance of swine H1and H3subtypes influenza A virus infections in finishing pigs was carried out, and the effects of mutations in NS1and PB1-F2proteins and gene reassortment on classical swine influenza A virus were also analyzed.
     1. Detection of antibodies against H1and H3subtypes of swine influenza A viruses in finishing pigs
     In order to investigate the prevalent state of swine influenza virus of H1and H3subtypes in finishing pigs.483swine blood samples were collected and investigated serologically using trace hemagglutination inhibition test. Thirty-two samples were characterized positive for H1subtype, of which the positive rate was6.6%. Fifty-three samples were characterized positive for H3subtype, of which the positive rate was10.9%. Two samples were characterized positive for H1and H3subtypes, of which the positive rate was0.4%. The results showed that the finshing pigs were infected in different degrees with swine influenza virus of H1or H3subtype.
     2. Rescue of the swine influenza A viruses and characterization of the rescued viruses in vitro
     Full-length cDNAs of swine influenza viruses (A/Swine/Guangdong/1/2004(GD/04) and A/Swine/Shanghai/1/2005(SH/05)) were amplified and cloned into the bidirectional pBD vector. The eight plasmids were co-transfected into293T cells to generate rGD/04and rSH/05viruses. The rescued viruses and the parental viruses shared similar biological properties:growth kinetics, plaque phenotype, and distribution of the NP protein in the virus-infected cells. Moreover,The gene sequence were identical between the rescued viruses and parental viruses. The successful rescue of the GD/04and SH/05viruse established a foundation for the further studies.
     3. Recombination of NS1protein mutant classical swine influenza A viruses and determination of the pathogenicity of the viruses in mice
     The NS1protein of classical swine H1N1influenza A virus evolved dynamically during the past80years, most notably changes happened in the four C-terminal sequences and the C-terminal truncation of11amino acids. However, the role of these changes on the virulence of classical swine H1N1influenza A virus remains unknown. Using reverse genetics, three NS1mutant viruses (RSEV, GSEI, and EPEV) and a wild-type virus (PEQK) were generated from A/Swine/Shanghai/1/2005virus and the pathogenicity of the viruses was determined in mice. The results showed that RSEV and PEQK viruses could not replicate in the lungs of mice. By contrast, GSEI and EPEV viruses could replicate in the lungs of mice without prior adaptation. The viral titers in lungs from GSEI and EPEV virus-infected mice were2.3×103pfu/g and0.7×101pfu/g at four day postinfection, respectively. Mild-to-moderate alveolitis was observed in the histopathological test of lungs from GSEI and EPEV virus-infected mice. The results indicated that C-terminal GSEI and EPEV motifs of NS1protein involved in viral virulence and facilitated the A/Swine/Shanghai/1/2005virus crossing the species barrier from swine to mice.
     4. Recombination of PB1-F2protein mutant classical swine influenza A viruses and determination of the pathogenicity of the viruses in mice
     The PB1-F2is a small protein encoded by an alternative reading frame of the PB1gene. Expression of the full-length PB1-F2protein has been showed to increase the pathogenicity of the highly pathogenic influenza A viruses and laboratory mouse-adapted influenza A viruses in mouse model. However, the effects of the full-length PB1-F2protein on the low pathogenic influenza A virus still remains unknown. Using reverse genetics, a PEQK-F2virus that expressed a90amino acids PB1-F2protein was generated from a low pathogenic influenza virus A/Swine/Shanghai/1/2005(PEQK). Our previous study showed that the PEQK virus did not replicate in the lungs of mice. Thus, a GSEI-F2virus was generated in the background of GSEI virus (NS1protein mutant virus of PEQK virus, which can replicate in the lungs of mice). The pathogenicity of the viruses was determined in mice. The results showed that the PB1-F2protein could not facilitate the replication of the PEQK-F2virus in the lung of mouse, and that the expression of PB1-F2protein accelerated the clearance of GSEI-F2virus from the lungs of mice. These findings suggested that while the PB1-F2protein did not facilitate the PEQK-F2virus crossing species barriers, it attenuates the virulence of GSEI-F2virus in the mice.
     5. Recombination of gene reassortment classical swine influenza A viruses and determination of the pathogenicity of the viruses in guinea pigs
     Two swine influenza A viruses, A/Swine/Gongdong/1/2004(GD/04) and A/Swine/Shanghai/1/2005(SH/05), were isolated in2004and2005, respectively. It was showed that the GD/04virus could replicate in the respiratory tract of guinea pigs without prior adaption, while the SH/05viurs could not. To analyze the gene(s) contribute the replication of the GD/04virus in the respiratory tract of guinea pigs. In the present study, five gene reassortment viruses (SH-PB2(GD)、SH-NS(GD)、SH-HA,NA(GD)、 SH-PB2,HA,NA(GD) and SH-HA,NA,NS(GD)) were generated using reverse genetics in the background of SH/05, and the pathogenicity of the viruses were determined in guinea pigs. All of the viruses did not be detected in both the upper and lower respiratory tract of guinea pigs. However, the SH-PB2(GD) virus induced antibody against the virus in the guinea pigs, which was detected by heamgglutinin inhibition. The results indicated that the PB2, HA, NA, and NS genes did not contribute to the replication of the GD/04virus in the guinea pigs, and that the pathogenicity of the influenza A virus is a polygenic trait.
引文
[1]Brown IH. The epidemiology and evolution of influenza viruses in pigs [J]. Vet Microbiol.2000, 74(1-2):29-46
    [2]Qi X, Pang B, Lu CP. Genetic characterization of H1N1 swine influenza A viruses isolated in eastern China [J]. Virus Genes.2009,39(2):193-199
    [3]Choi YK, Pascua PN, and Song MS. Swine Influenza Viruses:An Asian Perspective [J]. Curr Top Microbiol Immunol.2012. doi:10.1007/82-2011-195
    [4]Myers KP, Olsen CW, and Gray GC. Cases of swine influenza in humans:a review of the literature [J]. Clin Infect Dis.2007,44(8):1084-1088
    [5]Shinde V, Bridges CB, Uyeki TM, Shu B, Balish A, Xu X, Lindstrom S, Gubareva LV, Deyde V, Garten RJ, Harris M, Gerber S, Vagasky S, Smith F, Pascoe N, Martin K. Dufficy D, Ritger K, Conover C, Quinlisk P, Klimov A, Bresee JS, Finelli L. Triple-reassortant swine influenza A (H1) in humans in the United States,2005-2009 [J]. N Engl J Med.2009,360(25):2616-2625
    [6]陆承平.最新动物病毒分类简介[J].中国病毒学.2005,20;(682-688)
    [7]Frensing T, Seitz C, Heynisch B, Patzina C, Kochs G, Reichl U. Efficient influenza B virus propagation due to deficient interferon-induced antiviral activity in MDCK. cells [J]. Vaccine.2011, 29(41):7125-7129
    [8]Gouarin S, Vabret A, Dina J, Petitjean J, Brouard J, Cuvillon-Nimal D, Freymuth F. Study of influenza C virus infection in France [J]. J Med Virol.2008,80(8):1441-1446
    [9]Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses [J]. Arch Virol.2001,146(12):2275-2289
    [10]Poon LL, Pritlove DC, Fodor E, Brownlee GG. Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template [J]. J Virol. 1999,73(4):3473-3476
    [11]Pritlove DC, Poon LL, Devenish LJ, Leahy MB, Brownlee GG. A hairpin loop at the 5'end of influenza A virus virion RNA is required for synthesis of poly(A)+mRNA in vitro [J]. J Virol.1999, 73(3):2109-1214
    [12]Poon LL, Pritlove DC, Sharps J, Brownlee GG. The RNA polymerase of influenza virus, bound to the 5'end of virion RNA, acts in cis to polyadenylate mRNA [J]. J Virol,1998,72(10):8214-8219
    [13]Webster RG, Bean WJ, Gorman OT, Charmbers TM, Kawaoka Y. Evolution and ecology of influenza A viruses [J]. Microbiol Rev.1992,56(1):152-179
    [14]Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls [J]. J Virol.2005,79(5):2814-2822
    [15]Toyoda T, Adyshev DM, Kobayashi M, Iwata A, Ishihama A. Molecular assembly of the influenza virus RNA polymerase:determination of the subunit-subunit contact sites [J]. J Gen Virol.1996, 77(9):2149-2157
    [16]Wilson IA, Skehel JJ, and Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution [J]. Nature.1981,289(5796):366-373
    [17]Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus [J]. Virology.1999,258(1):1-20
    [18]Bosch FX, Garten W, Klenk HD, Rott R. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses [J]. Virology.1981,113(2):725-735
    [19]Blok J, Air GM. Variation in the membrane-insertion and "stalk" sequences in eight subtypes of influenza type A virus neuraminidase [J]. Biochemistry.1982,21(17):4001-4007
