MiRNA在肺损伤与修复中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺损伤的分子机制研究还十分不完善,尤其在肺纤维化和免疫复合物致肺损伤领域,大量研究工作有待进行。微小RNA (miRNA)平均由22个核苷酸组成,为单链,非编码的RNA。目前认为miRNA是一类非常重要的机体调控因子,成熟的miRNA可以标靶mRNA的3’端非编译区或者编译区,从而沉默标靶基因,并且在诸多病理生理过程中发挥着非常重要的生物调节作用。为了研究miRNA在肺纤维化中的调节作用,我们提取了博来霉素致肺纤维化小鼠模型各个时间点的肺总RNA,采用含1810个探针的miRNA芯片进行miRNA高通量检测,比较博来霉素作用不同时间点与对照组肺总RNA中差异表达的miRNA。研究得到161个与正常组有差异表达的miRNA。同时分析了肺纤维化模型早期和晚期病理进程中差异表达的miRNA。应用生物信息学方法,对不同病理进程中差异表达的miRNA进行了靶点预测分析。这些重要的miRNA包括let-7f, let-7g, miR-127, miR-196b,miR-16, miR-195, miR-25, miR-144, miR-351, miR-153, miR-468, miR-449b,miR-361, miR-700, miR-704, miR-717, miR-10a, miR-211, miR-34a, miR-367,and miR-21.将预测miRNA靶点进行归类分析,得到在肺纤维化重要病理环节,包括凋亡、炎症反应及纤维化中的重要分子通路,如凋亡信号通路、Wnt信号通路、Toll受体和组织生长因子通路中密切相关的miRNA及其靶点基因。我们的研究揭示了肺纤维化过程中不同程度差异表达的miRNA,同时预测出miRNA可能调控的肺纤维化病理过程中重要的分子通路。另外,我们发现miR-127在肺部损伤炎症反应阶段时表达下调。基于此,我们探究了miR-127在肺损伤和炎症中的作用机制。我们发现过表达miR-127的巨噬细胞炎性刺激物作用后,产生的细胞因子[白介素-6(IL-6),白介素1p (IL-1β),组织坏死因子(TNF-α)]释放减少。生物信息学分析发现免疫球蛋白G (IgG) Fcγ受体I(FcyRI/CD64)可能是miR-127的靶点基因。基因芯片,蛋白定量表达分析分别确证了miR-127在mRNA和蛋白水平对CD64的调控。通过构建含CD64-3'UTR的荧光报告质粒,我们明确了miR-127对CD64的直接标靶关系。另外体内实验更进一步发现,鼻内滴注miR-127可以减少IgG免疫复合物(IgG IC)所导致的急性肺内损伤和炎症反应。包括肺组织形态学观察,细胞因子IL-6, TNF-a,巨噬细胞炎性蛋白1β(MIP-1β),巨噬细胞炎性蛋白-2(MIP-2)单核细胞趋化蛋白(MCP-1),趋化因子CXC配体-1(KC)的检测,肺渗透性检测,补体C5a以及急性期应答因子信号传导子及转录激活子3(STAT3)的蛋白水平检测。因此,我们认为miR-127通过标靶巨噬细胞CD64表达,从而减轻肺内IgG IC所致的炎性反应。
     总之,我们研究了肺纤维化中各特定时间点和特定病理阶段差异表达的miRNA,并且对这些miRNA进行了标靶基因预测,通过将这些标靶基因与特定病理阶段的分子信号通路对应起来,我们分析得到了各个病理阶段miRNA可能发挥作用的分子信号通路。通过对miR-127在炎症反应中的作用机制研究,我们确定了miR-127的作用靶点基因CD64,并发现了miR-127对IgG IC所致急性肺损伤的保护作用。对miRNAs调节肺内纤维化和炎性反应机制的研究揭示了miRNA在调控感染性及非感染性肺损伤炎性反应的重要作用,为今后肺纤维化及肺损伤炎症反应的新药研究提供有力依据。
     本课题研究了miRNA在肺损伤和修复中的作用机制。第一部分研究内容:博来霉素致肺纤维化的miRNA复杂性分析揭示多途径分子机制研究,撰写论文已发表在Physiological Genomics(影响因子:3.931)杂志上。第二部分研究内容:miR-127调节肺内炎症反应的机制研究,也已被Journal of Immunology(影响因子:6.0)杂志接收,预计在近半年内发表。本研究内容属国内外研究热点,研究方法属国内外领先水平。中医药是世界医学不可缺少的组成部分,在中华传统文明中占有一席之地,是中华人民世代相传的文化宝藏,至今发挥着治疗众多疾病的重大作用。本研究可为今后中医药研究搭建高水平高质量的研究平台,为研究中医药治疗肺部疾病提供有先进的研究方法和技术。
The molecular mechanisms of lung injury are incompletely understood, especially in the fields of lung fibrosis and immune complex induced acute lung injury. MiRNAs are short (about 22 bp in length), single-stranded, and non-coding RNAs that inhibit the production of target proteins or induce degradation of mRNAs by binding target mRNAs at complementary sites in 3'-untranslated regions (3'-UTRs) or coding sequences and thereby suppressing target gene expression. MiRNAs are crucial biological regulators that act by suppressing their target genes and are involved in a variety of pathophysiological processes. To gain insight into miRNAs in the regulation of lung fibrosis, total RNA was isolated from mouse lungs harvested at different days after bleomycin treatment, and miRNA microarray with 1810 miRNA probes was performed thereafter. MiRNAs expressed in lungs with bleomycin treatment at different time points were compared to miRNAs expressed in lungs without bleomycin treatment, resulting in 161 miRNAs differentially expressed. Furthermore, miRNA expression patterns regulated in initial and late periods after bleomycin