Toll样受体在慢性阻塞性肺疾病发病机制中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     Toll样受体(Toll like receptors,TLRs)可特异性识别多种病原成份,启动固有免疫反应,并进一步诱导适应性免疫应答。呼吸道感染及环境暴露因素对慢性阻塞性肺疾病(COPD)的发生、发展有重要影响。作为固有免疫的重要组成部分,TLRs是连接环境暴露与适应性免疫的重要桥梁,其在COPD发病机制中发挥的作用开始受到广泛关注。现有研究结果提示TLRs参与COPD的病理过程和免疫应答,但对TLRs在COPD患者体内实际表达情况和作用的研究很少。本课题在稳定期COPD患者中,以健康不吸烟者、肺功能正常吸烟者、慢性持续期支气管哮喘(简称哮喘)为对照,探讨TLRs在COPD发生发展及炎症特点中的作用;应用A549肺上皮肿瘤细胞株,探讨Th1相关细胞因子及糖皮质激素治疗对呼吸道上皮TLRs表达的调节,从而进一步明确TLRs在COPD发病机制中发挥的作用。
     研究对象、方法
     临床研究部分
     入选健康不吸烟者25例,肺功能正常吸烟者21例,稳定期COPD患者30例,慢性持续期哮喘患者30例。其中稳定期COPD患者均为吸烟者。应用流式细胞仪全血免疫荧光直标法检测所有受试者外周静脉血CD14+单核细胞及中性粒细胞的TLR2、TLR4表达。所有受试者均检测肺功能,COPD患行查痰培养、血清C反应蛋白(CRP),应用酶连免疫吸附法(ELISA)测定COPD和哮喘患者血清TNF-α、IL-8浓度。
     实验室研究部分
     以A549人肺上皮肿瘤细胞株为实验对象,分别单独应用Th1相关细胞因子IFN-γ及TNF-α、地塞米松或联合应用地塞米松及上述细胞因子处理细胞,采用实时定量聚合酶链式反应(Real time PCR)法检测A549细胞TLR1、TLR2、TLR3、TLR4、TLR6表达的变化情况。
     研究结果
     临床研究部分
     1.CD14+单核细胞TLR2表达强度及阳性细胞率显著高于中性粒细胞(P<0.001)。CD14+单核细胞TLR2表达与TLR4表达成正相关(P<0.001)。CD14+单核细胞与中性粒细胞间TLR2、TLR4表达成正相关(P<0.05)。
     2.COPD患者有24例留取合格痰标本,其中16例细菌负荷量超过10~5CFU/ml,以革兰氏阴性杆菌为主;CRP均处于正常水平。
     3.健康不吸烟者、肺功能正常吸烟者及稳定期COPD患者3组比较:
     a.外周血CD14+单核细胞TLR2和TLR4的表达在肺功能正常吸烟者中明显下调(P<0.05),在稳定期COPD患者中进一步显著下降(P<0.05)。
     b.外周血中性粒细胞TLR2表达在肺功能正常吸烟者中明显下调(P<0.05),在稳定期COPD患者中有进一步下降趋势(P>0.05)。中性粒细胞TLR4表达情况3组间无明显差异(P>0.05)。
     c.CD14+单核细胞TLR2和TLR4的表达强度,中性粒细胞TLR2的表达强度与FEV_1%预计值、FEV_1/FVC比值成显著正相关(P<0.001)。
     4.慢性持续期哮喘患者CD14+单核细胞中TLR2及TLR4阳性细胞率明显高于健康对照组(P<0.01),中性粒细胞TLR2、TLR4的表达低于健康对照(P<0.01)。CD14+单核细胞TLR2和TLR4的表达强度与哮喘患者血清IgE浓度有相关的趋势。
     5.COPD患者与哮喘患者的比较:
     a.COPD患者外周血中性粒细胞TLR2、TLR4表达明显高于哮喘患者(P<0.05)
     b.COPD患者CD14+单核细胞TLR2、TLR4表达强度及阳性细胞率显著低于哮喘患者(P<0.001)。
     c.COPD患者血清IL-8浓度水平显著高于哮喘患者,血清TNF-α浓度水平则低于哮喘患者(P<0.01)。
     d.外周血中性粒细胞TLR2及TLR4表达强度与血清IL-8浓度成正相关(P<0.01),单核细胞TLR2及TLR4阳性细胞率与血清TNF-α浓度成正相关(P<0.01)。
     实验室研究部分
     1.IFN-γ使A549细胞TLR3表达明显上调,达对照组的3.78倍(P<0.05)。
     2.TNF-α使A549细胞TLR2、TLR6出现轻度上调(P<0.05),分别达到对照的1.62倍和1.22倍。
     3.地塞米松使A549细胞TLR2、TLR4表达明显上调,分别达对照的3.27及3.43倍(P<0.05)。
     4.地塞米松与IFN-γ共同作用A549细胞时,TLR2表达显著上调,达对照的6.25倍,地塞米松与TNF-α联合作用时TLR2表达增加至对照6.09倍(P<0.05)。
     5.TNF-α与IFN-γ联合刺激A549细胞时,TLR2上调达对照的3.66倍,而地塞米松与TNF-α、IFN-γ三者共同作用A549细胞时,TLR2的表达出现十分显著的上调,达对照的29.81倍(P<0.05)。
     结论
     1.健康人群单核细胞TLR2、TLR4表达显著高于中性粒细胞。
     2.吸烟抑制单核细胞和中性粒细胞TLRs表达。
     3.COPD患者单核细胞和中性粒细胞TLRs表达受到抑制,TLRs表达下调与病情进展有关。
     4.COPD患者TLRs的表达状态与其炎症反应特点有关。
     5.Th1细胞因子及糖皮质激素上调呼吸道上皮细胞TLRs表达,二者对呼吸道上皮细胞TLR2表达的上调具有协同作用,提示吸入激素治疗可能增强COPD患者气道上皮防御功能。
Background
     Toll-like receptors (TLRs) are involved in recognition of a broad range of pathogens. Their activation triggers the innate immune response, and is crucial to the successful induction of adaptive immunity. Respiratory infections and environmental stimuli influence the risk of developing COPD and the disease progression. As the key receptors of the innate immune system, TLRs are the important link between environmental exposure and regulation of adaptive immunity. Recent studies suggest that TLRs activation is likely to contribute to the establishment and maintenance of inflammation in COPD. But most of our knowledge of TLRs has emerged from studies of mice. The contribution of TLRs function to human COPD is less advanced.
     Objective
     To investigate the role of TLRs in the pathogenesis of COPD, we first compared the expression of TLR2 and TLR4 in circulating CD14+ monocytes and neutrophils harvested from clinically stable COPD patients, smokers with normal lung function and never smokers. Then the surface expression of TLR2 and TLR4 was phenotypically characterized on circulating CD14+ monocytes and neutrophils in COPD patients and patients with chronic persistent asthma. In addition, the effects of Th1- type cytokines and corticosteroid on the expression of TLRs in human respiratory epithelial cells were also examined.
     Methods
     The study population consisted of 30 COPD patients without evidence for acute exacerbation, 21 smokers with normal lung function, 25 healthy non-smokers and 30 patients with persistent asthma. The expression of TLR2, TLR4 surface molecules on human CD14+ monocytes and neutrophils was assessed using FACS analysis by flow cytometry. Spirometries were performed in all participants. Sputum bacterial isolation and serum C-reactive protein (CRP) measurement were performed in COPD patients. Serum tumour necrosis factor-α(TNF-α) and interleukin-8 (IL-8) levels of COPD and asthma patients were measured by means of ELISA. In addition, the human epithelial lung cancer cell line, A549, were stimulated with Interferon-γ(IFN-γ) , TNF-αand dexamethasone singly, or in a combination. Real-time PCR were used to assess TLRs mRNA expression.
