高原鼢鼠和高原鼠兔氧传输系统部分特征的比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高原鼢鼠和高原鼠兔是青藏高原土著动物,对低氧具有很好的适应性。
     为了探讨在低氧环境中两者肺细叶结构的适应特征,应用体视学方法测量了肺细叶相关指标。结果发现,高原鼢鼠和高原鼠兔肺单位面积肺泡数显著高于SD大鼠(P<0.05),单个肺泡面积和弹性纤维/肺实质比显著低于SD大鼠(P<0.05);高原鼢鼠肺泡隔厚度最厚,高原鼠兔最薄,且三种动物具显著差异(P<0.05);高原鼢鼠和高原鼠兔气–血屏障的算术平均厚度(Ta)和调和平均厚度(Th)均显著低于SD大鼠(P<0.05);在三个级别的微血管中,高原鼠兔中膜肌层厚度显著低于高原鼢鼠(P<0.05),但两种高原动物均显著低于SD大鼠(P<0.05);高原鼢鼠和高原鼠兔的微血管密度(MVD)显著高于SD大鼠(P<0.05)。
     为了研究两者的血液学特征,用Premier GEM-3 000自动血气分析仪、Sysmex SF-3 000血细胞分析仪及聚丙烯酰胺凝胶电泳对两种高原动物的血气、血常规、血红蛋白类型及血清乳酸脱氢酶进行分析。结果发现,高原鼠兔和SD大鼠的动脉血pH明显低于高原鼢鼠(P<0.05),但三者静脉血无显著差异;高原鼠兔和SD大鼠的动、静脉血二氧化碳分压(PCO2)均低于高原鼢鼠(P<0.05),且高原鼢鼠的动、静脉血PCO2差高于另两者;高原鼢鼠动脉血氧分压PO2最高,而静脉血PO2最低,高原鼠兔的动、静脉血PO2差也高于SD大鼠;两种高原动物的动、静脉血氧饱和度差(SO2(a-v))均显著高于SD大鼠(P<0.05),但高原鼢鼠最高。高原鼢鼠和高原鼠兔的红细胞数(RBC)、红细胞压积(HCT)及平均红细胞容积(MCV)组间无显著差异(P>0.05),但高原鼢鼠和高原鼠兔的红细胞数显著高于SD大鼠,红细胞压积及平均红细胞容积均显著低于SD大鼠(P<0.05)。高原鼢鼠的血红蛋白浓度(HBC)与SD大鼠无显著差异(P>0.05),但显著高于高原鼠兔的HBC(P<0.05)。高原鼢鼠血红蛋白主要有两种类型,高原鼠兔血红蛋白主要有三种类型,而SD大鼠血红蛋白主要有五种类型。从血红蛋白电泳迁移来看,两种高原动物血红蛋白类型有明显的趋同特征并与SD大鼠具有明显的差异。高原鼠兔血清乳酸脱氢酶活力及乳酸含量均表现最高(P<0.05),而高原鼢鼠均表现最低(P<0.05)。高原鼢鼠血清乳酸脱氢酶表现五种类型,以M型为主;高原鼠兔这表现六种类型,以H型为主。
     以上结果表明,高原鼢鼠和高原鼠兔肺细叶结构及血液学特征表现出一定趋同,这些特征有利于在低氧条件下提高肺气体扩散容量、增加血液携氧和组织释氧能力。但是,部分指标又表现出明显的差异,可能是由不同生境和习性造成的。
The Plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzniae) are species endemic to the Qinghai-Tibet Plateau.
     To study the adaptive characteristics of pulmonary acinus structure in the two species, we measured relative indices by using stereological methods, using the SD rats as control model. The results revealed evident difference in lung weight vs. body weight (LVB) between the three species. The LVB value was the highest in plateau zokors, and lowest in SD rats. There was no significant difference in density of pulmonary alveoli (DPA) between plateau zokors and plateau pikas, but the DPAs in the two species were higher than that in SD rats. The aera of pulmonary alveolous (APA) and elastic fiber vs. lung parenchyma (EVP) of plateau zokors and plateau pikas were significantly lower than that of SD rats. It was obviously different among thickness of interalveolar septum (TIS) of the three animals. Air-blood barrier arithmetic mean thickness (Ta) and harmonic mean thickness (Th) were both less than those in SD rats. The muscle thickness vs. the outer diameter of microvessel (MVM) and microvessel density (MVD) of plateau zokors and plateau pikas were significantly higher than those in SD rats, and there was obviously different in MVM between the two high altitude animals.