were identified. Target genes were predicted in silico for differentially expressed miRNAs, including let-7f, let-7g, miR-127, miR-196b, miR-16, miR-195, miR-25, miR-144, miR-351, miR-153, miR-468, miR-449b, miR-361, miR-700, miR-704, miR-717, miR-10a, miR-211, miR-34a, miR-367, and miR-21. Target genes were then cross-referenced to the molecular pathways, suggesting that the differentially expressed miRNAs regulate apoptosis, Wnt, Toll-like receptor, and TGF- signaling. In addition, we found that miR-127 appeared down-regulated during lung injury. We set out to investigate the role of miR-127 in lung injury and inflammation. Expression of miR-127 significantly reduced cytokine release by macrophages. Looking into the mechanisms of the regulation of inflammation by miR-127, we found that IgG FeγReceptorⅠ(FcγRI/CD64) was a target of miR-127, as evidenced by reduced CD64 protein expression in macrophages over-expressing miR-127. Furthermore, miR-127 significantly reduced the luciferase activity with a reporter construct containing the native 3'-UTR of CD64. Importantly, we demonstrated that miR-127 attenuated lung inflammation in an IgG immune complex (IgG IC) model in vivo. As accessed by lung histology, cytokine release in bronchoalveolar lavage fluid, including interleukin-6 (IL-6), Tumor necrosis factor-α(TNF-α), macrophage inflammatory protein-1β(MIP-1β), macrophage inflammatory protein-2 (MIP-2), Monocyte chemotactic protein-1 (MCP-1) and chemokine (C-X-C motif) ligand-1 (KC), lung permeability assay, compliment component 5a (C5a) and signal transducer and activator of transcription 3 (STAT3) protein assays. Therefore, these data suggested that miR-127 targets macrophage CD64 leading to reduction of lung inflammation.
     Altogether, we investigated the miRNA expression patterns in lung tissues of bleomycin model, and found the differentially expressed miRNAs during distinct pathologic phases of lung fibrosis. We also predicted gene regulation by differentially expressed miRNAs during lung fibrosis, and cross-referenced to the molecular pathways in distinct pathologic phases of lung fibrosis. We identified for the first time that miR-127 was involved in acute lung inflammation. In particular, we found that CD64 is a bona fide target of miR-127. MiR-127 administration inhibited the inflammatory response of IgG IC induced acute lung injury. We believe that by understanding how miRNAs regulate lung fibrosis and inflammation would pave the way to develop a novel therapeutic approach to the treatment of infectious or non-infectious lung injury.
引文
[1]Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
    [2]Ambros V. microRNAs:tiny regulators with great potential. Cell,2001,107: 823-826.
    [3]Song L., Tuan R.S. MicroRNAs and cell differentiation in mammalian development[J]. Birth Defects ResC Embryo Today,2006,78(2):140-149.
    [4]Krupa A, Walencka MJ, Shrivastava V, Loyd T, Fudala R, Frevert CW, Martin TR, Kurdowska AK. Anti-KC autoantibody:KC complexes cause severe lung inflammation in mice via IgG receptors[J]. Am J Respir Cell Mol Biol,2007,37: 532-43.