     Results
     Clinical study
     1. CD14+ monocytes expressed significantly higher levels of TLR2 and TLR4 than meutrophils. The expression of TLR2 was positive correlated with the expression of TLR4 on monocytes. The expression of TLR2, and TLR4 as well, in monocytes were positive correlated with that in neutrophils.
     2. There were 16 clinically stable COPD patients with sputum pathogenic bacterial quantity more than 10~5 CFU/mL among 24 patients whose sputum sample was valid. All the COPD patients had a normal C-reactive protein level.
     3. Analysis among COPD patients, smokers with normal lung function, and nonsmokers:
     a. The expression of TLR2 and TLR4 on monocytes in healthy smokers was reduced as compared to nonsmokers ( P<0.05), while in COPD patients the expression was down-regulated more than healthy smokers( P<0.05).
     b. The expression of TLR2 on neutrophils in healthy smokers was reduced as compared to nonsmokers( P<0.05).The expression of TLR2 on neutrophils showed a tendency to be lower in COPD patients than healthy smokers. There was no significant difference among 3 groups in terms of the expression of TLP4 on neutrophils (P<0.05).
     c. The expression of TLR2 and TLR4 on monocytes was positively correlated with lung function parameters, including FEV1% predicted and FEV1/FVC( P<0.05). The expression of TLR2 on neutrophils was also positively correlated with the lung function parameters above( P<0.05).
     4. The TLR2 positive and TLR4 positive cell percent of CD14 monocytes was significantly higher in patients with chronic persistent asthma, than that in healthy controls( P<0.05), while the expression of TLR2 and TLR4 on neutrophils were down regulated in asthma patients. The expression intensities of TLR2 and TLR4 on monocytes showed a tendency to be correlated with serume IgE level in asthma patients.
     5. Analysis between patients with COPD and patients with asthma:
     a. Compared with patients with asthma, the expression of TLR2 anf TLR4 on circulating neutrophils was significantly increased in patients with COPD ( P<0.05), while the expression of TLR2 and TLR4 on monocytes was reduced in patients with COPD (P<0.01).
     b. Compared with patients with asthma, the serum IL-8 level was increased in COPD patients, while the serum TNF-αlevel was reduced in COPD patients.
     c. The expression of TLR2 and TLR4 on neutrophils were positively associated with serum IL-8 level ( P<0.01). The TLR2 positive and TLR4 positive percent of monocytes were positively associated with serum TNF-αlevel (P<0.01).
     Laboratory study
     1. IFN-γsignificantly up regulated the expression of TLR3 on A549 cells (3.78 folds compared with control, P<0.05).
     2. TNF-αenhanced the expression of TLR2 and TLR4 on A549 cells (1.62 and 1.22 folds compared with control, respectively, P<0.05).
     3. Dexamethasone significantly up regulated the expression of TLR2 and TLR4 on A549 cells (3.27 and 3.43 folds compared with control, respectively, P<0.05).
     4. Dexamethasone potentiated TLR2 expression induced by IFN-γor TNF-α(6.25 and 6.09 folds, respectively, P<0.05).
     5. TLR2 expression was significantly enhanced after stimulation with a combination of TNF-αand IFN-γ(3.66 fold compared with control, P<0.05). Dexamethasone synergistically enhanced TLR2 expression in combination with TNF-αand IFN-γ(29.81 fold compared with control, P<0.05).
     Conclusion
     1. CD14+ monocytes expressed significantly higher levels of TLR2 and TLR4 than meutrophils in healthy non-smokers.
     2. Smoke depressed the the expression of TLRs on monocytes and neutropils.
     3. The innate immune response might be depressed in patients with COPD, and the down regulation of TLRs was associated with the disease progression.
     4. The character of TLRs expression in patients with COPD might play a role in neutrophic inflammation.
     5. Th-1 type cytokines and corticosteroid regulated the expression of respiratory epithelial cells. Corticosteroid in combination with TNF-αand IFN-γcould synergistically enhance TLR2 expression on respiratory epithelial cells.
引文
1. O'Doncell R, Breen D, Wilson S, et al. Inflammatory cells in the airways in COPD [J]. Thorax, 2006, 61(5): 448-454.
    