    [20]Fomsgaard A, Nielsen HV, Kirkby N, Bryder K, Corbet S, Nielsen C, Hinkula J, Buus S. Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza A virus HA and NP CTL-epitopes [J]. Vaccine.1999,18(7-8):681-691
    [21]Altstein AD. Gitelman AK. Smirnov YA. Piskareva LM. Zakharova LG, Pashvykina GV. Shmarov MM. Zhirnov OP, Varich NP, llyinskii PO. Shneider AM. Immunization with influenza A NP-expressing vaccinia virus recombinant protects mice against experimental infection with human and avian influenza viruses [J]. Arch Virol.2006,151(5):921-931
    [22]Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R Schickli J, Palese P, I lenklein P, Bennink JR, Yewdell J W. A novel influenza A virus mitochondrial protein that induces cell death [J].Nat Med.2001,7(12):1306-1312
    [23]Krumbholz A, Philipps A, Oehring H. Schwarzer K, Eitner A, Wutzler P, Zell R. Current knowledge on PB1-F2 of influenza A viruses [J]. Med Microbiol Immunol.2011.200(2):69-75
    [24]. Ali A, Acalos RT, Ponimaskin E, Nayak DP. Influenza virus assembly:effect of influenza virus glycoproteins on the membrane association of MI protein [J]. J Virol.2000,74(18):8709-8719
    [25]Zebedee SL, and Lamb RA. Influenza A virus M2 protein:monoclonal antibody restriction of virus growth and detection of M2 in virions [J]. J Virol.1988,62(8):2762-2772
    [26]Iwatsuki-Horimoto K, Horimoto T, Noda T, Kiso M, Maeda J, Watanabe S. Muramoto Y. Fujii K, Kawaoka Y. The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly [J]. J Virol.2006,80(11):5233-5240
    [27]Hale BG, Randall RE, Ortin J, Jackson D. The multifunctional NS1 protein of influenza A viruses [J]. J Gen Virol.2008,89(10):2359-2376
    [28]Liniger M, Moulin HR, Sakoda Y, Ruggli N, Summerfield A. Highly pathogenic avian influenza virus H5N1 controls type I IFN induction in chicken macrophage HD-11 cells:a polygenic trait that involves NS1 and the polymerase complex [J]. Virol J.2012,9:7
    [29]O'Neill RE, Talon J, Palese P. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins [J]. EMBO J.1998,17(1):288-296
    [30]Neumann G, Hughes MT, and Kawaoka Y. Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRMl [J]. EMBO J.2000,19(24):6751-6758
    [31]Herz C, Stavnezer E, Krug R, Gurney TJ. Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells [J]. Cell.1981,26(1):391-400
    [32]Jackson DA, Caton AJ, McCready SJ, Cook PR. Influenza virus RNA is synthesized at fixed sites in the nucleus [J]. Nature.1982,296(5855):366-368
    [33]Kawakami K, Mizumoto K, Ishihama A, Shinozaki-Yamaguchi K, Miura K. Activation of influenza virus-associated RNA polymerase by cap-1 structure (m7GpppNm) [J]. J Biochem.1985, 97(2):655-661
    [34]Plotch SJ, Bouloy M, Ulmanen I, Krug RM. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription [J]. Cell.1981,23(3):847-858
    [35]Portela A, Zurcher T, Nieto A, Ortin J. Replication of orthomyxoviruses [J]. Adv Virus Res.1999, 54:319-348
    [36]Enami M, Fukuda R, Ishihama A. Transcription and replication of eight RNA segments of influenza virus [J]. Virology.1985,142(1):68-77
    [37]Mikulasova A, Vareckova E, Fodor E. Transcription and replication of the influenza a virus genome [J]. Acta Virol.2000,44(5):273-282
    [38]Compans RW, Meier-Ewert H, Palese P. Assembly of lipid-containing viruses [J]. J Supramol Struct. 1974,2(2-4):496-511
    [39]Nayak DP, Hui EK, Barman S. Assembly and budding of influenza virus [J]. Virus Res.2004, 106(2):147-165
    [40]Rossman JS, Lamb RA. Influenza virus assembly and budding [J]. Virology.2011,411(2):229-236
    [41]Rabadan R, Robins H. Evolution of the influenza a virus:some new advances [J]. Evol Bioinform Online.2007,3:299-307.
    [42]Orlich M, Gottwald H, Rott R. Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus [J]. Virology. 1994, 204(1):462-465
    [43]Khatchikian D. Orlich M, and Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus [J]. Nature. 1989, 340(6229): 156-157
    [44]Suarez DL, Senne DA, Banks J, Brown 1H, Essen SC, Lee CW, Manvell RJ, Mathieu-Benson C, Moreno V. Pedersen JC, Panigrahy B, Rojas H, Spademan E, Alexander DJ. Recombination resulting in virulence shift in avian influenza outbreak, Chile [J]. Emerg Infect Dis. 2004, 10(4):693-699
    [45]Pasick J, Handel K, Robinson J, Copps J, Ridd D, Hills K, Kehler H, Cottam-Brit C, Neufeld J, Berhane Y, Czub S. Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia [J]. J Gen Virol. 2005, 86(3):727-731
    [46]Yuen KY, Wong SS. Human infection by avian influenza A H5N1 [J]. Hong Kong Med J, 2005, 11 (3): 189-199
    [47]Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A. Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C. Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez 1, Myers CA, Faix D. Blair P.), Yu C. Keene KM, Dotson PD, Boxrud D, Sambol AR, Abid SH, Si George K. Bannerman T, Moore AL. Stringer D.I. Blevins P. Demmler-Harrison G.I. Ginsberg M, Kriner P, Waterman S. Smole S, Guevara HF, Belongia EA, Clark PA. Beatrice ST. Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM. Smith DJ, Klimov Al, Cox NJ. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans [J]. Science. 2009, 325(5937): 197-201
    [48]Connor RJ, Kawaoka Y, Webster RG, Paulson JC. Receptor specificity in human, avian. and equine 112 and H3 influenza virus isolates [J]. Virology. 1994, 205(1):17-23
    [49]Gambaryan AS, Tuzikov AB, Piskarev VE, Yamnikova SS, Lvov DK, Robertson .IS. Bovin NV. Matrosovich MN. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human HI and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllaclosamine) [J]. Virology. 1997, 232(2):345-350
    [50]Suzuki Y. Gangliosides as influenza virus receptors. Variation of influenza viruses and their recognition of the receptor sialo-sugar chains [J]. Prog Lipid Res. 1994. 33(4):429-457
    [51]Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR. Donatellil, Kida H, Paulson JC: Webster RG, Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential [J]. J Virol.1998,72(9):7367-7373
    [52]Hossain MJ, Hickman D, Perez DR. Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens [J]. PLoS One.2008,3(9):e3170
    [53]Sorrell EM, Perez DR. Adaptation of influenza A/Mallard/Potsdam/178-4/83 H2N2 virus in Japanese quail leads to infection and transmission in chickens [J]. Avian Dis.2007,51(1):264-268
    [54]Promkuntod N, Antarasena C, Prommuang P. Isolation of avian influenza virus A subtype H5N1 from internal contents (albumen and allantoic fluid) of Japanese quail (Coturnix coturnix japonica) eggs and oviduct during a natural outbreak [J]. Ann N Y Acad Sci.2006,1081:171-173
    [55]Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K, Webster R, Cox N, Hay A. Avian-to-human transmission of H9N2 subtype influenza A viruses:relationship between H9N2 and H5N1 human isolates [J]. Proc Natl Acad Sci U S A.2000, 97(17):9654-9658
    [56]Naeve CW, Hinshaw VS, Webster RG. Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus [J]. J Virol.1984,51(2):567-569
    [57]Bean WJ, Schell M, Katz J, Kawaoka Y, Naeve C, Gorman O, Webster RG. Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts [J]. J Virol.1992,66(2):1129-1138
    [58]Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals [J]. J Virol.2000,74(18):8502-8512
    [59]Sorrell EM, Song H, Pena L, Perez DR. A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens [J]. J Virol. 2010,84(22):11831-11840
    [60]Xu J, Christman MC, Donis RO, Lu G. Evolutionary dynamics of influenza A nucleoprotein (NP) lineages revealed by large-scale sequence analyses [J]. Infect Genet Evol.2011,11 (8):2125-2132
    [61]Gorman OT, Donis RO, Kawaoka Y, Webster RG. Evolution of influenza A virus PB2 genes: implications for evolution of the ribonucleoprotein complex and origin of human influenza A virus [J]. J Virol.1990,64(10):4893-4902
    [62]Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model [J]..1 Virol.2005, 79(18):12058-12064
    [63]Le QM, Sakai-Tagawa Y, Ozawa M, Ito M, Kawaoka Y. Selection of H5N1 influenza virus PB2 during replication in humans [J]. J Virol.2009,83(10):5278-5281
    [64]Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N [J]. PLoS Pathog. 2009, 5(1):e 1000252
    [65]Yamada, S, Hatta M, Staker BL, Watanabe S, Imai M, Shinya K, Sakai-Tagawa Y, Ho M, Ozawa M, Watanabe T, Sakabe S, Li C, Kim JH, Myler P.I, Phan I, Raymond A, Smith H, Stacy R, Nidom CA, Lank SM, Wiseman RW, Bimber BN, O'Connor DH, Neumann G, Stewart LJ, Kawaoka Y. Biological and structural characterization of a host-adapting amino acid in influenza virus [J]. PLoS Pathog, 2010, 6(8): p. el001034.