    [5]Rigoutsos I. New tricks for animal microRNAS:targeting of amino acid coding regions at conserved and nonconserved sites[J]. Cancer Res,2009,69:3245-3248.
    [6]Neilson JR, Zheng GX, Burge CB, et al. Dynamic regulation of miRNA expression in ordered stages of cellular development[J].Genes Dev,2007,21(5):578-589.
    [7]Ason B, Darnell DK, Wittbrodt B, etal. Differences in vertebrate mi-croRNA expression[J]. Proc Natl Acad Sci USA,2006,103(39):14385-14389.
    [8]Bernstein E., Kim S.Y., Carmell M.A., et al. Dicer is essential for mouse development[J]. Nat Genet,2003,35:215-217.
    [9]Wienholds E., Koudijs M.J., van Eeden F.J., etal. The microRNA. producing enzyme Dicerl is essential for zebrafish development[J]. Nat Genet,2003,35(3): 217-218.
    [10]Murchison E.P., Partridge J.F., Tam O.H.,etal. Characterization of Dicer-deficient murine embryonic stem cells[J].Proc Natl Acad Sci USA,2005,102: 12135-12140.
    [11]Kanellopoulou C., Muljo S., Kung A.,et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing[J].Genes Dev,2006,19:489-501.
    [12]Adamson IY, Bowden DH. Bleomycin-induced injury and metaplasia of alveolar type 2 cells. Relationship of cellular responses to drug presence in the lung[J]. Am J Pathol,1979,96:531-544.
    [13]Adamson IY, Orr F W, and Young L. Effects of injury and repair of the pulmonary endothelium on lung metastasis after bleomycin[J]. J Pathol,1986,150: 279-287.
    [14]Addis-Lieser E, Kohl J, and Chiaramonte MG. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis[J]. J Immunol,2005,175:1894-1902.
    [15]Altman N. Replication, variation and normalisation in microarray experiments[J]. Appl Bioinformatics,2005,4:33-44.
    [16]Kuper H, Adami HO, Trichopoulos D:Infections as a major preventable cause of human cancer[J]. J Intern Med,2000,248(3):171-183.
    [17]Lin Y, Bai L, Chen W, Xu S:The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy[J]. Expert Opin Ther Targets,2010,14(1):45-55.
    [18]MeyerB, Loeschke S, Schultze A, et a.l HMGA2 overexpression in non-small cell lung cancer [J]. MolCarcinog,2007,46(7):503-511.
    [19]RosellR, Wei J, TaronM, eta.l CirculatingmicroRNA signatures of tumor-derived exosomes for early diagnosis ofnon-small-cell lung cancer [J]. Clin LungCancer,2009, 10(1):8-9.
    [20]Araya J, and Nishimura SL. Fibrogenic reactions in lung disease[J]. Annu Rev Pathol,2010,5:77-98.
    [21]Johnson SM, GrosshansH, Shingara J, etal. RAS is regulated by the let-7 microRNA family [J]. Cell,2005,120(5):635-647.
    [22]ATS/ERS. American Thoracic Society. Idiopathic pulmonary fibrosis:diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med,2000,161: 646-664.
    [23]Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, Westra WH:Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach[J]. Clin Cancer Res 2010,16(2):610-619.
    [24]Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, and Abraham E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis[J]. J Exp Med,2010,207:1589-1597.
    [25]Broekelmann TJ, Limper AH, Colby TV, and McDonald JA. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis[J]. Proc Natl Acad Sci U S A,1991,88:6642-6646.
    [26]Caruso P, MacLean MR, Khanin R, McClure J, Soon E, Southgate M, MacDonald RA, Greig JA, Robertson KE, Masson R, Denby L, Dempsie Y, Long L, Morrell NW, and Baker AH. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline[J]. Arterioscler Thromb Vasc Biol,2010,30:716-723.
    [27]Oglesby IK, Bray IM, Chotirmall SH, Stallings RL, O'Neill SJ, McElvaney NG, and Greene CM. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression[J]. J Immunol,2010,184:1702-1709.
    [28]Pottier N, Maurin T, Chevalier B, Puissegur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B, Barbry P, and Mari B. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts:implication in epithelial-mesenchymal interactions[J]. PLoS One,2009,4:e6718.
    [29]Pottier N, Maurin T, Chevalier B, Puissegur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B, Barbry P, Mari B:Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts:implication in epithelial-mesenchymal interactions[J]. PLoS One,2009,4(8):e6718.
    [30]Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski N: Inhibition and role of let-7d in idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med,2010,182(2):220-229.