     To explore the adaptive mechanisms of blood in plateau zokor and plateau pika to the hypoxic environment, the blood-gas propoties, blood indices, content of lactic acid and activity of latate dehydrogenase were analyzed, meanwhile, the types of hemoglobin and lactate dehydrogenase (LDH) were analyzed by polyacrylamide gel electrophoresis. The results indicated that it was significantly different in arterial blood pH of plateau zokor with plateau pika and SD rat, but no different in venous blood pH. The partial pressure for carbon dioxide (PCO2) in arterial and venous blood of plateau zokor was the highest, and the difference of PCO2 was also higher. The partial pressure for oxygen (PO2) in arterial blood of plateau zokor was the highest, and lowest in venous blood. The difference of PO2 in arterial blood to venous blood of plateau pika was higher than that of SD rat, too. The difference of oxygen saturation in arterial blood to venous blood of the two high-altitude animals were obviously higer than that of SD rat, but that of plateau zokor was the highest. It was not significantly different in red blood corpuscle count (RBC), hematocrit (HCT), and mean corpuscular volume (MCV) between plateau zokors and plateau pikas, but the RBC of the zokors and the pikas were significantly higher, and the HCT and MCV were significantly lower than those in SD rats. The hemoglobin concentration (HBC) in plateau pikas was significantly lower than that in plateau zokors and SD rats. Two types of hemoglobin were discovered in plateau zokors, three types of hemoglobin in plateau pikas, five types of hemoglobin in SD rats. The hemoglobin types of the two high altitude animals demonstrated convergent evolution characteristics according to the electrophoresis migration, and it showed significant difference with SD rats. The activity of LDH and content of lactic acid (LD) in plateau pika were the highest, and that in plateau zokor were the lowest. Five types of LDH isozymogram in plateau zokor were discovered, LDH-M was in major, and six types in plateau pika, LDH-H was in major.
     In conclusion, the structures of pulmonary acinus and blood characteristics in two high altitude animals show obvious convergent evolution in long time of adapting the hypoxic environment, that make lung have strong capacity of oxygen uptake, and permit blood to have strong capacity to carry oxygen and release more in tissues. However, they have significant difference in some indices, maybe they due to the different habitats and habits.
引文
[1] 樊乃昌, 施银柱. 中国鼢鼠 (Eospalax) 亚属分类研究[J]. 兽类学报, 1982, 2: 180-199.
    [2] 曾缙祥, 王祖望, 师治贤. 高山地区高原鼢鼠的代谢特点及若干生理指标的观察[J]. 高原生物学集刊, 1984, 3: 163-171.
    [3] 樊乃昌, 古守勤. 中华鼢鼠 (MYOSPALAX FONTANIERI) 的洞道结构[J]. 兽类学报, 1981, 1 (1): 67-71.
    [4] Arieli R., Ar A.. Ventilation of a fossorial mammal (Spalax ehrenbergi) in hypoxic and hypercapnic conditions. J. Appl. Physiol., 1979, 47: 1011-1017.
    [5] Widmer H.R., Hoppeler H., Nevo E., et al. Working underground: respiratory adaptations in the blind mole rat. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (5): 2062-2067.
    [6] Avivi A., Resnik M.B., Joel A., et al. Adaptive hypoxic tolerance in the subterranean mole rat Spalax ehrenbergi: the role of vascular endothelial growth factor. FEBS Lett., 1999, 452: 133-140.
    [7] Ar A., Arieli R., Shkolnik A.. Blood-gas properties and function in the fossorial mole rat under normal and hypoxic-hypercapnic atmospheric conditions. Respiration Physiology, 1977, 30 (1-2): 201-218.