    [66]Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, Subbu V, Spiro DJ, Sitz J, Koo H, Bolotov P, Dernovoy D, Tatusova T, Bao Y, St George K, Taylor J, Lipman DJ, Fraser CM, Taubenberger JK, Salzberg SL. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution [J]. Nature. 2005, 437(7062): 1162-1166
    [67]Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity [J]. Proc Natl Acad Sci U S A. 2008, 105(11):4381-4386
    [68]Zell R, Krumbholz A, Eitner A, Krieg R, Halbhuber KJ, Wutzler P. Prevalence of PB1-F2 of influenza A viruses [J]. J Gen Virol. 2007, 88(Pt 2):536-46
    [69]Zell R, Krumbholz A, Wutzler P. Influenza A virus PB1-F2 gene [J]. Emerg Infect Dis. 2006. 12(10):1607-1608
    |70] Rogers GN, Paulson JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin [J]. Virology. 1983, 127(2): 361-373
    [71]Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, Van Doornum GJ, Koch G, Bosman A, Koopmans M, Osterhaus AD. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome [J]. Proc Natl Acad Sci U S A. 2004, 101 (5):1356-1361
    [72]Van Hoeven N, Pappas C, Belser JA, Maines TR, Zeng H. Garcia-Sastra A. Sasisekhnran R, Katz JM, Tumpey TM. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air [J]. Proc Natl Acad Sci U S A. 2009, 106(9):3366-3371
    [73]Hatta M, Gao P. Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses [J]. Science. 2001, 293(5536): 1840-1842
    [74]Ginting TE, Shinya K, Kyan Y, Makino A, Matsumoto N, Kaneda S. Kawaoka Y. Amino acid changes in hemagglutinin contribute to the replication of oseltamivir-resistant H1N 1 influenza viruses [J].J Virol. 2012, 86(1):121-127
    [75]van der Vries E, Veldhuis Kroeze EJ, Stittelaar KJ, Linster M, Van der Linden A, Schrauwen EJ, Leijten LM, Van Amerongen G, Schutten M, Kuiken T, Osterhaus AD, Fouchier RA, Boucher CA, Herfst S. Multidrug resistant 2009 A/H1N1 influenza clinical isolate with a neuraminidase I223R mutation retains its virulence and transmissibility in ferrets [J]. PLoS Pathog.2011,7(9):e1002276
    [76]Qi X, Lu CP. Genetic characterization of novel reassortant H1N2 influenza A viruses isolated from pigs in southeastern China [J]. Arch Virol.2006,151(11):2289-99.
    [77]Zhu Q, Yang H, Chen W, Cao W, Zhong G, Jiao P, Deng G, Yu K, Yang C, Bu Z, Kawaoka Y, Chen H. A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens [J]. J Virol.2008,82(1):220-228
    [78]Cong YL, Pu J, Liu QF, Wang S, Zhang GZ, Zhang XL, Fan W X, Brown EG, Liu JH. Antigenic and genetic characterization of H9N2 swine influenza viruses in China [J]. J Gen Virol.2007, 88(7):2035-2041
    [79]Moreno A, Barbieri I, Sozzi E, Luppi A, Lelli D, Lombardi G, Zanoni MG, Cordioli P. Novel swine influenza virus subtype H3N1 in Italy [J]. Vet Microbiol.2009,138(3-4):261-367
    [80]Chambers TM, Hinshaw VS, Kawaoka Y, Easterday BC, Webster RG. Influenza viral infection of swine in the United States 1988-1989 [J]. Arch Virol.1991,116(1-4):261-265
    [81]Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon K, Krauss S, Webster RG. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs [J]. J Virol.1999,73(10):8851-8856
    [82]Webby RJ, Swenson SL, Krauss SL, Gerrish PJ, Goyal SM, Webster RG. Evolution of swine H3N2 influenza viruses in the United States [J]. J Virol.2000,74(18):8243-8251
    [83]Ma W, Vincent AL, Brockwell CB, Lager KM, Janke BH, Gauger PC, Patnayak DP, Webby RJ, Richt JA. Identification of H2N3 influenza A viruses from swine in the United States [J]. Proc Natl Acad Sci U S A.2007,104(52):20949-20954
    [84]Ma W, Gramer M, Rossow K, Yoon KJ. Isolation and genetic characterization of new reassortant H3N1 swine influenza virus from pigs in the midwestern United States [J]. J Virol.2006, 80(10):5092-5096
    [85]Karasin A I, Brown IH, Carman S, Olsen CW. Isolation and characterization of H4N6 avian influenza viruses from pigs with pneumonia in Canada [J]. J Virol.2000,74(19):9322-9327
    [86]Olsen CW. The emergence of novel swine influenza viruses in North America [J]. Virus Res.2002, 85(2):199-210.
    [87]Karasin A I, West K, Carman S, Olsen CW. Characterization of avian H3N3 and H1N1 influenza A viruses isolated from pigs in Canada [J]. J Clin Microbiol.2004,42(9):4349-4354
    [88]Nardelli L, Pascucci S, Gualandi GL, Loda P. Outbreaks of classical swine influenza in Italy in 1976 [J]. Zentralbl Veterinarmed B.1978.25(10):853-857
    [89]Castrucci MR, Campitelli L. Ruggieri A, Barigazzi G, Sidolii L, Daniels R, Oxford JS, Donatelli I. Antigenic and sequence analysis of H3 influenza virus haemagglutinins from pigs in Italy [J]. J Gen Virol.1994,75 (2):371-379
    [90]Pensaert M. Ottis K. Vandeputte J, Kaplan MM, Bachmann PA. Evidence for the natural transmission of influenza A virus from wild ducts to swine and its potential importance for man. Bull World Health Organ [J].1981,59(1):75-78
    [91]Castrucci MR, Donatelli I, Sidoli L, Barigazzi G, Kawaoka Y, Webster RG. Genetic rcassortment between avian and human influenza A viruses in Italian pigs [J]. Virology.1993,193(1):503-506
    [92]Brown IH, Harris PA, McCauley JW, Alexander DJ. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype [J]. J Gen Virol.1998,79 (12):2947-2955
    [93]Zell R, Motzke S, Krumbholz A, Wutzler P, Herwig V, Durrwald R. Novel reassortant of swine influenza H1N2 virus in Germany [J]. J Gen Virol.2008,89(1):271-276
    [94]Kundin WD. Hong Kong A-2 influenza virus infection among swine during a human epidemic in Taiwan [J]. Nature.1970.228(5274):857
    [95]Peiris JS. Guan Y. Markwell D, Ghose P. Webster RG. Shortridgc KF. Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China:potential for genetic reassortment [J]. J Virol.2001,75(20):9679-9686
    [96]Shortridge KF, Webster RG, Butterfield WK, Campbell CH. Persistence of Hong Kong influenza virus variants in pigs [J]. Science.1977,196(4297):1454-1455
    [97]Lee CS, Kang BK, Kim HK, Park S.I, Park BK, Jung K, Song DS. Phylogenetic analysis of swine influenza viruses recently isolated in Korea [J]. Virus Genes.2008,37(2):168-176
    [98]Chutinimitkul S, Thippamom N. Damrongwatanapokin S, Payungpom S, Thanawongnuwech R. Amonsin A, Boonsuk P, Sreta D, Bunpong N, Tantilertcharoen R, Chamnanpood P, Parchariyanon S, Theamboonlers A, Poovorawan Y. Genetic characterization of H1N1, H1N2 and H3N2 swine influenza virus in Thailand [J]. Arch Virol.2008,153(6):1049-1056
    [99]Takemae N, Parchariyanon S, Damrongwatanapokin S, Uchida Y, Rutianapumma R, Watanabe C, Yamaguchi S, Saito T. Genetic diversity of swine influenza viruses isolated from pigs during 2000 to 2005 in Thailand [J]. Influenza Other Respi Viruses.2008,2(5):181-189
    [100]Nerome K, Ishida M, Oya A, Oda K. The possible origin H1N1 (Hsw1Nl) virus in the swine population of Japan and antigenic analysis of the isolates [J]. J Gen Virol.1982,62 (1):171-175
    [101]Yu H, Zhang GH, Hua RH, Zhang Q, Liu TQ, Liao M, Tong GZ. Isolation and genetic analysis of human origin H1N1 and H3N2 influenza viruses from pigs in China [J]. Biochem Biophys Res Commun.2007,356(1):91-96
    [102]Landolt GA, Karasin AI, Hofer C, Mahaney J, Svaren J, Olsen CW. Use of real-time reverse transcriptase polymerase chain reaction assay and cell culture methods for detection of swine influenza A viruses [J]. Am J Vet Res.2005,66(1):119-124
    [103]Lee BW, Bey RF, Baarsch MJ, Emery DA. Subtype specific ELISA for the detection of antibodies against influenza A HIN1 and H3N2 in swine [J]. J Virol Methods.1993,45(2):121-136
    [104]Lee BW, Bey RF, Baarsch MJ, Simonson RR. ELISA method for detection of influenza A infection in swine [J]. J Vet Diagn Invest.1993,5(4):510-515