    [31]Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM, Tucker MA, Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, and Wang E. MicroRNA expression differentiates histology and predicts survival of lung cancer[J]. Clin Cancer Res,2010,16:430-441.
    [32]Miko E, Czimmerer Z, Csanky E, Boros G, Buslig J, Dezso B, and Scholtz B. Differentially expressed microRNAs in small cell lung cancer[J]. Exp Lung Res,2009, 35:646-664.
    [33]Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, and Katze MG. MicroRNA expression and virulence in pandemic influenza virus-infected mice[J]. J Virol 84:3023-3032,2010.
    [34]Nana-Sinkam SP, Hunter MG, Nuovo GJ, Schmittgen TD, Gelinas R, Galas D, and Marsh CB. Integrating the MicroRNome into the study of lung disease[J]. Am J Respir Crit Care Med,2009,179:4-10.
    [35]Kuwano K, Hagimoto N, Kawasaki M, Yatomi T, Nakamura N, Nagata S, Suda T, Kunitake R, Maeyama T, Miyazaki H, and Hara N. Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis[J]. J Clin Invest,1999,104: 13-19.
    [36]He L, and Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation[J]. Nat Rev Genet,2004,5:522-531.
    [37]Xie T, and Liang JR. Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation[J]. Physiol Genomics,2011 Jan 25. [Epub ahead of print].
    [1]Katzenstein, A.L. Pathogenesis of "fibrosis" in interstitial pneumonia:an electron microscopic study. Hum Pathol 16,1015-1024 (1985).
    [2]Adamson, I.Y., Orr, F.W.& Young, L. Effects of injury and repair of the pulmonary endothelium on lung metastasis after bleomycin. J Pathol 150,279-287 (1986).
    [3]Thannickal, V.J.& Horowitz, J.C. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3,350-356 (2006).
    [4]刘景艳,修清玉,张铁峰.中药对肺纤维化动物模型细胞因子表达的影响[J].中国临床医学,2005,12(2):342-345
    [5]宋建平,李瑞琴,李伟,等.《金匾要略》不同方药对肺纤维化模型早期阶段的影响(一)[J].中华中医药杂志,2006,21(11):692-694
    [6]Bringardner, B.D., Baran, C.P., Eubank, T.D.& Marsh, C.B. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal 10,287-301 (2008)
    [7]Shen, A.S., Haslett, C., Feldsien, D.C., Henson, P.M.& Cherniack, R.M. The intensity of chronic lung inflammation and fibrosis after bleomycin is directly related to the severity of acute injury. Am Rev Respir Dis 137,564-571 (1988).
    [8]宋康,骆仙芳,石亚杰,等.虎杖对肺纤维化大鼠Thl/ThZ细胞因子干预作用的实验研究[J].中华中医药杂志,2006,21(12):781-783
    [9]李学军,崔社怀.三七总苷抗肺纤维化的实验研究[J].中国药业,2004,13(4):34-35
    [10]张捷,安继红,张伟,等.刺五加对肺纤维化BALF中IL-6抑制作用的研究[J].中国免疫学杂志,1995,11(5):300-302
    [11]蒋玉宇,曹世宏,刘仪.养阴药(地黄、麦冬)对肺间质纤维化大鼠细胞因子网络的干预作用[J].四川中医,2004,22(11):16-17
    [12]李江,武芳,黄茂,等.川首嗦注射液对博莱霉素致肺纤维化大鼠转化生长因子干预作用的研究[J].时珍国医国药,2007,18(6):1289-1289
    [13]柴文戍,李永春,王洪欣,等.中药当归治疗肺间质纤维化的实验研究[J].中国药理学通报,2003,19(7):819-822.
    [14]宋康,骆仙芳,杨增超,等.虎杖对肺纤维化大鼠肺组织中TGF-β1表达的影响[J].中华中医药杂志,2007,22(12):888-891.
    [15]杨礼腾,程德云,聂莉,等.虫草菌粉对肺纤维化大鼠肺TGF-β1及其信号通路分子mRNA表达的影响[J].四川中医,2006,24(2):23-25
    [16]张炜,毕小利,马文欣.生地对特发性肺间质纤维化基质重建调控作用的实验研究[J].中国中医基础医学杂志,2001,7(6):34-36
    [17]叶进燕,陈少贤,徐红蕾,等.甘草甜素对大鼠肺纤维化的干预作用及对转化生长因子表达的影响[J].中华结核和呼吸杂志,2006,29(9):636-637
    [18]苗维纳,董静,刘绍唐,等.丹参对实验性肺纤维化小鼠病理变化和转化生长因子-13表达的影响[J].中药药理与临床,2003,29(5):24-25
    [19]王飞,陈平,曹国平,等.补阳还五汤对博来霉素诱导大鼠肺间质纤维化过程中TGF-β含量的影响[J].四川中医,2005,23(9):31-32
    [20]黄妍敏,陈晓玲,徐宁,等.银杏叶提取物对大鼠肺纤维化初期肺结缔组织生长因子表达的影响[J].中国病理生理杂志,2007,23(6):1130-1132.