    [8] Gurnett A.M., O’Connell J., Harris D.E., et al. The myoglobin of rodents: Lagostomus maximus (viscacha) and Spalax ehrenbergi (mole rat). J. Protein. Chem., 1984, 3: 445-454.
    [9] Arieli R., Heth G., Nevo E., et al.. Hematocrit and hemoglobin concentration in four chromosomal species and some isolated populations of actively speciating subterranean mole rats in Israel. Experientia., 1986, 42 (4): 441-443.
    [10] Yang H., Nevo E., Tashian R.E.. Unexpected expression of carbonic anhydrase I and selenium-binding protein as the only major non-heme proteins in erythrocytes of the subterranean mole rat (Spalax ehrenbergi). FEBS. Lett., 1998, 430: 343-347.
    [11] 王祖望, 曾缙祥, 韩永才. 高原鼠兔和中华鼢鼠气体代谢的研究[J]. 动物学报, 1979, 25 (1): 75-85.
    [12] 周虞灿, 刘国富, 温得启. 高原鼠兔和高原鼢鼠红细胞 2, 3-二磷酸甘油酸含量的初步研究[J]. 高原生物学集刊, 1984, 2: 133-137.
    [13] 魏登邦, 魏莲. 高原鼢鼠红细胞、血红蛋白及肌红蛋白的测定结果[J]. 青海大学学报, 2001, 19 (4): 1-2.
    [14] 魏登邦, 马建宾. 高原鼢鼠和小白鼠心肌及骨胳肌肌红蛋白含量和乳酸脱氢酶活性的比较研究[J]. 青海大学学报, 2001, 19 (2): 20-21.
    [15] 齐新章, 王晓君, 朱世海, 等.高原鼢鼠和高原鼠兔心脏对低氧环境的适应[J]. 生理学报, 2008, 3: XXX-XXX.
    [16] 刘国富, 温得启, 胡晓梅. 高原鼠兔和高原鼢鼠乳酸脱氢酶同工酶的初步研究[J]. 兽类学报, 1985, 5 (3): 223-228.
    [17] Kleinschmidt T., Nevo E., Braunitzer G.. The primary structure of the hemoglobin of the mole rat (Spalax ehrenbergi, rodentia, chromosome species 60). Hoppe-Seyler's Zeitschrift fur Physiologische Chemie, 1984, 365 (5): 531-537.
    [18] Shams I., Avivi A., Nevo E.. Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stress. Comp. Biochem. Physiol. A, 2005, 142: 376-382.
    [19] Nevo E., Ben-Shlomo R., Maeda N.. Haptoglobin DNA polymorphism in subterranean mole rats of the spalax ehrenbergi superspecies in Israel. Heredity, 1989, 62 (1): 85-90.
    [20] Wang G.L., Semenza G.L.. Purification and characterization of hypoxia-inducible factor-1. J. Biol.Chem., 1995, 270: 1230-1237.
    [21] Wiener C.M., Booth G., Semenza G.L.. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun., 1996, 225: 485-488.
    [22] Iyer N.V., Leung S.W., Semenza G.L.. The human hypoxia-inducible factor 1α gene: HIF1α structure and evolutionary conservation. Genomics, 1998, 52: 159-165.
    [23] Wenger R.H., Rolfs A., Marti H.H., et al. Nucleotide sequence, chromosomal assignment and mRNA expression of mouse hypoxia-inducible factor-1α. Biochem. Biophys. Res. Commun., 1996, 223: 54-59.
    [24] Jewell U.R., Kvietikova I., Scheid A., et al. Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J., 2001, 15: 1312-1314.
    [25] Semenza G.L.. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr. Opin. Genet. Dev., 1998, 8: 588-594.
    [26] Ge R.L., Kubo K., Kobayashi T., et al. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am. J. Physiol., 1998, 274 (Heart cire physiol 43): H 1792-1799.
    [27] 阮宗海, 陈华伟, 陈秋红, 等. 不同海拔高原鼠兔、大白鼠血红蛋白电泳及血液学对比观察[J]. 中国应用生理学杂志, 2000, 16: 91-95.
    [28] 杜继增, 李庆芬. 模拟高原低氧对高原鼠兔和大鼠器官与血液若干指标的影响[J]. 兽类学报, 1982, 2 (1): 35-41.