    [105]Kyriakis CS, Gramer MR, Barbe F, Van Doorsselaere J, Van Reeth K. Efficacy of commercial swine influenza vaccines against challenge with a recent European H1N1 field isolate [J]. Vet Microbiol.2010,144(1-2):67-74
    [106]Van Reeth K, Van Gucht S, Pensaert M. Investigations of the efficacy of European H1N1-and H3N2-based swine influenza vaccines against the novel H1N2 subtype [J]. Vet Rec.2003,153(1):9-13
    [107]Van Reeth K, Labarque G, De Clercq S, Pensaert M. Efficacy of vaccination of pigs with different H1N1 swine influenza viruses using a recent challenge strain and different parameters of protection [J]. Vaccine.2001,19(31):4479-4486
    [1]Luytjes W, Krystal M, Enami M, Parvin JD, Palese P. Amplification, expression, and packaging of foreign gene by influenza virus [J]. Cell.1989,59(6):1107-1113
    [2]Neumann G, Zobel A, Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules [J]. Virology.1994,202(1):477-479
    [3]Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y. Generation of influenza A viruses entirely from cloned cDNAs [J]. Proc Natl Acad Sci U S A.1999,96(16):9345-9350
    [4]Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids [J]. Proc Natl Acad Sci U S A.2000, 97(11):6108-6113
    [5]Ozaki H, Govorkova EA, Li C, Xiong X, Webster RG, Webby RJ. Generation of high-yielding influenza A viruses in African green monkey kidney (Vero) cells by reverse genetics [J]. J Virol.2004, 78(4):1851-1857
    [6]Zhang X, Kong W, Ashraf S, Curtiss R. A one-plasmid system to generate influenza virus in cultured chicken cells for potential use in influenza vaccine[J]. J Virol.2009,83(18):9296-9303
    [7]Feng L, Li F, Zheng X, Pan W, Zhou K, Liu Y, He H, Chen L. The mouse Pollterminator is more efficient than the hepatitis delta virus ribozyme in generating influenza-virus-like RNAs with precise 3'ends in a plasmid-only-based virus rescue system [J]. Arch Virol.2009,154(7):1151-6
    [8]Sun X, Tse LV, Ferguson AD, Whittaker GR. Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic M1N1 influenza virus [J].J Virol.2010,84(17):8683-8690
    [9]Connor RJ, Kawaoka Y, Webster RG, Paulson JC. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates [J]. Virology.1994,205(1):17-23
    [10]Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli 1, Kawaoka Y. Early alterations of the receptor-binding properties of H1,H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals [J]. J Virol.2000,74(18):8502-8512
    [11]Baigent SJ, McCaulcy JW. Influenza type A in humans, mammals and birds:determinants of virus virulence, host-range and interspecies transmission [J]. Bioessays.2003,25(7):657-671
    [12]Rogers GN, Paulson JC, Daniels RS, Skehel JJ, Wilson IA, Wiley DC. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity[J]. Nature.1983, 304(5921):76-78
    [13]Vines A, Wells K, Matrosovich M, Castrucci MR, Ito T, Kawaoka Y. The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction [J]. J Virol.1998, 72(9):7626-7631
    [14]Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y, Nakajima K. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses [J]. Virology.1991,182(2):475-485
    [15]Matsuoka Y, Swayne DE, Thomas C, Rameix-Welti MA, Naffakh N, Warnes C, Altholtz M, Donis R, Subbarao K. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice [J]. J Virol.2009,83(9):4704-4708
    [16]Keawcharoen J, Oraveerakul K, Kuiken T, Fouchier RA, Amonsin A, Payungporn S, Noppornpanth S, Wattanodorn S, Theambooniers A, Tantilertcharoen R, Pattanarangsan R, Arya N, Ratanakorn P, Osterhaus DM, Poovorawan Y. Avian influenza H5N1 in tigers and leopards [J]. Emerg Infect Dis. 2004,10(12):2189-2191
    [17]Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range [J]. J Virol.1993,67(4):1761-1764
    [18]Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses [J]. Science.2001,293(5536):1840-1842
    [19]Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice [J]. Virology.2004,320(2):258-266
    [20]Hale BG, Randall RE, Ortin J, Jackson D. The multifunctional NS1 protein of influenza A viruses [J]. J Gen Virol.2008,89(10):2359-2376
    [21]Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW. Large-scale sequence analysis of avian influenza isolates. Science [J].2006,311(5767):1576-1580
    [22]Hoffmann E, Krauss S, Perez D, Webby R, Webster RG. Eight-plasmid system for rapid generation of influenza virus vaccines [J]. Vaccine.2002,20(25-26):3165-3170
    [23]Govorkova EA, Webby RJ, Humberd J, Seiler JP, Webster RG. Immunization with reverse-genetics-produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge [J]. J Infect Dis.2006,194(2):159-167
    [24]Wu R, Guan Y, Yang Z, Chen J, Wang H, Chen Q, Sui Z, Fang F, Chen Z. A live bivalent influenza vaccine based on a H9N2 virus strain [J]. Vaccine.2010,28(3):673-680
    [25]Chen GL, Lamirande EW, Jin H, Kemble G, Subbarao K. Safety, immunogencity, and efficacy of a cold-adapted A/Ann Arbor/6/60 (H2N2) vaccine in mice and ferrets [J]. Virology.2010, 398(1):109-114
    [26]Suguitan AL, Marino MP, Desai PD, Chen LM, Matsuoka Y, Donis RO, Jin H, Swayne DE, Kemble G, Subbarao K. The influence of the multi-basic cleavage site of the H5 hemagglutinin on the attenuation, immunogenicity and efficacy of a live attenuated influenza A H5NI cold-adapted vaccine virus [J]. Virology.2009,395(2):280-288
    [27]Joseph T, McAuliffe J, Lu B, Vogel L, Swayne D, Jin H, Kemble G, Subbarao K. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets [J]. Virology.2008,378(1):123-132
    [28]Lee JS, Kim HS, Seo SH. Genetic characterization and protective immunity of cold-adapted attenuated avian H9N2 influenza vaccine [J]. Vaccine.2008,26(51)6569-6576
    [1]Gutierrez-Martin CB, Rodriguez-Delgado O, Alvarez-Nistal D. De La Puente-Redondo V A, Garcia-Rioja F, Martin-Vicente J, Rodriguez Ferri EF. Simultaneous serological evidence of Actinobacillus pleuropneumoniae, PRRS, Aujeszky's disease and influenza viruses in Spanish finishing pigs [J]. Res Vet Sci.2000,68(1):9-13
    [2]Salomon R, Webster RG. The influenza virus enigma [J]. Cell.2009,136(3):402-410
    [3]Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD, Boxrud D, Sambol AR. Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA. Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov A I, Cox NJ. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans[J]. Science.2009.325(5937):197-201
    [4]Loeffen WL. Hunneman WA, Quak J. Verheijden JH, Stegeman JA. Population dynamics of swine influenza virus in farrow-to-finish and specialised finishing herds in the Netherlands[J]. Vet Microbiol. 2009,137(1-2):45-50
    [5]Jung K, Song DS, Kang BK, Oh JS, Park BK. Serologic surveillance of swine H1 and H3 and avian H5 and H9 influenza A virus infections in swine population in Korea [J]. Prev Vet Med.2007. 79(24):294-303
    [6]Memoli MJ, Tumpey TM, Jagger BW, Dugan VG, Sheng ZM, Qi L, Kash JC, Taubenberger JK. An early 'classical' swine M1N1 influenza virus shows similar pathogenicily to the 1918 pandemic virus in ferrets and mice [J]. Virology.2009,393(2):338-345
    [7]赵劭懂,李军,吴鹏,梅小丽,喻文亮.人感染欧洲类禽H1N1猪流感病毒重症一例[J].中华儿科杂志.2011,49(8):638-640
    [8]Li H Y, Yu KZ, Xin XG, Yang HL, Li YB, Qin YA, Bi YZ, Tong GZ, Chen HL. Serological and virologic surveillance of swine influenza in China from 2000 to 2003[J]. International congress series. 2004,1263:754-757
    [9]Wu R, Liu Z, Liang W, Yang K, Deng J. Duan Z, Zhou D, Xu D. Serological and virological surveillance of swine H1N1 and H3N2 influenza virus infection in two farms located in Hubei province, central China [J]. Zoonoses Public Health.2011,58(7):508-513