    2. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection [J]. Nature, 2001,411(6839): 826-833.
    
    3. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults [J].Cell, 1996, 86(6):973-983.
    
    4. Chaudhuri N, Dower SK, Whyte MK, et al. Toll-like receptors and chronic lung disease [J]. Clinical Science, 2005, 109(2): 125-133.
    
    5. Tapping RI, Tobias PS. Mycobacterial lipoarabinomannanmediates physical interactions between TLR1 and TLR2 to induce signaling [J]. J Endotoxin Res, 2003,9(4):264-268.
    
    6. Hasan U, Chaffois C, Gaillard C, et al. Human TLR10 is a functional receptor,expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88 [J]. J Immunol, 2005, 174: 2942-2950.
    
    7. Tsan MF, Gao B. Endogenous ligands of Toll-like receptors [J]. J Leukoc Biol,2004,76(3):514-519.
    
    8. Homma T, Kato A, Hashimoto N, et al. Corticosteroid and cytokines synergistically enhance toll-like receptor 2 expression in respiratory epithelial cells [J]. Am J Respir Cell Mol Biol, 2004, 31(4): 463-469.
    
    9. Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function [J]. Blood, 2003,102(7): 2660-2669.
    
    10. Medzhitov R. Toll-like receptors and innate immunity [J]. Nat Rev Immunol, 2001,1(2): 135-145.
    
    11. Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4 [J]. Nature, 2002, 420(6913):324-329.
    
    12. Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity [J]. Clin Exp Immunol, 2007, 147(2): 199-207.
    