    [29] 佘海如, 格日力, 陈秋红, 等. 高原鼠兔红细胞 2, 3-DPG 含量的测定.高原医学杂志[J]. 1997, 7 (1): 38-40.
    [30] Beall C.M., Reichsman A.B.. Hemoglobin level in a Himalayan high altitude population. Am. J. Phys. Anthropol., 1980, 63: 301-306.
    [31] Adams W., Graves I.L., Pyakural S.. Hemotologic observation on the Yak. Proc. Soc. Exp. Biol. Med., 1975, 148: 701-708.
    [32] 马志军, 王可, 张先钧. 高原灰尾兔和高原鼠兔骨髓红细胞 Feret’s 直径研究[J]. 高原医学杂志, 2000, 10 (3): 6-7.
    [33] 张彦博. 人与高原[M]. 第一版. 青海人民出版社. 1996, 81-89, 51-60, 292-296.
    [34] 叶润蓉, 曹伊凡. 高原鼠兔血清无机元素含量的分析[J]. 兽类学报, 1999, 19 (1): 43-47.
    [35] 顾浩平, 杨之, 滕国奇, 等. 高原鼠兔血红蛋白氧亲和力P50的测定[J]. 中国应用生理学杂志, 1991, 7 (4): 365-367.
    [36] 何加强, 许存和, 孟宪法, 等. 鼠兔与平原大鼠血液携氧能力的比较研究[J]. 解放军预防医学杂志, 1994, 12 (6): 431-435.
    [37] Heath D., Williams D.R.. In Man at High Altitude, 2 nd ed. New York: Churchill Livingstone, 1981. page 269-281.
    [38] Ackers G.K.. Link function in allosteric, an exact theory for the effect of organic phosphates on oxygen affinity of hemoglobin. Biochemistry, 1979, 18: 373-378.
    [39] Maibaurl H., Oelz O., Bartsch P.. Interaction between Hb Mg, DPG, and determine the change in HbO2 affinity at high altitude. J. Appl. Physiol., 1993, 74: 40-48.
    [40] Maibaurl H., Schobersberger W., Oelz O., et al. Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2, 3-diphosphoglycerate. J. Appl. Physiol.,1990, 68: 1186-1194.
    [41] Carlone S., Serra P., Farber M.O., et al. Red blood cell alkalosis and deceased oxyhemoglobin affinity. Am. J. Med. Sci., 1982, 284: 8-16.
    [42] 佘海如, 格日力, 陈秋红, 等. 高原红细胞增多症患者 2, 3-DPG 和氧亲和力变化的探讨[J]. 中国应用生理学杂志, 1995, 11: 205-207.
    [43] 俞诗源, 尤启斌. 鼠兔肺毛细血管铸型的扫描电镜观察[J]. 西北师范大学学报, 1996, 32: 115-117.
    [44] Durmowicz A.S., Hofmeister S., Kadyraliev T.K., et al. Functional and structural adaptation of the Yak pulmonary circulation to residence at high altitude. J. Appl. Physiol., 1993, 74: 2267-2285.
    [45] Groves B.M., Droma T., Sutton J.R., et al. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3 685 m. J. Appl. Physiol., 1993, 74: 312-318.
    [46] Heath D.. Mast cell in the human lung at high altitude. Int .J. Biometeorol., 1992, 36: 210-231.
    [47] Tucker A., McMurtry I.F., Alexander A.F., et al. Lung mast cell density and distribution in chronically hypoxic animals. J. Appl. Physiol., 1977, 42: 174-178.
    [48] Batney M.D., Bahadori L., Gold L.I.. Vascular remodeling in primary pulmonary hypertension. Potentional role for transforming growth factor-β. Am. J. Pathol., 1994, 144: 285-295.
    [49] Chen Q.H., Ge R.L., Wang X.Z., et al. Exercise performance of Tibetan and Han adolescents at altitude of 3 147 and 4 300 m. J. Appl. Physiol., 1997, 83: 661-667.