    [10]Song XH, Xiao H, Huang Y, Fu G, Jiang B, Kitamura Y, Liu W, Liu D, Gao GF. Serological surveillance of influenza A virus infection in swine populations in Fujian province, China:no evidence of naturally occurring H5N1 infection in pigs [J]. Zoonoses Public Health.2010,57(4):291-298
    [11]Qi X, Lu CP. Genetic characterization of novel reassortant H1N2 influenza A viruses isolated from pigs in southeastern China [J]. Arch Virol.2006,151(11):2289-2299
    [1]Ma W, Gramer M, Rossow K, Yoon KJ. Isolation and genetic characterization of new reassortant H3N1 swine influenza virus from pigs in the midwestern United States [J]. J Virol.2006, 80(10):5092-5096
    [2]Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L, Qin Z, Renukaradhya GJ, Lee CW. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs:a potential animal model for human H1N1 influenza virus [J]. J Virol.2010,84(21):11210-11218
    [3]Castrucci MR, Kawaoka Y. Reverse genetics system for generation of an influenza A virus mutant containing a deletion of the carboxyl-terminal residue of M2 protein [J]. J Virol.1995,69(5): 2725-2728
    [4]Pleschka S, Jaskunas R, Engelhardt OG, Zurcher T, Palese P, Garcia-Sastre A. A plasmid-based reverse genetics system for influenza A virus [J]. J Virol.1996,70(6):4188-4192
    [5]Neumann G, Kawaoka Y. Reverse genetics of influenza virus [J]. Virology.2001,287(2):243-250
    [6]Lee CW, Suarez DL. Reverse genetics of the avian influenza virus [J]. Methods Mol Biol.2008,436: 99-111
    [7]Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids [J]. Proc Natl Acad Sci U S A.2000,97(11): 6108-6113
    [8]Hatta M, Neumann G, Kawaoka Y. Reverse genetics approach towards understanding pathogenesis of H5N1 Hong Kong influenza A virus infection [J]. Philos Trans R Soc Lond B Biol Sci.2001, 356(1416):1841-1843
    [9]Neumann G, Hatta M, Kawaoka Y. Reverse genetics for the control of avian influenza [J]. Avian Dis. 2003,47(3):882-887
    [10]Sweet TM, Maassab HF, Herlocher ML. Reverse genetics studies of attenuation of the ca A/A A/6/60 influenza virus:the role of the matrix gene [J]. Biomed Pharmacother.2004,58(9): 509-515
    [11]Subbarao K, Chen H, Swayne D, Mingay L, Fodor E, Brownlee G, Xu X, Lu X, Katz J, Cox N, Matsuoka Y. Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics [J]. Virology.2003,305(1):192-200
    [12]Hoffmann E, Krauss S, Perez D, Webby R, Webster RG. Eight-plasmid system for rapid generation of influenza virus vaccines [J]. Vaccine.2002,20(25-26):3165-3170
    [13]Subbarao K, Katz JM. Influenza vaccines generated by reverse genetics [J]. Curr Top Microbiol Immunol.2004,283:313-342
    [14]Lipatov AS, Webby RJ, Govorkova EA, Krauss S, Webster RG. Efficacy of H5 influenza vaccines produced by reverse genetics in a lethal mouse model [J]. J Infect Dis.2005,191(8):1216-1220
    [15]Stech J, Klenk HD. A new approach to an influenza life vaccine:haemagglutinin cleavage site mutants generated by reverse genetics [J]. Berl Munch Tierarztl Wochenschr.2006,119(3-4):186-191
    [16]Webster RG, Webby RJ, Hoffmann E, Rodenberg J, Kumar M, Chu HJ, Seiler P, Krauss S, Songserm T. The immunogenicity and efficacy against H5N1 challenge of reverse genetics-derived 1I5N3 influenza vaccine in ducks and chickens [J]. Virology.2006,351(2):303-311
    [17]Victor ST, Watanabe S, Katsura H, Ozawa M, Kawaoka Y. A replication-incompetent PB2-knockout influenza A virus vaccine vector [J]. J Virol.2012. doi:10.1128/JVI.06232-11
    [18]Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model A replication-incompetent PB2-knockout influenza A virus vaccine vector [J]. J Virol.2005,79(18): 12058-12064
    [19]Hoffmann E. Stech J, Guan Y, Webster RG. Perez DR. Universal primer set for the full-length amplification of all influenza A viruses[J]. Arch Virol.2001.146(12):2275-2289
    [20]Stech J, Stech O,Herwig A, Altmeppen H, Hundt J, Gohrbandt S. Kreibich A, Weber S. Klenk HD, Mettenleiter TC. Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification [J]. Nucleic Acids Res.2008,36(21):e139
    [21]Chan CH, Lin KL, Chan Y, Wang YL, Chi YT, Tu HL, Shieh HK, Liu WT. Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction [J].J Virol Methods.2006,136(1-2):38-43
    [22]Kreibich A. Stech J, Mettenleiter TC, Stech O. Simultaneous one-tube full-length amplification of the NA, NP, M, and NS genes of influenza A viruses for reverse genetics [J]. J Virol Methods.2009. 159(2):308-310
    [23]Schat KA, Bingham J, Butler JM, Chen LM, Lowther S, Crowley TM, Moore RJ. Donis RO, Lowenthal JW. Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks [J]. PLoS One.2012,7(2): e30960
    [24]Liu Q, Qiao C, Marjuki H, Bawa B. Ma J, Guillossou S, Webby RJ, Richt JA, Ma W. Combination of PB2 271A and SR polymorphism at positions 590/591 is critical for viral replication and virulence of swine influenza virus in cultured cells and in vivo [J]. J Virol.2012,86(2):1233-1237
    [25]Mok CK, Yen HL, Yu MY, Yuen KM, Sia SF, Chan MC, Qin G, Tu WW, Peiris JS. Amino acid residues 253 and 591 of the PB2 protein of avian influenza virus A H9N2 contribute to mammalian pathogenesis [J]. J Virol.2011,85(18):9641-9645
    [26]Van Hoeven N, Pappas C, Belser JA, Maines TR, Zeng H, Garcia-Sastre A, Sasisekharan R, Katz JM, Tumpey TM. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air [J]. Proc Natl Acad Sci U S A.2009,106(9):3366-3371
    [27]Ozaki H, Govorkova EA, Li C, Xiong X, Webster RG, Webby RJ. Generation of high-yielding influenza A viruses in African green monkey kidney (Vero) cells by reverse genetics [J]. J Virol.2004, 78(4):1851-1857
    [28]Stech J, Stech O, Herwig A, Altmeppen H, Hundt J, Gohrbandt S, Kreibich A. Weber S, Klenk HD, Mettenleiter TC. Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification [J]. Nucleic Acids Res.2008,36(21):e139
    [29]Cong YL, Pu J, Liu QF, Wang S, Zhang GZ, Zhang XL, Fan WX, Brown EG, Liu JH. Antigenic and genetic characterization of H9N2 swine influenza viruses in China [J]. J Gen Virol.2007,88(7): 2035-2041
    [30]Rimmelzwaan GF, de Jong JC, Bestebroer TM, van Loon AM, Claas EC, Fouchier RA, Osterhaus AD. Antigenic and genetic characterization of swine influenza A (H1N1) viruses isolated from pneumonia patients in The Netherlands [J]. Virology.2001,282(2):301-306
    [31]Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon K, Krauss S, Webster RG. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs [J]. J Virol.1999,73(10):8851-8856
    [32]Vincent AL, Ma W, Lager KM, Gramer MR, Richt JA, Janke BH. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States [J]. Virus Genes.2009,39(2):176-185
    [33]Kumar SR, Deflube L, Biswas M, Shobana R, Elankumaran S. Genetic characterization of swine influenza viruses (H3N2) isolated from Minnesota in 2006-2007 [J]. Virus Genes.2011,43(2): 161-176
    [34]Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner B, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD, Boxrud D, Sambol AR, Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans [J]. Science.2009,325(5937):197-201
    [35]Marozin S, Gregory V, Cameron K, Bennett M, Valette M, Aymard M, Foni E, Barigazzi G, Lin Y, Hay A. Antigenic and genetic diversity among swine influenza A H1N1 and H1N2 viruses in Europe [J]. J Gen Virol.2002,83(4):735-745
    [36]Wu R, Liu Z, Liang W, Yang K, Deng J, Duan Z, Zhou D, Xu D. Serological and virological surveillance of swine H1N1 and H3N2 influenza virus infection in two farms located in Hubei province, central China [J]. Zoonoses Public Health.2011,58(7):508-513