    13. Shapiro SD. The macrophage in chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med, 1999, 160(5 pt 2): S29-32.
    14.Zhu YK,Liu X,Wang H,et al.Interactions between monocytes and smooth-muscle cells can lead to extracellular matrix degradation[J].J Allergy Clin Immunol,2001,108(8):989-996.
    15.Morris GE,Whyte MK,Martin GF,et al.Agonists of toll-like receptors 2 and 4activate airway smooth muscle via mononuclear leukocytes[J].Am J Respir Crit Care Med,2005,171(8):814-822.
    16.Wieland CW,Knapp S,Florquin S,et al.Non-mannose-capped lipoarabinomannan induces lung inflammation via toll-like receptor 2[J].Am J Respir Crit Care Med,2004,170(12):1367-1374.
    17.Knapp S,Wieland CW,Florquin S,et al.Differential roles of CD14 and toll-like receptors 4 and 2 in murine Acinetobacter pneumonia[J].Am J Respir Crit Care Med,2006,173(1):122-129.
    18.Hauber HP,Tulic MK,Tsicopoulos A,et a.Toll-like receptors 4 and 2 expression in the bronchial mucosa of patients with cystic fibrosis[J].Can Respir J,2005,12(1):13-18.
    19.Droemann D,Goldmann T,Tiedjel T,et al.Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients[EB/OL].Respir Res,2005,6:68.
    20.中华医学会呼吸病分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007年修订版)[J].中华结核和呼吸杂志,2007,30(1):8-17.
    21.Global strategy for asthma management and prvention[EB/OL],http://www.Ginasthrna.org.
    22.中华医学会呼吸病血分会哮喘学组.咳嗽的诊断与治疗指南(草案).中华结核和呼吸杂志,2005,28(7):738-744.
    23.Sabroe I,Jones EC,Usher LR,et al.Toll-like receptor(TLR)2 and TLR4 in human peripheral blood granulocytes:a critical role for monocytes in leukocyte lipopolysaccharide responses[J].J Immunol,2002,168(9):4701-4710.
    24.Prince LR,Allen L,Jones EC,et al.The role of interleukin-1 {beta} in direct and Toll-like receptor 4-mediated neutrophil activation and survival[J].Am J Pathol,2004,165(5):1819-1826.
    25.Hasday JD,Bascom R,Costa JJ,et al.Bacterial endotoxin is an active component of cigarette smoke[J].Chest.1999,115(5):829-835.
    26.Larsson L,Szponar B,Pehrson C.Tobacco smoking increases dramatically air concentrations of endotoxin [J]. Indoor Air, 2004,14(6):421-424.
    
    27. Nomura F, Akashi S, Sakao Y, et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression [J]. J Immunol, 2000,164(7): 3476-3479.
    
    28. Kuroki Y, Tsuchida K, Go I, et al. A study of innate immunity in patients with end-stage renal disease: special reference to toll-like receptor-2 and -4 expression in peripheral blood monocytes of hemodialysis patients [J]. Int J Mol Med, 2007, 19(5):783-790.
    
    29. Muthukuru M, Jotwani R, Cutler CW. Oral Mucosal Endotoxin Tolerance Induction in Chronic Periodontitis [J]. Infect Immun, 2005, 73(2): 687-694.
    
    30. Grissell TV, Chang AB, Gibson PG. Reduced toll-like receptor 4 and substance Pgene expression is associated with airway bacterial colonization in children [J].Pediatr Pulmonol, 2007,42(4): 380-385.
    
    31. Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells [J]. Gastroenterology,2004, 126(4): 1054-1070.
    
    32. Sato S, Nomura F, Kawai T, et al. Synergy and cross-tolerance between toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways [J]. J Immunol, 2000,165(12): 7096-7101.
    
    33. Nomura F, Akashi S, Sakao Y, et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression [J]. J Immunol, 2000, 164(7): 3476-3479.
    
    34. Sabroe I, Prince LR, Jones EC, et al. Selective roles for Toll-like receptor (TLR) 2 and TLR4 in the regulation of neutrophil activation and life span [J]. J Immuno,2003,170(10): 5268-5275.
    
    35. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in tlr4 gene [J]. Science, 1998, 282(5396): 2085.
    
    36. Echchannaoui H, Frei K, Schnell C, et al. Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation [J]. J Infect Dis, 2002, 186(6):798-806.
    
    37. Sampath V, Davis K, Senft AP, et al. Altered postnatal lung development in C3H/HeJ mice [J]. Pediatr Res, 2006, 60(6): 663-668.
    
    38. Zalacain R, Sobradillo V, Amilibia J, et al. Predisposing factors to bacterial colonization in chronic obstructive pulmonary disease [J]. Eur Respir J 1999,13(2):343-348.
    
    39. Wilkinson TM, Patel IS, Wilks M, et al. Airway bacterial local and FEVi decline in patients with chronic obstructive pulmonary disease [J]. Am J Repir Crit Care Med,2003,167(8): 1090-1095.
    
    40. Ishida I, Kubo H, Suzuki S, et al. Hypoxia diminishes toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells [J]. J Immunol, 2002,169(4): 2069-2075.
    
    41. Lancaster GI, Khan Q, Drysdale P, et al. The physiological regulation of toll-like receptor expression and function in humans [J]. J Physiol, 2005, 563(Pt 3): 945-955.
    
    42. Zhang X, Shan P, Jiang G, et al. Toll-like receptor 4 deficiency causes pulmonary emphysema [J]. J Clin Invest, 2006,116(11):3050-3059.
    
    43. Rahman I. The role of oxidative stress in the pathogenesis of COPD: implications for therapy [J]. Treat Respir Med, 2005, 4(3): 175-200.
    
    44. MacRedmond RE, Greene CM, Dorscheid DR, et al. Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke [EB/OL].Respir Res. 2007, 8:84.
    