    [50] 王晓勤, 王占刚, 陈秋红, 等. 高原鼠兔肺动脉压与 NO 的变化[J]. 高原医学杂志, 2001, 11 (1): 2-6.
    [51] 王晓勤, 王占刚, 陈秋红, 等. 慢性缺氧大鼠肺血管结构与 NO 的变化[J]. 高原医学杂志, 2001, 11 (1): 5-8.
    [52] 陈秋红. 高原鼠兔肺动脉血管功能及形态变化[J]. 中国应用生理学杂志, 2001, 17 (2): 178-181.
    [53] 陈秋红, 刘凤云. 高原鼠兔低氧适应机制的研究概况[J]. 动物学杂志, 2003, 38 (5): 109-113.
    [54] 刘国富, 温得启, 韩思梗, 等. 高原鼠兔乳酸脱氢酶同工酶对低氧环境的应答[J]. 兽类学报, 1988, 1: 60-64.
    [55] Li Q.F., Sun R.Y., Huang C.X., et al. Gold adaptive thermogenesis in small mammals from different geographical zones of China. Comp. Biochem. Physiol. A Mol. Intergr. Physiol., 2001, 129: 949-961.
    [56] 杜继增, 李庆芬, 陈晓光. 模拟高原对高原鼠兔和大白鼠肝脏的影响[J]. 动物学报, 1984, 171: 201-203.
    [57] Ahima R.S., Flier J.S.. Adipose tissue as an endocrine organ. Trends. Endocrinol. Metab., 2000, 11: 327-332.
    [58] Yang J., Zhao X.Q., Guo S.C., et al. Leptin cDNA cloning and its Mrna expression in plateau pikas (Ochotona curzoniae) from different altitudes on Qinghai-Tibet Plateau. Biochemical and Biophysical Research Communications, 2006, 345: 1405-1413.
    [59] Zhao T.B., Ning H.X., Zhu S.S., et al. Cloning of hypoxia-inducible factor 1αcDNA from a high hypoxia tolerant mammal- plateau pika (Ochotona curzoniae). Biochemical and Biophysical Research Communications, 2004, 316: 565-572.
    [60] Yang Y.Z., Cao Y., Jin G.E., et al. Molecular cloning and characterization of hemoglobin αand β chains from plateau pika (Ochotona curzoniae) living at high altitude. Gene, dio: 10. 1016/j. gene. 2007. 07. 31.
    [61] 钟光辉, 起光勇, 字向东, 等. 九龙牦牛产肉性能的研究(初报)[J]. 西南民族学院学报(畜牧兽医版), 1989, 3: 1-17.
    [62] 孙宏夫, 石雪君. 平原地区狗进入高原后对其主要脏器组织形态学的光镜和电镜观察[J]. 高原医学杂志, 1982, 1: 53-55.
    [63] 贾荣莉. 不同海拔绵羊肺部血管的比较观察[J]. 中国兽医科技, 1997, 27 (10): 44.
    [64] 俞红贤. 藏羊肺组织形态测量指标及其与高原低氧的关系[J]. 中国兽医科技, 1999, 29 (7): 15-16.
    [65] 张勤文. 不同海拔地区牦牛的肺组织形态学比较[J]. 中国兽医科技, 2004, 34 (2): 73-74.
    [66] 陈秋生, 冯霞, 姜生成. 牦牛肺脏高原适应性的结构研究[J]. 中国农业科学, 2006, 39 (10): 2107-2113.
    [67] Heath D.. The pulmonary arteries of the Yak. Cardio. Res., 1984, 18: 133-139.
    [68] 胡琳, 陈华伟, 许子俊. 高原鼠兔肺表面活性物质的研究[J]. 高原医学杂志, 1997, 7 (1):27-29.
    [69] Lindstedt S.L., Hokanson J.F., Wells D.J., et al. Running energetics in the Pronghorn antelope. Nature, 1991, 353: 748-750.
    [70] Weibel E.R.. Understanding the limitation of O2 supply through comparative physiology. Respiration Physiology, 1999, 118: 85-93.
    [71] 刘凤云, 陈秋红. 低氧对高原鼠兔和大鼠血液 NO 与 ET-1 的影响[J]. 兽类学报, 2005, 26 (1): 94-97.