    [1]Qi X, Pang B, Lu CP. Genetic characterization of H1N1 swine influenza A viruses isolated in eastern China [J]. Virus Genes.2009,39(2):193-199
    [2]Cui S, Wu C, Zhou H, Zhao R, Guo L, Wang J, Hung T. Secretory expression of all 16 subtypes of the hemagglutinin 1 protein of influenza A virus in insect cells [J].J Virol Methods.2011,177(2): 160-167
    [3]Watanabe T, Kawaoka Y. Pathogenesis of the 1918 pandemic influenza virus [J]. PLoS Pathog.2011, 7(1):e1001218
    [4]Jackson C, Vynnycky E, Mangtani P. Estimates of the transmissibility of the 1968 (Hong Kong) influenza pandemic:evidence of increased transmissibility between successive waves [J]. Am J Epidemiol.2010,171(4):465-478
    [5]Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA. Faix D, Blair PJ. Yu C, Keene KM. Dotson PD. Boxrud D, Sambol AR, Abid SH. St George K. Bannerman T, Moore AL, Stringer DJ, Blevins P. Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF. Belongia EA, Clark PA, Beatrice ST. Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov A I, Cox NJ. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans [J]. Science.2009,325(5937):197-201
    [6]Takahashi T, Hashimoto A, Maruyama M, Ishida H, Kiso M, Kawaoka Y, Suzuki Y, Suzuki T. Identification of amino acid residues of influenza A virus H3 HA contributing to the recognition of molecular species of sialic acid [J]. FEBS Lett.2009,583(19):3171-3174
    [7]Tambunan US, Ramdhan. Identification of sequence mutations affecting hemagglutinin specificity to sialic acid receptor in influenza A virus subtypes [J]. Bioinformation.2010,5(6):244-249
    [8]Van Poucke SG, Nicholls JM, Nauwynck HJ, Van Reeth K. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution[J]. Virol J.2010,7:38
    [9]Schrauwen EJ, Bestebrocr TM, Munster VJ, de Wit E, Herfst S, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. Insertion of a mullibasic cleavage site in the haemagglutinin of human influenza H3N2 virus does not increase pathogenicity in ferrets [J]. J Gen Virol.2011,92(6):1410-1415
    [10]Gohrbandt S, Veits J, Hundt J, Bogs J, Breithaupt A, Teifke JP, Weber S, Mettenleiter TC, Stech J. Amino acids adjacent to the haemagglutinin cleavage site are relevant for virulence of avian influenza viruses of subtype H5 [J].2011,91(2):51-59
    [11]Gohrbandt S, Veits J, Breithaupt A, Hundt J, Teifke JP, Stech O, Mettenleiter TC, Stech J. H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken [J]. J Gen Virol.2011,92(8):1843-1853
    [12]Bertram S, Glowacka I, Steffen I, Kuhl A, Pohlmann S. Novel insights into proteolytic cleavage of influenza virus hemagglutinin [J]. Rev Med Virol.2010,20(5):298-310
    [13]Xu C, Hu WB, Xu K, He YX, Wang TY, Chen Z, Li TX, Liu JH, Buchy P, Sun B. Amino acids 473V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells [J]. J Gen Virol.2012,93(3):531-540
    [14]Li J, Li Y, Hu Y, Chang G, Sun W, Yang Y, Kang X, Wu X, Zhu Q. PB1-mediated virulence attenuation of H5N1 influenza virus in mice is associated with PB2 [J]. J Gen Virol.2011,92(6): 1435-1444
    [15]Tada T, Suzuki K, Sakurai Y, Kubo M, Okada H, Itoh T, Tsukamoto K. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens [J]. J Virol.2011,85(4):1834-1846
    [16]Wasilenko JL, Sarmento L, Pantin-Jackwood MJ. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens [J]. Arch Virol.2009,154(6):969-79
    [17]Sakabe S, Ozawa M, Takano R, Iwastuki-Horimoto K, Kawaoka Y. Mutations in PA, NP, and HA of a pandemic (H1N1) 2009 influenza virus contribute to its adaptation to mice [J]. Virus Res.2011, 158(1-2):124-129
    [18]Hulse-Post DJ, Franks J, Boyd K, Salomon R, Hoffmann E, Yen HL, Webby RJ, Walker D, Nguyen TD, Webster RG. Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks [J]. J Virol.2007,81(16):8515-8524
    [19]Mehle A, Dugan VG, Taubenberger JK, Doudna JA. Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers [J]. J Virol.2012,86(3):1750-1757
    [20]Li J, Ishaq M, Prudence M, Xi X, Hu T, Liu Q, Guo D. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2 [J]. Virus Res.2009, 144(1-2):123-9
    [21]Hudjetz B, Gabriel G. Human-like PB2 627K influenza virus polymerase activity is regulated by importin-alphal and -alpha7 [J]. PLoS Pathog.2012,8(1):e1002488
    [22]Zhou B, Li Y, Halpin R, Hine E, Spiro DJ, Wentworth DE. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice [J]. J Virol.2011,85(1):357-365
    [23]Mok CK, Yen HL, Yu MY, Yuen KM, Sia SF, Chan MC, Qin G, Tu WW, Peiris JS. Amino acid residues 253 and 591 of the PB2 protein of avian influenza virus A H9N2 contribute to mammalian pathogenesis [J]. J Virol.2011,85(18):9641-9645
    [24]Li J. Ishaq M, Prudence M, Xi X, Hu T, Liu Q, Guo D. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2 [J]. Virus Res.2009,144(1-2): 123-129
    [25]Liniger M, Moulin HR, Sakoda Y, Ruggli N, Summerfield A. Highly pathogenic avian influenza virus H5N1 controls type 1 IFN induction in chicken macrophage HD-11 cells:a polygenic trait that involves NS1 and the polymerase complex [J]. Virol J.2012,9:7
    [26]Zhang C, Yang Y, Zhou X, Yang Z, Liu X, Cao Z, Song H, He Y, Huang P. The NS1 protein of influenza A virus interacts with heat shock protein Hsp90 in human alveolar basal epithelial cells: implication for virus-induced apoptosis [J]. Virol J.2011,8:181
    [27]Tu J, Guo J, Zhang A. Zhang W. ZhaoZ. Zhou H, Liu C, Chen H, Jin M. Effects of the C-terminal truncation in NS1 protein of the 2009 pandemic H1N1 influenza virus on host gene expression [J]. PLoS One.2011,6(10):e26175
    [28]Meunier I, von Messling V. NS1-mediated delay of type Ⅰ interferon induction contributes to influenza A virulence in ferrets [J]. J Gen Virol.2011,92(7):1635-1644
    [29]Li W, Wang G, Zhang H, Xin G, Zhang D, Zeng J, Chen X, Xu Y, Cui Y, Li K. Effects of NS1 variants of H5N1 influenza virus on interferon induction, TNFalpha response and p53 activity [J]. Cell Mol Immunol.2010.7(3):235-242
    [30]Hale BG, Randall RE, Ortin J, Jackson D. The multifunctional NS1 protein of influenza A viruses [J]. J Gen Virol.2008,89(10):2359-2376
    [31]Obenauer JC, DensonJ, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J. Fan Y, Rakestraw KM, Webster RG, Hoffmann E. Krauss S, Zheng J. Zhang Z, Naeve CW. Large-scale sequence analysis of avian influenza isolates [J]. Science.2006,311 (5767):1576-1580
    [32]Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant:the NS1 protein four C-terminal residues modulate pathogenicity [J]. Proc Natl A cad Sci U S A.2008,105(11):4381-4386
    [33]Soubies SM, Volmer C, Croville G, Loupias J, Peralta B, Costes P, Lacroux C, Guerin JL, Volmer R. Species-specific contribution of the four C-terminal amino acids of influenza A virus NS1 protein to virulence [J]. J Virol.2010,84(13):6733-6747
    [34]Zielecki F, Semmler I, Kalthoff D, Voss D, Mauel S, Gruber AD, Beer M, Wolff T. Virulence determinants of avian H5N1 influenza A virus in mammalian and avian hosts:role of the C-terminal ESEV motif in the viral NS1 protein [J]. J Virol.2010,84(20):10708-10718
    [35]Hale BG, Steel J, Manicassamy B, Medina RA, Ye J, Hickman D, Lowen AC, Perez DR, Garcia-Sastre A. Mutations in the NS1 C-terminal tail do not enhance replication or virulence of the 2009 pandemic H1N1 influenza A virus [J]. J Gen Virol.2010,91(7):1737-1742
    [36]Memoli MJ, Tumpey TM, Jagger BW, Dugan VG, Sheng ZM, Qi L, Kash JC, Taubenberger JK. An early'classical'swine H1N1 influenza virus shows similar pathogenicity to the 1918 pandemic virus in ferrets and mice [J]. Virology.2009,393(2):338-345