    45. Pons J, Sauleda J, Regueiro V, et al. Expression of Toll-like receptor 2 is up-regulated in monocytes from patients with chronic obstructive pulmonary disease [EB/OL]. Respir Res. 2006, 7: 64.
    
    46. Alderson MR, McGowan P, Baldridge JR et al. TLR4 agonists as immunomodulatory agents [J]. J Endotoxin Res, 2006, 12(5): 313-319.
    
    47. Kurt-Jones EA, Mandell L, Whitney C, et al. Role of toll-like receptor 2 (TLR2) in neutrophil activation: GM-CSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils [J]. Blood, 2002,100(5): 1860-1868.
    
    48. Stewart LK, Flynn MG, Campbell WW, et al. Influence of exercise training and age on CD14+ cell surface expression of toll-like receptor 2 and 4 [J]. Brain Behav Immunol, 2005, 19(5): 389-397.
    
    49. Ritter M, Mennerich D, Weith A, et al. Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response [J]. J Inflamm, 2005, 2:16.
    
    50. Van den Bosch JM, Westermann CJ, Aumann J, et al. Relationship between lung tissue and blood plasma concentrations of inhaled budesonide [J]. Biopharm Drug Dispos, 1993,14(7):455-459.
    
    51. Esmailpour N, Hogger P, Rabe KF, et al. Distribution of inhaled fluticasone propionate between human lung tissue and serum in vivo [J]. Eur Respir J, 1997,10(7):1496-1499.
    
    52. Isabel Lopez de Silanes, Ming Zhan, Ashish Lal. Identification of a target RNA motif for RNA-binding protein HuR [J]. PNAS ,2004,101(9): 2987-2992
    
    53. Hermoso MA, Matsuguchi T, Smoak K, et al. Glucocorticoids and tumor necrosis factor alpha cooperatively regulate toll-like receptor 2 gene expression. Mol Cell Biol [J]. 2004, 24(11):4743-4756.
    
    54. Sukkar MB, Xie S, Khorasani NM, et al. Toll-like receptor 2, 3, and 4 expression and function in human airway smooth muscle [J]. J Allergy Clin Immunol, 2006,118(3):641-648.
    1. O'Doncell R, Breen D, Wilson S, et al. Inflammatory cells in the airways in COPD [J]. Thorax, 2006,61(5): 448-454.
    
    2. Beutler B, Rehli M. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology [J]. Curr Top Microbiol Immunol 2002,270: 1-21.
    
    3. Lemaitre B, Nicolas E, Michaut L,, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults [J].Cell, 1996, 86(6): 973-983.
    
    4. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [J]. Nature, 1997,388(6640): 394-397.
    
    5. Hoshino K, Takeuchi O, Kawai T et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product [J]. J Immunol, 1999,162(7): 3749-3752.
    
    6. Vogel SN, Fitzgerald KA, Fenton MJ. TLRs: differential adapter utilization by toll-like receptors mediates TLR-specific patterns of gene expression [J]. Mol Interv,2003, 3(8): 466-477.
    
    7. Chaudhuri N, Dower SK, Whyte MB, et al. Toll-like receptors and chronic lung disease [J]. Clinical Science, 2005, 109(2): 125-133.
    
    8. Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity [J]. Clin Exp Immunol, 2007, 147(2): 199-207.
    
    9. Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease [J]. Nat Immunol, 2004, 5(10): 975-979.
    
    10. Zuany-Amorim C, Hastewell J, Walker C. Toll-like receptors as potential therapeutic targets for multiple diseases [J]. Nat Rev Drug Discov, 2002,1(10): 797-807.
    
    11. Matsumoto M, Funami K, Tanabe M, et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells [J]. J Immunol, 2003, 171(9): 3154-3162.
    
    12. Sha Q, Truong-Tran AQ, Plitt JR, et al. Activation of airway epithelial cells by toll-like receptor agonists [J]. Am J Respir Cell Mol Biol, 2004, 31(3): 358-364.
    
    13. Tsan MF, Gao B. Endogenous ligands of Toll-like receptors [J]. J Leukoc Biol, 2004,76(3): 514-519.
    
    14. Homma T, Kato A, Hashimoto N, et al. Corticosteroid and cytokines synergistically enhance toll-like receptor 2 expression in respiratory epithelial cells [J]. Am J Respir Cell Mol Biol, 2004,31(4): 463-469.
    
    15. Hayashi, F., Means, T. K., Luster, A. D. Toll-like receptors stimulate human neutrophil function [J]. Blood, 2003,102(7): 2660-2669.
    
    16. Komiya A, Nagase H, Okugawa S, et al. Expression and function of toll-like receptors in human basophils [J]. Int Arch Allergy Immunol, 2006, 140 (Suppl 1):23-27.
    
    17. Marshall JS. Mast-cell responses to pathogens [J]. Nat Rev Immunol, 2004, 4(10):787-799.
    
    18. Medzhitov R. Toll-like receptors and innate immunity [J]. Nat Rev Immunol, 2001,1(2): 135-145.
    
    19. Yamamoto M, Sato S, Hemmi H, et al.Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4 [J]. Nature, 2002, 420(6913):324-329.
    