    [72] Howell K., Preston R.J., McLoughlin P.. Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. J. Physiol., 2003, 547 (1): 133-145.
    [73] Harris P., Heath D., Smith P., et al. Pulmonary circulation of the llama at high and low altitudes. Thorax., 1982, 37: 38-45.
    [74] Tucker A., McMurtry I.F., Reeves J.T., et al. Lung vascular smooth muscle as a determinant of pulmonary hypertension at high altitude. Am. J. Physiol., 1975, 288 (3): 762-766.
    [75] Frid M.G., Aldashev A.A., Dempsey E.C., et al. Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities. Circulation Research, 1997, 81: 940-952.
    [76] Heath D., Edwards C., Winson M., et al. Effects on the right ventricle, pulmonary vasculature, and carotid bodies of the rat of exposure to, and recovery from, simulated high altitude. Thorax., 1973, 28: 24-28.
    [77] Rabinovitch M., Gamble W., Nadas A.S., et al. Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am. J. Physiol., 1979, 236: H 818-827.
    [78] Grover R.F., Wagner W.W., McMurtry I.F., et al. Pulmonary Circulation. In Handbook of Physiology The Cardiovascular System, vol. 3, ed. Shepard J.T., Aboud F.M.. American Physiological Society, Bethesda, MD. 1983. page 103-136.
    [79] Meyrick B., Reid L.. Pulmonary hypertension. Anatomic and physiologic correlates. Clin. Chest Med., 1983, 4: 199-217.
    [80] Fishman A.P.. Pulmonary circulation. In American Handbook of Physiology. The Respiratory System, vol. I, ed. Fishman A.P., Fisher A.B.. American Physiological Society, Bethesda, MD. 1985. page 93-165.
    [81] Jones R., Reid L.. Vascular remodelling in clinical and experimental pulmonary hypertensions. Pulmonary Vascular Remodelling. ed. Bishop J.E., Reeves J.T., Laurent G.J.. London: Portland Press Ltd, 1995. page 47-116.
    [82] 黄秀霞, 庞宝森, 王辰, 等. 低氧性肺动脉高压大鼠肺功能的变化[J]. 基础医学与临床, 2002, 22 (4): 328-329.
    [83] 杨晓静, 毛宝玲, 钱桂生, 等. 肺动脉高压大鼠模型的复制[J]. 上海实验动物科学, 1997, 17 (4): 199-202.
    [84] Kovalenko T.N., Pozharov V.P., Seredenko M.M.. Effect of acute hypoxic hypoxia on the thickness of the lung air-blood barrier. Morphology and pathomorphology, 1980, 89 (1): 66-68.
    [85] 高彦明, 何艳梅, 王静. 50 例高原红细胞增多症患者肺功能测定结果分析[J]. 西藏科技.高原医学, 2003, 12: 38, 46.
    [86] Barer G., Emery C., Stewart A., et al. Endothelial control of the pulmonary circulation in normal and chronically hypoxic rats. J. Physiol. (Lond), 1993, 463: 1-16.
    [87] Cremona G., Higenbottam T., Takao M., et al. Nature and site of action of endogenous nitric oxide in vasculature of isolated pig lungs. J. Appl. Physiol., 1997, 82: 23-31.
    [88] Janssens S.P., Bloch K.D., Nong Z., et al. Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats. J. Clin. Invest., 1996, 98: 317-324.
    [89] Fagan J.M., Rex S.E., Hayes-Licitra S.A., et al. L-Arginine reduces right heart hypertrophy in hypoxia-induced pulmonary hypertension. Biochem. Biophys. Res. Commun., 1999, 254: 100-103.
    [90] Mitani Y., Maruyama K., Sakurai M.. Prolonged administration of L-arginine ameliorates chronic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation, 1997, 96: 689-697.
    [91] 汪涛, 刘声远, 张珍祥, 等. 用肺组织条作缺氧性肺血管收缩反应研究的探索[J]. 中国病理生理杂志, 2004, 20 (4): 695-696
    [92] Beall C.M., Laskowski D., Strohl K.P., et al. Pulmonary nitric oxide in mountain dwellers. Nature, 2001, 22414 (6862): 411-412.