    [21]胡晓波,程德云,穆茂,等.藏药红景天对大鼠肺纤维化保护作用及机制探讨[J].时珍国医国药,2007,15(11):2772-2774
    [22]林庶茹,才丽平.抵当汤合小陷胸汤化裁方对实验性肺间质纤维化大鼠血清透明质酸与Iv型胶原的影响[J].中国中医基础医学杂志,2005,11(12):897-898.
    [23]张晓梅,姜良铎,张伟,等.肺纤方对博莱霉素大鼠肺纤维化模型基质金属蛋白酶1、2及组织金属蛋白酶抑制剂1、2的影响[J].中华中医药杂志,2005,23(3):212-215
    [24]冯玛莉,顿颖,牛艳艳,等.养阴清肺丸抗实验性大鼠肺纤维化作用[J].中成药,2005,27(5):607-608
    [25]钟殿胜,朱元压,郭子建,等.雷公藤T4单体治疗肺纤维化的实验观察[J].中华内科杂志,1997,36(s):546-547
    [26]宋建平,李瑞琴,刘方洲,等.复方丹参片、生脉饮、乌蛇散对平阳霉素所致肺纤维化模型大鼠的影响[J].中医杂志,2002,43(2):142-143
    1. Adamson IY, and Bowden DH. Bleomycin-induced injury and metaplasia of alveolar type 2 cells. Relationship of cellular responses to drug presence in the lung. Am J Pathol 96:531-544,1979.
    2. Adamson IY, Orr F W, and Young L. Effects of injury and repair of the pulmonary endothelium on lung metastasis after bleomycin. J Pathol 150: 279-287,1986.
    3. Addis-Lieser E, Kohl J, and Chiaramonte MG. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis. J Immunol 175:1894-1902,2005.
    4. Altman N. Replication, variation and normalisation in microarray experiments. Appl Bioinformatics 4:33-44,2005.
    5. Ambros V. microRNAs:tiny regulators with great potential. Cell 107: 823-826,2001.
    6. Araya J, and Nishimura SL. Fibrogenic reactions in lung disease. Annu Rev Pathol 5:77-98,2010.
    7. ATS/ERS. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med 161:646-664,2000.
    8. Bringardner BD, Baran CP, Eubank TD, and Marsh CB. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal 10:287-301,2008.
    9. Broekelmann TJ, Limper AH, Colby TV, and McDonald JA. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A 88:6642-6646,1991.
    10. Caruso P, MacLean MR, Khanin R, McClure J, Soon E, Southgate M, MacDonald RA, Greig JA, Robertson KE, Masson R, Denby L, Dempsie Y, Long L, Morrell NW, and Baker AH. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol30:716-723,2010.
    11. Chambers RC. Procoagulant signalling mechanisms in lung inflammation and fibrosis:novel opportunities for pharmacological intervention? Br J Pharmacol 153 Suppl 1:S367-378,2008.
    12. Chang JT, and Nevins JR. GATHER:a systems approach to interpreting genomic signatures. Bioinformatics 22:2926-2933,2006.
    13. Chaudhary NI, Schnapp A, and Park JE. Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med 173:769-776,2006.
    14. Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, and Doglioni C. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162:1495-1502,2003.
    15. Chung AC, Huang XR, Meng X, and Lan HY. miR-192 Mediates TGF-beta/Smad3-Driven Renal Fibrosis. J Am Soc Nephrol 21:1317-1325, 2010.
    16. Demedts M, Behr J, Buhl R, Costabel U, Dekhuijzen R, Jansen HM, MacNee W, Thomeer M, Wallaert B, Laurent F, Nicholson AG, Verbeken EK, Verschakelen J, Flower CD, Capron F, Petruzzelli S, De Vuyst P, van den Bosch JM, Rodriguez-Becerra E, Corvasce G, Lankhorst I, Sardina M, and Montanari M. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 353:2229-2242,2005.