    [37]Tripp RA, Tompkins SM. Animal models for evaluation of influenza vaccines [J]. Curr Top Microbiol Immunol.2009,333:397-412
    [38]van der Laan JW, Herberts C, Lambkin-Williams R, Boyers A, Mann AJ, Oxford J. Animal models in influenza vaccine testing [J]. Expert Rev Vaccines.2008,7(6):783-793
    [39]Li J, Liu B, Chang G, Hu Y, Zhan D, Xia Y, Li Y, Yang Y, Zhu Q. Virulence of H5N1 virus in mice attenuates after in vitro serial passages [J]. Virol J.2011,8:93
    [40]Mase M, Tanimura N, Imada T, Okamatsu M, Tsukamoto K, Yamaguchi S. Recent H5N1 avian influenza A virus increases rapidly in virulence to mice after a single passage in mice [J]. J Gen Virol. 2006,87(12):3655-3659
    [41]Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin X, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS. A specificity map for the PDZ domain family [J]. PLoS Biol.2008,6(9):e239
    [42]Kitikoon P, Sreta D, Tuanudom R, Amonsin A, Suradhat S, Oraveerakul K, Poovorawan Y, Thanawongnuwech R. Serological evidence of pig-to-human influenza virus transmission on Thai swine farms [J]. Vet Microbiol.2011,148(2-4):413-418
    [43]Cox CM, Neises D, Garten RJ, Bryant B, Hesse RA, Anderson GA, Trevino-Garrison I, Shu B, Lindstrom S, Klimov AI, Finelli L. Swine influenza virus A (H3N2) infection in human, Kansas, USA, 2009 [J]. Emerg Infect Dis.2011,17(6):1143-1144
    [1]Qi X, Pang B, Lu CP. Genetic characterization of H1N1 swine influenza A viruses isolated in eastern China [J]. Virus Genes.2009,39(2):193-199
    [2]Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls [J]. J Virol.2005,79(5):2814-2822
    [3]Belser JA, Jayaraman A, Raman R, Pappas C, Zeng H, Cox NJ, Katz JM, Sasisekharan R, Tumpey TM. Effect of D222G mutation in the hemagglutinin protein on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus [J]. PLoS One.2011,6(9):e25091
    [4]Wang W, Castelan-Vega JA, Jimenez-Alberto A, Vassell R, Ye Z, Weiss CD. A mutation in the receptor binding site enhances infectivity of 2009 H1N1 influenza hemagglutinin pseudotypes without changing antigenicity [J]. Virology.2010,407(2):374-380
    [5]Su Y, Yang HY, Zhang BJ, Jia HL, Tien P. Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells [J]. Arch Virol.2008, 153(12):2253-2261
    [6]Koerner I, Matrosovich MN, Haller O, Staeheli P, Kochs G. Altered receptor specificity and fusion activity of the hemagglutinin contribute to high virulence of a mouse-adapted influenza A virus [J]. J Gen Virol.2012. doi:10.1099/vir.0.035782-0
    [7]Qi L, Kash JC, Dugan VG, Wang R, Jin G, Cunningham RE, Taubenberger JK. Role of sialic acid binding specificity of the 1918 influenza virus hemagglutinin protein in virulence and pathogenesis for mice [J]. J Virol.2009,83(8):3754-3761
    [8]Herfst S, Chutinimitkul S, Ye J, de Wit E, Munster VJ, Schrauwen EJ, Bestebroer TM, Jonges M, Meijer A, Koopmans M, Rimmelzwaan GF, Osterhaus AD, Perez DR, Fouchier RA. Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission [J]. J Virol.2010,84(8):3752-3758
    [9]Ping J, Dankar SK, Forbes NE, Keleta L, Zhou Y, Tyler S, Brown EG. PB2 and hemagglutinin mutations are major determinants of host range and virulence in mouse-adapted influenza A virus [J]. J Virol.2010,84(20):10606-10618
    [10]Li J, Ishaq M, Prudence M, Xi X, Hu T, Liu Q, Guo D. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2 [J]. Virus Res.2009, 144(1-2):123-129
    [11]Li J, Li Y, Hu Y, Chang G, Sun W, Yang Y, Kang X, Wu X, Zhu Q. PB1-mediated virulence attenuation of H5N1 influenza virus in mice is associated with PB2 [J]. J Gen Virol.2011,92(Pt 6):1435-1444
    [12]Song J, Feng H, Xu J, Zhao D, Shi J, Li Y, Deng G, Jiang Y, Li X, Zhu P, Guan Y, Bu Z. Kawaoka Y, Chen H. The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks [J]. J Virol.2011,85(5):2180-2188
    [13]Tada T, Suzuki K, Sakurai Y, Kubo M, Okada H, Itoh T, Tsukamoto K. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens [J]. J Virol.2011,85(4):1834-1846
    [14]Imai H, Shinya K, Takano R, Kiso M, Muramoto Y, Sakabe S, Murakami S, lto M, Yamada S, Le MT, Nidom CA, Sakai-Tagawa Y, Takahashi K, Omori Y, Noda T, Shimojima M, Kakugawa S, Goto H, Iwatsuki-Horimoto K, Horimoto T, Kawaoka Y. The HA and NS genes of human H5N1 influenza A virus contribute to high virulence in ferrets [J]. PLoS Pathog.2010,6(9):e1001106
    [15]Krumbholz A, Philipps A, Oehring H, Schwarzer K, Eitner A, Wutzler P, Zell R. Current knowledge on PB1-F2 of influenza A viruses [J]. Med Microbiol Immunol.2011,200(2):69-75
    [16]McAuley JL, Chipuk JE, Boyd KL, Van De Velde N, Green DR, McCullers JA. PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology [J]. PLoS Pathog. 2010.6(7):e1001014
    [17]Zamarin D, Ortigoza MB. Palese P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice [J].J Virol.2006,80(16):7976-7983
    [18]Marjuki H, Scholtissek C, Franks J, Negovetich NJ. Aldridge JR, Salomon R, Finkelstein D, Webster RG. Three amino acid changes in PB1-F2 of highly pathogenic H5N1 avian influenza virus affect pathogenicity in mallard ducks [J]. Arch Virol.2010,155(6):925-934
    [19]Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW. A novel influenza A virus mitochondrial protein that induces cell death [J]. Nat Med.2001,7(12):1306-1312
    [20]Zell R, Krumbholz A, Eitner A, Krieg R, Halbhuber K.I, Wutzler P. Prevalence of PB1-F2 of influenza A viruses [J]. J Gen Virol.2007,88(Pt 2):536-46
    [21]Zell R. Krumbholz A, Wutzler P. Influenza A virus PB1-F2gene[J]. Emerg Infect Dis.2006. 10(12):1607-1608
    [22]Yamada H, Chounan R. Higashi Y, Kurihara N, Kido H. Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria [J]. FEBS Lett.2004,578(3): 331-336
    [23]Gibbs JS, Malide D, Hornung F, Bennink JR, Yewdell JW. The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function [J]. J Virol.2003,77(13):7214-7224
    [24]Zamarin D, Garcia-Sastre A, Xiao X, Wang R, Palese P. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1 [J]. PLoS Pathog.2005, 1(1):e4
    [25]Mazur I, Anhlan D, Mitzner D, Wixler L, Schubert U, Ludwig S. The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein [J]. Cell Microbiol.2008,10(5):1140-1152
    [26]Le Goffic R, Leymarie O, Chevalier C, Rebours E, Da Costa B, Vidic J, Descamps D, Sallenave JM, Rauch M, Samson M, Delmas B. Transcriptomic analysis of host immune and cell death responses associated with the influenza A virus PB1-F2 protein [J]. PLoS Pathog.2011,7(8):e 1002202
    [27]Varga ZT, Ramos I, Hai R, Schmolke M, Garcia-Sastre A, Fernandez-Sesma A, Palese P. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein [J]. PLoS Pathog.2011,7(6):e1002067
    [28]Ramakrishnan MA, Gramer MR, Goyal SM, Sreevatsan S. A Serinel2Stop mutation in PB1-F2 of the 2009 pandemic (H1N1) influenza A:a possible reason for its enhanced transmission and pathogenicity to humans [J]. J Vet Sci.2009,10(4):349-351
    [29]Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P. A single mutation in the PB 1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence [J]. PLoS Pathog. 2007,3(10):1414-1421
    [30]McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, Yewdell JW, McCullers JA. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia [J]. Cell Host Microbe.2007,2(4):240-249
    [31]McAuley JL, Zhang K, McCullers JA. The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis [J]. J Virol.2010,84(l):558-564
    [32]La Gruta NL, Kedzierska K, Stambas J, Doherty PC. A question of self-preservation: immunopathology in influenza virus infection [J]. Immunol Cell Biol.2007,85(2):85-92