    [93] 金肆, 叶仕桥, 汪涛, 等. 急性低氧时 Wistar 大鼠与高原鼠兔肺组织内皮型一氧化氮合酶基因表达的变化[J]. 中国组织化学与细胞化学杂志, 2005, 14 (5): 572-576.
    [94] 林红, 蔡英年, 邓希贤, 等. 低氧诱导肺血管平滑肌细胞诱生型一氧化氮合酶基因表达[J]. 基础医学与临床, 1997, 17 (3): 199-203.
    [95] Sime F., Penaloza D., Ruiz L.. Bradycardia, increased cardiac output, and reversal of pulmonary hypertension in altitude natives living at sea level. Br. Heart J., 1971, 33: 647-657.
    [96] Lockhart A., Zelter M., Mensch-Dechene J., et al. Pressure-flow-volume relationships in pulmonary circulation of normal highlanders. J. Appl. Physiol., 1976, 41: 449-456.
    [97] Fried R., Meyrick B., Rabinovitch M., et al. Polycythemia and the acute hypoxic response in awake rats following chronic hypoxia. J. Appl. Physiol., 1983, 55: 1167-1172.
    [98] Rabinovitch M.. Pathobiology of pulmonary hypertension. Extracellular matrix. Clin. Chest Med., 2001, 22: 433-449.
    [99] Stenmark K.R., Mecham R.P.. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu. Rev. Physiol., 1997, 59: 89-144.
    [100] 吴永平. 周细胞在肺腺泡内动脉构型重建中的意义[J]. 国外医学生理病理学临床分册, 1994, 14: 73-75
    [101] 王林, 熊密, 车东媛, 等. 低氧对肺血管周细胞增殖及分化的影响[J]. 中华结核和呼吸杂志, 1999, 22 (3): 176-178.
    [102] Xi S.C., Che D.Y., Zhang W.R.. The inhibitory effect of radix salciae miltiorrhize on hypoxic structural remodeling of intra-acinar pulmonary arteries. J. Tongji Med. Univ., 1994, 14: 148-152.
    [103] Wu Y.P., Che D.Y., Zhang W.R., et al. Role of the pericytes of intra-acinar pulmonary artery in the structural remodeling of pulmonary vessels. J. Tongji Med. Univ., 1995, 15: 16-18.
    [104] 杨之, 何之清, 刘学良. 高原与肺动脉高压(附 83 例微导管分析)[J]. 中华心血管杂志, 1985, 13 (1): 32.
    [105] Hislop A., Reid L.. New finding in pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. Br. J. Exp. Pathol., 1976, 57: 542-554.
    [106] Hislop A., Reid L.. Changes in the pulmonary arteries of the rat during recovery from hypoxia-induced pulmonary hypertension. Br. J. Exp. Pathol., 1977, 58: 653-662.
    [107] Meyrick B., Gamble W., Reid L.. Development of Crotalaria pulmonary hypertension:hemodynamic and structural study. Am. J. Physiol., 1980, 239: H 692-702.
    [108] Meyrick B., Brigham K.L.. Repeated Escherichia coli endotoxin-induced pulmonary inflammation causes chronic pulmonary hypertension in sheep. Structural and functional changes Lab. Invest., 1986, 55: 164-176.
    [109] Partovian C., Adnot S., Raffestin B., et al. Adenobirus-mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats. Am. J. Respir. Cell Mol. Biol., 2000, 23: 762-771.
    [110] Meyrick B., Reid L.. Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall. Am. J. Pathol., 1979, 96: 51-70.
    [111] Emery C.J., Bee D., Barer G.R.. Mechanical properties and reactivity of vessels in isolated perfused lung chronically hypoxic rats. Clin. Sic. (Lond), 1981, 61: 569-580.
    [112] Kay J.M., Suyama K.L., Keane P.M.. Failure to show decrease in small pulmonary blood vessels in rats with experimental pulmonary hypertension. Thorax., 1982, 37: 927-930.