    17. Gauldie J, Bonniaud P, Sime P, Ask K, and Kolb M. TGF-beta, Smad3 and the process of progressive fibrosis. Biochem Soc Trans 35:661-664,2007.
    18. Goodwin A, and Jenkins G. Role of integrin-mediated TGFbeta activation in the pathogenesis of pulmonary fibrosis. Biochem Soc Trans 37:849-854,2009.
    19. He L, and Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet 5:522-531,2004.
    20. Jiang D, Liang J, Campanella GS, Guo R, Yu S, Xie T, Liu N, Jung Y, Homer R, Meltzer EB, Li Y, Tager AM, Goetinck PF, Luster AD, and Noble PW. Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. J Clin Invest 120:2049-2057,2010.
    21. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, and Noble PW. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173-1179,2005.
    22.Jiang D, Liang J, Hodge J, Lu B, Zhu Z, Yu S, Fan J, Gao Y, Yin Z, Homer R, Gerard C, and Noble PW. Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J Clin Invest 114:291-299,2004.
    23. Jiang D, Liang J, and Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435-461,2007.
    24. John B, Enright AJ, Aravin A, Tuschl T, Sander C, and Marks DS. Human MicroRNA targets. PLoS Biol 2:e363,2004.
    25. Jones HA, Schofield JB, Krausz T, Boobis AR, and Haslett C. Pulmonary fibrosis correlates with duration of tissue neutrophil activation. Am J Respir Crit Care Med 158:620-628,1998.
    26. Kanehisa M. A database for post-genome analysis. Trends Genet 13: 375-376,1997.
    27. Kanehisa M, Goto S, Furumichi M, Tanabe M, and Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355-360,2010.
    28. Khalil N, and Greenberg AH. The role of TGF-beta in pulmonary fibrosis. Ciba Found Symp 157:194-207; discussion 207-111,1991.
    29. Kinnula VL, Fattman CL, Tan RJ, and Oury TD. Oxidative stress in pulmonary fibrosis:a possible role for redox modulatory therapy. Am J Respir Crit Care Med 172:417-422,2005.
    30. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, and Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21:438-447,2010.
    31. Kuwano K, Hagimoto N, Kawasaki M, Yatomi T, Nakamura N, Nagata S, Suda T, Kunitake R, Maeyama T, Miyazaki H, and Hara N. Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. J Clin Invest 104:13-19,1999.
    32. Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM, Tucker MA, Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, and Wang E. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 16:430-441, 2010.
    33. Lau NC, Lim LP, Weinstein EG, and Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858-862,2001.
    34. Lee RC, and Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862-864,2001.
    35. Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, and Katze MG. MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84:3023-3032,2010.
    36. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, and Abraham E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207:1589-1597,2010.
    37. Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, Kowal-Bielecka O, Gay RE, Michel BA, Distler JH, Gay S, and Distler O. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 62:1733-1743,2010.
    38. Miko E, Czimmerer Z, Csanky E, Boros G, Buslig J, Dezso B, and Scholtz B. Differentially expressed microRNAs in small cell lung cancer. Exp Lung Res 35: 646-664,2009.
    39. Moeller A, Ask K, Warburton D, Gauldie J, and Kolb M. The bleomycin animal model:a useful tool to investigate treatment options for idiopathic pulmonary fibrosis?Int J Biochem Cell Biol 40:362-382,2008.
    40. Nana-Sinkam SP, Hunter MG, Nuovo GJ, Schmittgen TD, Gelinas R, Galas D, and Marsh CB. Integrating the MicroRNome into the study of lung disease. Am J Respir Crit Care Med 179:4-10,2009.
    41. Nettelbladt O, Bergh J, Schenholm M, Tengblad A, and Hallgren R. Accumulation of hyaluronic acid in the alveolar interstitial tissue in bleomycin-induced alveolitis. American Review of Respiratory Disease 139: 759-762,1989.
    42. Noble PW, and Homer RJ. Back to the future:historical perspective on the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 33: 113-120,2005.
    43. Noble PW, and Homer RJ. Idiopathic pulmonary fibrosis:new insights into pathogenesis. Clin Chest Med 25:749-758, vii,2004.
    44.Oglesby IK, Bray IM, Chotirmall SH, Stallings RL, O'Neill SJ, McElvaney NG, and Greene CM. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol 184:1702-1709,2010.
    45.Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, and Kaminski N. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182:220-229,2010.
    46. Pottier N, Maurin T, Chevalier B, Puissegur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B, Barbry P, and Mari B. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One 4:e6718,2009.