    20. Phipps S, Lam CE, Mahalingam S, et al. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus [J]. Blood, 2007,110(5): 1578-1586.
    
    21. Vives Pi M , Somoza N , Fernandez-Alvarez J , et al . Evidence of expression of endotoxin receptor s CD14, Toll21ike receptors TLR4 and TLR2 and associated molecule MD22 and of sensitivity to endotoxin (L PS) in islet beta cells [J]. J Clin Exp Immunol, 2003,133(2): 208-218.
    
    22. Zhang FX, Kirschning CJ, Mancinelli R, et al. Bacterial lipopolysaccharide activates nuclear factor-kappaB through inteileukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes [J]. J Biol Chem, 1999,274(12): 7611-7614.
    
    23. Hacker H, Mischak H, Hacker G et al. Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells [J]. EMBO J, 1999, 18(24): 6973-6982.
    
    24. Amdt PG, Suzuki N, Avdi NJ, et al. Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: role of phosphatidylinositol 3-kinase and Syk-mediated pathways [J]. J Biol Chem, 2004, 279(12):10883-10891.
    
    25. Kawai T, Akira S. TLR signaling [J]. Cell Death Differ, 2006; 13(5): 816-825.
    
    26. O'Neill LA. How Toll-like receptors signal: what we know and what we don't know [J]. Curr Opin Immunol, 2006, 18(1): 3-9.
    27. Hoshino K, Kaisho T, Iwabe T, et al . Differential involvement of IFN2(3 in Toll21ike receptor2stimulated dendritic cell activation [J]. Int Immunol, 2002,14(10): 1225-1231.
    
    28. Hoebe K, Beutler B. TRAF3: a new component of the TLRsignaling apparatus [J].Trends Mol Med, 2006, 12(5): 187-189.
    
    29. Meylan E, Burns K, Hofmann K et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation [J]. Nat Immunol, 2004, 5(5): 503-507.
    
    30. Yamamoto M, Sato S, HemmiHet al. TRAM is specifically involved in the Toll-like receptor 4-mediatedMyD88-independent signaling pathway [J]. Nat Immunol, 2003,4(11): 1144-1150.
    
    31. Droemann D, Goldmann T, Tiedjel T, et al. Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients [EB/OL]. Respir Res, 2005, 6: 68.
    
    32. MacRedmond RE, Greene CM, Dorscheid DR, et al. Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke [EB/OL].Respir Res, 2007, 8: 84.
    
    33. Pons J, Sauleda J, Regueiro V, et al. Expression of Toll-like receptor 2 is up-regulated in monocytes from patients with chronic obstructive pulmonary disease [EB/OL]. Respir Res, 2006, 7: 64.
    
    34. Morris GE, Whyte MK, Martin GF, et al. Agonists of toll-like receptors 2 and 4 activate airway smooth muscle via mononuclear leukocytes [J]. Am J Respir Crit Care Med, 2005,171(8): 814-822.
    
    35. Zhu YK, Liu X, Wang H,et al. Interactions between monocytes and smooth-muscle cells can lead to extracellular matrix degradation [J]. J Allergy Clin Immunol, 2001,108(8): 989-996.
    
    36. Shapiro SD. The macrophage in chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med, 1999, 160(5 pt 2): S29-32.
    
    37. Wieland CW, Knapp S, Florquin S, et al. Non-mannose-capped lipoarabinomannan induces lung inflammation via toll-like receptor 2 [J]. Am J Respir Crit Care Med,2004, 170(12): 1367-1374.
    
    38. Knapp S, Wieland CW, Florquin S, et al. Differential roles of CD14 and toll-like receptors 4 and 2 in murine Acinetobacter pneumonia [J]. Am J Respir Crit Care Med, 2006, 173(1): 122-129.
    
    39. Hauber HP, Tulic MK, Tsicopoulos A, et a. Toll-like receptors 4 and 2 expression in the bronchial mucosa of patients with cystic fibrosis [J]. Can Respir J, 2005, 12(1):13-18.
    
    40. Strachan DP. Family size, infection and atopy: the first decade of the "hygiene hypothesis" [J]. Thorax, 2000, 55 (Suppl 1): S10-22.
    
    41. Eisenbarth SC, Piggott DA, Huleatt JW, et al. Lipopolysaccharide-enhanced,toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen [J]. J Exp Med, 2002,196(12): 1645-1651.
    
    42. Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells [J]. J Biol Chem, 2001, 276(40): 37692-37699.
    
    43. Agrawal S, Agrawal A, Doughty B, et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos [J]. J Immunol, 2003, 171(10): 4984-4989.
    
    44. Dillon S, Agrawal A, Van Dyke T, et al. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells [J]. J Immunol, 2004,172(8): 4733-4743.
    