    [33]Kash JC, Goodman AG, Korth MJ, Katze MG. Hijacking of the host-cell response and translational control during influenza virus infection [J]. Virus Res.2006,119(1):111-120
    [34]Conenello GM, Tisoncik JR, Rosenzweig E, Varga ZT, Palese P, Katze MG. A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo [J]. J Virol.2011,85(2):652-662
    [1]Qi X, Pang B, Lu CP. Genetic characterization of H1N1 swine influenza A viruses isolated in eastern China [J]. Virus Genes.2009,39(2):193-199
    [2]Tsai KN, Chen GW. Influenza genome diversity and evolution [J]. Microbes Infect.2011,13(5): 479-488
    [3]Suguitan AL, Matsuoka Y, Lau YF, Santos CP, Vogel L, Cheng LI, Orandle M, Subbarao K. The Multibasic Cleavage Site of the Hemagglutinin of Highly Pathogenic A/Vietnam/1203/2004 (H5N1) Avian Influenza Virus Acts as a Virulence Factor in a Host-Specific Manner in Mammals [J]. J Virol. 2012,86(5):2706-2714
    [4]Schat KA, Bingham J, Butler JM, Chen LM, Lowther S, Crowley TM, Moore RJ, Donis RO, Lowenthal JW. Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks [J]. PLoS One.2012,7(2): e30960
    [5]Schrauwen EJ, Bestebroer TM, Munster VJ, de Wit E, Herfst S, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. Insertion of a multibasic cleavage site in the haemagglutinin of human influenza H3N2 virus does not increase pathogenicity in ferrets [J]. J Gen Virol.2011,92(Pt 6):1410-1415
    [6]Gohrbandt S, Veits J, Breithaupt A, Hundt J, Teifke JP, Stech O, Mettenleiter TC, Stech J. H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken [J]. J Gen Virol.2011,92(Pt8):1843-1853
    [7]Sun X, Tse LV, Ferguson AD, Whittaker GR. Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus [J]. J Virol.2010,84(17):8683-8690
    [8]Munster VJ, Schrauwen EJ, de Wit E, van den Brand JM, Bestebroer TM, Herfst S, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype [J]. J Virol.2010, 84(16):7953-60
    [9]Zhou B, Li Y, Halpin R, Hine E, Spiro DJ, Wentworth DE. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice [J]. J Virol.2011,85(1):357-365
    [10]Tada T, Suzuki K, Sakurai Y, Kubo M, Okada H, Itoh T, Tsukamoto K. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens [J]. J Virol.2011,85(4):1834-1846
    [11]Mok CK, Yen HL, Yu MY, Yuen KM, Sia SF, Chan MC, Qin G, Tu WW, Peiris JS. Amino acid residues 253 and 591 of the PB2 protein of avian influenza virus A H9N2 contribute to mammalian pathogenesis [J]. J Virol.2011,85(18):9641-5
    [12]Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N [J]. PLoS Pathog.2009,5(1):e 1000252
    [13]Spesock A, Malur M, Hossain MJ, Chen LM, Njaa BL, Davis CT, Lipatov AS, York IA, Krug RM, Donis RO. The virulence of 1997 H5N1 influenza viruses in the mouse model is increased by correcting a defect in their NS1 proteins [J]. J Virol.2011,85(14):7048-7058
    [14]Meunier I, von Messling V. NS1-mediated delay of type I interferon induction contributes to influenza A virulence in ferrets [J]. J Gen Virol.2011,92(Pt 7):1635-44
    [15]Dankar SK, Wang S, Ping J, Forbes NE, Keleta L, Li Y, Brown EG. Influenza A virus NS1 gene mutations F103L and M1061 increase replication and virulence [J]. Virol J.2011,8:13
    [16]Keiner B, Maenz B, Wagner R, Cattoli G, Capua I, Klenk HD. Intracellular distribution of NS1 correlates with the infectivity and interferon antagonism of an avian influenza virus (H7N1) [J]. J Virol.2010,84(22):11858-65
    [17]Haye K, Burmakina S. Moran T, Garcia-Sastre A, Femandez-Sesma A. The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells [J].J Virol.2009.83(13):6849-62
    [18]Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation[J]. Cell Host Microbe.2010,7(6):440-451
    [19]Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, Subbu V, Spiro D.1, Sitz J, Koo H, Bolotov P, Dernovoy D, Tatusova T, Bao Y, St George K, Taylor J, Lipman DJ, Fraser CM, Taubenberger JK, Salzberg SL. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution [J]. Nature.2005,437(7062):1162-1166
    [20]Zell R, Bergmann S, Krumbholz A, Wutzler P. Durrwald R. Ongoing evolution of swine influenza viruses:a novel reassortant [J]. Arch Virol.2008,153(11):2085-2092
    [21]Manzoor R, Sakoda Y. Nomura N. Tsuda Y, Ozaki H, Okamatsu M, Kida H. PB2 protein of a highly pathogenic avian influenza virus strain A/chicken/Yamaguchi/7/2004 (H5N1) determines its replication potential in pigs [J].J Virol.2009,83(4):1572-1578
    [22]Li J, Ishaq M, Prudence M. Xi X, Hu T, Liu Q, Guo D. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2 [J]. Virus Res.2009, 144(1-2):123-129
    [23]Octaviani CP, Goto H, Kawaoka Y. Reassortment between seasonal H1N1 and pandemic (H1N1) 2009 influenza viruses is restricted by limited compatibility among polymerase subunits [J]. J Virol. 2011,85(16):8449-8452
    [24]Enami M, Fukuda R, Ishihama A. Transcription and replication of eight RNA segments of influenza virus [J]. Virology.1985,142(1):68-77
    [25]Mikulasova A, Vareckova E, Fodor E. Transcription and replication of the influenza a virus genome [J]. Acta Virol.2000,44(5):273-282
    [26]Hale BG, Randall RE, Ortin J, Jackson D. The multifunctional NS1 protein of influenza A viruses [J]. J Gen Virol.2008,89(Pt 10):2359-2376
    [27]O'Donnell CD, Subbarao K. The contribution of animal models to the understanding of the host range and virulence of influenza A viruses [J]. Microbes Infect.2011,13(5):502-515
    [28]van der Laan JW, Herberts C, Lambkin-Williams R, Boyers A, Mann AJ, Oxford J. Animal models in influenza vaccine testing [J]. Expert Rev Vaccines.2008,7(6):783-793
    [29]Maher JA, DeStefano J. The ferret:an animal model to study influenza virus [J]. Lab Anim (NY). 2004,33(9):50-53
    [30]Lowen AC, Mubareka S, Tumpey TM, Garcia-Sastre A, Palese P. The guinea pig as a transmission model for human influenza viruses [J]. Proc Natl Acad Sci U S A.2006,103(26):9988-9992
    [31]Long J, Bushnell RV, Tobin JK, Pan K, Deem MW, Nara PL, Tobin GJ. Evolution of H3N2 influenza virus in a guinea pig model [J]. PLoS One.2011,6(7):e20130
    [32]Sun Y, Bi Y, Pu J, Hu Y, Wang J, Gao H, Liu L, Xu Q, Tan Y, Liu M, Guo X, Yang H, Liu J. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses [J]. PLoS One.2010,5(11):e15537
    [33]Seibert CW, Kaminski M, Philipp J, Rubbenstroth D, Albrecht RA, Schwalm F, Stertz S, Medina RA, Kochs G, Garcia-Sastre A, Staeheli P, Palese P. Oseltamivir-resistant variants of the 2009 pandemic H1N1 influenza A virus are not attenuated in the guinea pig and ferret transmission models [J]. J Virol.2010,84(21):11219-11226
    [34]Mubareka S, Lowen AC, Steel J, Coates AL, Garcia-Sastre A, Palese P. Transmission of influenza virus via aerosols and fomites in the guinea pig model [J]. J Infect Dis.2009,199(6):858-865
    [35]Lowen AC, Steel J, Mubareka S, Carnero E, Garcia-Sastre A, Palese P. Blocking interhost transmission of influenza virus by vaccination in the guinea pig model [J]. J Virol.2009, 83(7):2803-2818
    [36]Tang X, Chong KT. Histopathology and growth kinetics of influenza viruses (H1N1 and H3N2) in the upper and lower airways of guinea pigs [J]. J Gen Virol.2009,90(Pt 2):386-391
    [37]Kwon YK, Lipatov AS, Swayne DE. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus [J]. Vet Pathol.2009,46(1):138-141
    [38]Bouvier NM, Lowen AC, Palese P. Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct contact but not by aerosol [J]. J Virol.2008, 82(20):10052-10058

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700