    47. Rigoutsos I. New tricks for animal microRNAS:targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res 69: 3245-3248,2009.
    48. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, and Regazzi R. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978-986, 2010.
    49. Rosenbloom J, Castro SV, and Jimenez SA. Narrative review:fibrotic diseases:cellular and molecular mechanisms and novel therapies. Ann Intern Med 152:159-166,2010.
    50. Schmidt WM, Spiel AO, Jilma B, Wolzt M, and Muller M. In vivo profile of the human leukocyte microRNA response to endotoxemia. Biochem Biophys Res Commun 380:437-441,2009.
    51. Selman M, and Pardo A. The epithelial/fibroblastic pathway in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 29: S93-97,2003.
    52. Selman M, and Pardo A. Idiopathic pulmonary fibrosis:an epithelial/fibroblastic cross-talk disorder. Respir Res 3:3,2002.
    53. Shen AS, Haslett C, Feldsien DC, Henson PM, and Cherniack RM. The intensity of chronic lung inflammation and fibrosis after bleomycin is directly related to the severity of acute injury. Am Rev Respir Dis 137:564-571,1988.
    54. Thannickal VJ, and Horowitz JC. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3:350-356,2006.
    55. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, Yoshida K, Sasaki H, Nomura S, Seto Y, Kaminishi M, Calin GA, and Croce CM. Relation between microRNA expression and progression and prognosis of gastric cancer:a microRNA expression analysis. Lancet Oncol 11:136-146,2010.
    56. Wang R, Ibarra-Sunga O, Verlinski L, Pick R, and Uhal BD. Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol 279:L143-151,2000.
    57. Xu J, Liao X, and Wong C. Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer 126:1029-1035,2010.
    1. Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski N.2010. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182:220-9
    2. Crosby LM, Waters CM.2010. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 298:L715-31
    3. Opitz B, van Laak V, Eitel J, Suttorp N.2010. Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med 181:1294-309
    4. Jiang D, Liang J, Noble PW.2010. Regulation of non-infectious lung injury, inflammation, and repair by the extracellular matrix glycosaminoglycan hyaluronan. Anat Rec (Hoboken) 293:982-5
    5. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW.2005. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173-9
    6. Gessner JE, Heiken H, Tamm A, Schmidt RE.1998. The IgG Fc receptor family. Ann Hematol 76:231-48
    7. Gao H, Neff T, Ward PA.2006. Regulation of lung inflammation in the model of IgG immune-complex injury. Annu Rev Pathol 1:215-42
    8. Osman N, Kozak CA, McKenzie IF, Hogarth PM.1992. Structure and mapping of the gene encoding mouse high affinity Fc gamma RI and chromosomal location of the human Fc gamma RI gene. J Immunol 148:1570-5
    9. loan-Facsinay A, de Kimpe SJ, Hellwig SM, van Lent PL, Hofhuis FM, van Ojik HH, Sedlik C, da Silveira SA, Gerber J, de Jong YF, Roozendaal R, Aarden LA, van den Berg WB, Saito T, Mosser D, Amigorena S, Izui S, van Ommen GJ, van Vugt M, van de Winkel JG, Verbeek JS.2002. FcgammaRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity,16:391-402
    10. Eagen JW, Memoli VA, Roberts JL, Matthew GR, Schwartz MM, Lewis EJ. 1978. Pulmonary hemorrhage in systemic lupus erythematosus. Medicine (Baltimore) 57:545-60
    11. Okroj M, Heinegard D, Holmdahl R, Blom AM.2007. Rheumatoid arthritis and the complement system. Ann Med 39:517-30
    12. Krupa A, Fudala R, Stankowska D, Loyd T, Allen TC, Matthay MA, Gryczynski Z, Gryczynski I, Mettikolla YV, Kurdowska AK.2009. Anti-chemokine autoantibody:chemokine immune complexes activate endothelial cells via IgG receptors. Am J Respir Cell Mol Biol 41:155-69
    13. Dreisin RB, Schwarz MI, Theofilopoulos AN, Stanford RE.1978. Circulating immune complexes in the idiopathic interstitial pneumonias. N Engl J Med 298: 353-7
    14. Soda K, Ando M, Sakata T, Sugimoto M, Nakashima H, Araki S.1988. C1q and C3 in bronchoalveolar lavage fluid from patients with summer-type hypersensitivity pneumonitis. Chest 93:76-80
    15. Kurdowska A, Miller EJ, Noble JM, Baughman RP, Matthay MA, Brelsford WG, Cohen AB.1996. Anti-IL-8 autoantibodies in alveolar fluid from patients with the adult respiratory distress syndrome. J Immunol 157:2699-706