    45. Redecke V, Hacker H, Datta SK, et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma [J]. J Immunol,2004, 172(5): 2739-2743.
    
    46. Wu Q, Martin RJ, Lafasto S, et al. Toll-like receptor 2 down-regulation in established mouse allergic lungs contributes to decreased mycoplasma clearance [J].Am J Respir Crit Care Med, 2008,177(7): 720-729.
    
    47. Koch A, Knobloch J, Dammhayn C, et al. Effect of bacterial endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics [J]. Clin Immunol, 2007,125(2): 194-204.
    
    48. Yang IA, Fong KM, Holgate ST, et al. The role of Toll-like receptors and related receptors of the innate immune system in asthma [J]. Curr Opin Allergy Clin Immunol, 2006, 6(1): 23-28.
    
    49. Boonstra A, Asselin-Paturel C, Gilliet M, et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation [J]. J Exp Med, 2003, 197(1): 101-109.
    
    50. Moseman EA, Liang X, Dawson AJ, et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells [J]. J Immunol, 2004,173(7): 4433-4442.
    
    51. Hayashi T, Beck L, Rossetto C, et al. Inhibition of experimental asthma by indoleamine 2,3-dioxygenase [J]. J Clin Invest, 2004,114(2): 270-279.
    
    52. Fanucchi MV, Schelegle ES, Baker GL, et al. Immunostimulatory oligonucleotides attenuate airways remodeling in allergic monkeys [J]. Am J Respir Crit Care Med,2004, 170(11): 1153-1157.
    
    53. Alderson MR, McGowan P, Baldridge JR, et al. TLR4 agonists as immunomodulatory agents [J]. J Endotoxin Res, 2006(5), 12: 313-319.
    
    54. MacRedmond RE, Greene CM, Dorscheid DR, et al. Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke[EB/OL].Respir Res, 2007, 8: 84.
    1.St rachan DP.Family size,infection and atopy:the first decade of the"hygiene hypothesis".Thorax,2000,55(Suppl 1):S10-22.
    2.Sabroe I,Parker LC,Dochrell DH,et al.Targeting the networks that underpin contiguous immunity in asthma and chronic obstructive pulmonary disease.Am J Respir Crit Care Med,2007,175(4):306-311.
    3.O'Doncell R,Breen D,Wilson S,et al.Inflammatory cells in the airways in COPD [J].Thorax,2006,61(5):448-454.
    4.Ahmad-Nejad P,Mrabet-Dahbi S,Breuer K,et al.The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype [J]. J Allergy Clin Immunol, 2004,113(3):565-567.
    
    5. Eder W, Klimecki W, Yu L, et al. Toll-like receptor 2 as a major gene for asthma in children of European farmers [J]. J Allergy Clin Immunol, 2004,113(3):482-488.
    
    6. Noguchi E, Nishimura F, Fukai H, et al. An association study of asthma and total serum immunoglobin E levels for Toll-like receptor polymorphisms in a Japanese population [J]. Clin Exp Allergy, 2004, 34(2): 177-183.
    
    7. Arbour NC, Lorenz E, Schutte BC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans [J]. Nat Genet, 2000, 25(2): 187-191.
    
    8. Agnese DM, Calvano JE, Hahm SJ, et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections [J]. J Infect Dis, 2002, 186(10): 1522-1525.
    
    9. Yang IA, Barton SJ, Rorke S, et al. Toll-like receptor 4 polymorphism and severity of atopy in asthmatics [J]. Genes Immun, 2004, 5(1):41-45.
    
    10. Tantisira K,Klimecki WT ,Lazarus R ,et al . Toll-like receptor 6 gene (TLR6) :single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma [J]. Genes Immun, 2004, 5(5): 343-346.
    
    11. Lazarus R, Klimecki WT, Raby BA, et al. Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium , and haplotypes in three U. S. ethnic groups and exploratory case control disease association st udies [J]. Genomics, 2003, 81(1): 85-91.
    
    12. Lachheb J, Dhifallah IB, Chelbi H,.et al. Toll-like receptors and CD14 genes polymorphisms and susceptibility to asthma in Tunisian children [J]. Tissue Antigens,71(5):417-425.
    
    13. Berghofer B ,Frommer T ,Konig IR ,et al . Common human Toll-like receptor 9 polymorphisms and haplotypes: association wit hatopy and functional relevance [J].Clin Exp Allergy, 2005, 35(9): 1147-1154.
    
    14. Hasan U, Chaffois C, Gaillard C, et al. Human TLR10 is a functional receptor,expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88 [J]. J Immunol, 2005, 174(5):2942-2950.
    
    15. Lazarus R , Raby BA , Lange C , et al . Toll-like receptor 10 genetic variation is associated wit h ast hma in two independent samples [J]. Am J Respir Crit Care Med,2004, 170(6):594-600.
    
    16. Los H, Koppelman GH, Postma DS. The importance of genetic influences in asthma [J]. Eur Respir J, 1999,14(5):1210-1227.
    
    17. Vercelli D, Baldini M, Martinez F. The monocyte/IgE connection: may polymorphisms in the CD 14 gene teach us about IgE regulation [J]? Int Arch Allergy Immunol, 2001,124(1-3):20-24.
    
    18. Baldini M, Lohman IC, Halonen M, Erickson RP, Holt PG, Martinez FD. Apolymorphism in the 5' flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E [J]. Am J Respir Cell Mol Biol, 1999, 20(5): 976-983.
    
    19. Gao PS, Mao XQ, Baldini M, et al. Serum total IgE levels and CD14 on chromosome 5q31 [J]. Clin Genet, 1999, 56(2): 164-165.
    
    20. Koppelman GH, Reijmerink NE, Colin SO, et al. Association of a promoter polymorphism of the CD14 gene and atopy [J]. Am J Respir Crit Care Med, 2001,163(4):965-969.
    
    21. Sengler C, Haider A, Sommerfeld C, et al. Evaluation of the CD14 C-159 T polymorphism in the German Multicenter Allergy Study cohort [J]. Clin Exp Allergy, 2003, 33(2): 166-169.
    
    22. Kabesch M, Hasemann K, Schickinger V, et al. A promoter polymorphism in the CD14 gene is associated with elevated levels of soluble CD14 but not with IgE or atopic diseases [J]. Allergy, 2004, 59(5):520-525.
    
    23. O'Donnell AR, Toelle BG, Marks GB, et al. Age-specific relationship between CD14 and atopy in a cohort assessed from age 8 to 25 years [J]. Am J Respir Crit Care Med, 2004,169(5): 615-622.
    
    24. de Faria IC, de Faria EJ, Toro AA,.et al. Association of TGF-betal, CD14, IL-4,IL-4R and ADAM33 gene polymorphisms with asthma severity in children and adolescents[EB/OL]. J Pediatr (Rio J). 2008, 84(3).
    
    25. Smit LA, Bongers SI, Ruven HJ, et al. Atopy and new-onset asthma in young Danish farmers and CD14, TLR2, and TLR4 genetic polymorphisms: a nested case-control study [J]. Clin Exp Allergy, 2007, 37(11):1602-1608.
    
    26. Braun-Fahrlander C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children [J]. N Engl J Med, 2002,347(12):869-877.
    
    27. Gereda JE, Leung DY, Thatayatikom A, et al. Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma [J]. Lancet, 2000, 355(9216): 1680-1683.
    28. Tulic MK, Wale JL, Holt PG, et al. Modification of the inflammatory response to allergen challenge after exposure to bacterial lipopolysaccharide [J]. Am J Respir Cell Mol Biol, 2000,22(5):604-612.
    
    29. Michel O, Kips J, Duchateau J, et al. Severity of asthma is related to endotoxin in house dust. Am J Respir Crit Care Med, 1996, 154(6 pt 1):1641-1646.
    
    30. Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrlander C, Nowak D,Martinez FD, The A. Endotoxin Alex Study T. Opposite effects of CD14/-260 on serum IgE levels in children raised in different environments [J]. J Allergy Clin Immunol, 2005, 116(3):601-607.
    
    31. Simpson A, John SL, Jury F, et al. Endotoxin exposure, CD14 and allergic disease:an interaction between genes and the environment [J]. Am J Respir Crit Care Med,2006,174(4):386-392.
    
    32. Williams LK, McPhee RA, Ownby DR, et al. Gene-environment interactions with CD14 C-260T and their relationship to total serum IgE levels in adults [J]. J Allergy Clin Immunol, 2006, 118(4): 851-857.
    
    33. Zambelli-Weiner A, Ehrlich E, Stockton ML,et al. Evaluation of the CD14/-260 polymorphism and house dust endotoxin exposure in the Barbados Asthma Genetics Study [J]. J Allergy Clin Immunol, 2005, 115(6): 1203-1209.
    
    34. LeVan TD, Von Essen S, Romberger DJ, et al.Polymorphisms in CD14 gene associated with pulmonary function in farmers [J]. Am J Respir Crit Care Med, 2005,171(7):773-779.
    
    35. Choudhry S, Avila PC, Nazario S, et al. CD14 tobacco geneenvironment interaction modifies asthma severity and immunoglobulin E levels in Latinos with asthma [J].Am J Respir Crit Care Med, 2005, 172(2): 173-182.
    
    36. Werner M, Topp R, Wimmer K, et al. TLR4 gene variants modify endotoxin effects on asthma [J]. J Allergy Clin Immunol, 2003,112(2):323-330.
    
    37. Eder W, Klimecki W, Yu L, et al. Toll-like receptor 2 as a major gene for asthma in children of European fanners [J]. J Allergy Clin Immunol, 2004, 113(3):482-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700