    16. Krupa A, Walencka MJ, Shrivastava V, Loyd T, Fudala R, Frevert CW, Martin TR, Kurdowska AK.2007. Anti-KC autoantibody:KC complexes cause severe lung inflammation in mice via IgG receptors. Am J Respir Cell Mol Biol 37:532-43
    17. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R.2006. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20: 515-24
    18. Lindsay MA.2008. microRNAs and the immune response. Trends Immunol 29:343-51
    19. Taganov KD, Boldin MP, Chang KJ, Baltimore D.2006. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103: 12481-6
    20. Nahid MA, Satoh M, Chan EK.2010. Mechanistic Role of MicroRNA-146a in Endotoxin-Induced Differential Cross-Regulation of TLR Signaling. J Immunol
    21. Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C, Ferracin M, Delmas D, Latruffe N, Croce CM.2010. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 31:1561-6
    22. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E.2009. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A 106: 15819-24
    23. Mattes J, Collison A, Plank M, Phipps S, Foster PS.2009. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 106: 18704-9
    24. Neilson JR, Zheng GX, Burge CB, Sharp PA.2007. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21: 578-89
    25. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ.2007. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147-61
    26. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K.2007. Regulation of the germinal center response by microRNA-155. Science 316:604-8
    27. Xie T, Liang J, Guo R, Liu N, Noble PW, Jiang D.2011. Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation. Physiol Genomics
    28. Jiang D, Liang J, Campanella GS, Guo R, Yu S, Xie T, Liu N, Jung Y, Homer R, Meltzer EB, Li Y, Tager AM, Goetinck PF, Luster AD, Noble PW. 2010. Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. J Clin Invest 120:2049-57
    29.Jiang D, Liang J, Hodge J, Lu B, Zhu Z, Yu S, Fan J, Gao Y, Yin Z, Homer R, Gerard C, Noble PW.2004. Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J Clin Invest 114:291-9
    30. Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L, Jaenisch R, Jacks T.2004. Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci U S A 101:10380-5
    31. Watson A, Latchman D.1996. Gene Delivery into Neuronal Cells by Calcium Phosphate-Mediated Transfection. Methods 10:289-91
    32. Zhang X, Shan P, Jiang D, Noble PW, Abraham NG, Kappas A, Lee PJ. 2004. Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J Biol Chem 279:10677-84
    33. Sun L, Guo RF, Gao H, Sarma JV, Zetoune FS, Ward PA.2009. Attenuation of IgG immune complex-induced acute lung injury by silencing C5aR in lung epithelial cells. FASEB J 23:3808-18
    34. Schmidt WM, Spiel AO, Jilma B, Wolzt M, Muller M.2009. In vivo profile of the human leukocyte microRNA response to endotoxemia. Biochem Biophys Res Commun 380:437-41
    35. Williams AE, Perry MM, Moschos SA, Larner-Svensson HM, Lindsay MA. 2008. Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans 36:1211-5
    36. Bhaskaran M, Wang Y, Zhang H, Weng T, Baviskar P, Guo Y, Gou D, Liu L. 2009. MicroRNA-127 modulates fetal lung development. Physiol Genomics 37: 268-78
    37. Tryndyak VP, Ross SA, Beland FA, Pogribny IP.2009. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog 48: 479-87
    38. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY. 2008. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348-60
    39. Dixon-Mclver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, Andrew Lister T, Young BD, Debernardi S.2008. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 3: e2141
    40. Guo RF, Ward PA.2005. Role of C5a in inflammatory responses. Annu Rev Immunol 23:821-52
    41.Gao H, Guo RF, Speyer CL, Reuben J, Neff TA, Hoesel LM, Riedemann NC, McClintock SD, Sarma JV, Van Rooijen N, Zetoune FS, Ward PA.2004. Stat3 activation in acute lung injury. J Immunol 172:7703-12
    42. Heller T, Gessner JE, Schmidt RE, Klos A, Bautsch W, Kohl J.1999. Cutting edge:Fc receptor type I for IgG on macrophages and complement mediate the inflammatory response in immune complex peritonitis. J Immunol 162:5657-61
    43. Barnes N, Gavin AL, Tan PS, Mottram P, Koentgen F, Hogarth PM.2002. FcgammaRI-deficient mice show multiple alterations to inflammatory and immune responses. Immunity 16:379-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700