    [113] Finlay M., Barer G.R., Suggett A.J.. Quantitative changes in the rat pulmonary vasculature in chronic hypoxia-relation to haemodynamic changes. Q. J. Exp. Physiol., 1986, 71: 151-163.
    [114] Hansen-Smith F.M., Hudlicka O., Egginton S.. In vivo angiogenesis in adult rat skeletal muscle: early changes in capillary network architecture and ultrastructure. Cell Tissue Res., 1996, 286: 123-136.
    [115] Gambino L.S., Wreford N.G., Bertram J.F., et al. Angiogenesis occurs by vessel elongation in proliferative phase human endometrium. Hum. Reprod., 2002, 17: 1199-1206.
    [116] Ooi H., Cadogan E., Sweeney M., et al. Chronic hypercapnia inhibits hypoxic pulmonary vascular remodeling. Am. J. Physiol., 2000, 278: H 331-338.
    [117] Van Aardt W.J., Bronner G., Buffenstein R.. Hemoglobin-oxygen-affinity and acid-base properties of blood from the fossorial mole-rat Cryptomys hottentotus pretoriae. Comp. Biochem. Physiol., 2007, A 147 (1): 50-56.
    [118] 董宏彬, 洪欣. 血红蛋白与高原低氧适应[J]. 国外医学卫生学分册, 2004, 31 (4): 220-223.
    [119] 李经才. 高山动物对低氧的生理适应[J]. 生理科学进展, 1981, 12 (3): 243-249.
    [120] Kleinschmidt T., Nevo E., Goodman M., et al. Mole rat hemoglobin: Primary structure and evolutionary aspects in a second karyotype of Spalax ehrenbergi, Rodentia, (2n = 52).Biological Chemistry Hoppe-Seyler, 1985, 366 (7): 679-685.
    [121] Reynafarje C., Faura J., Villavicencio D., et al. Oxygen transport of hemoglobin in high-altitude animals (Camelide). J. Appl. Physiol., 1975, 38: 806-810.
    [122] 彭先文, 欧阳熙. 野牦牛(Bos mutus)的生态适应性[J]. 家畜生态, 1999, 20 (3): 20-23.
    [123] 阮宗海, 陈华伟, 魏春英, 等. 不同海拔高原鼠兔大白鼠血红蛋白电泳及血液学对比观察[J]. 高原医学杂志. 1997, 7 (4): 18-22.
    [124] 贾荣莉. 低氧适应动物喜马拉雅旱獭[J]. 解剖科学进展, 1997, 3 (1): 74-76.
    [125] Moor L.G., Amaza F., Villena M., et al.Comparative aspects of high-altitude adaptation in human populations. Adv. Exp. Med. Biol., 2000, 475: 45-62.
    [126] Beall C.M., Decker M.J., Brittenham G.M., et al. An ethiopian pattern of human adaptation to high-altitude hypoxia. PNAS, 2002, 99 (26): 17215-17218.
    [127] 杨静, 李金钢, 何建平, 等. 甘肃鼢鼠血象及其与低氧适应的关系[J]. 动物学杂志, 2006, 41 (2): 112-115.
    [128] 张彦博, 王源, 刘学良, 等. 高原疾病[M]. 青海人民出版社, 1982, 332-339.
    [129] 吴秀凤, 王德族, 周兆年. 慢性低氧下普通大鼠与低氧敏感大鼠德血液气体变化[J]. 中国应用生理学杂志, 1996, 12 (3): 216-218.
    [130] Hays F.L., Bianca W.. Pulmonary hypertension, blood coagulation and aspirin treatment in high altitude exposed cattle. International Journal of Biometeorology, 1976, 20 (1): 56-60.
    [131] 翁庆章, 钟伯光.高原训练的理论与实践[M]. 北京: 人民体育出版社. 2002.
    [132] 张峙, 张鹏, 范正富, 等. 蒜油对急性模拟高原条件下大鼠血气的影响[J]. 医药导报, 2003, 22 (9): 597-599.
    [133] 郑谰, 陆爱云, 周志宏. 低氧运动大鼠血清血管内皮生长因子与动脉血氧分压的相关研究[J]. 体育科学, 2004, 24 (7): 28-30.
    [134] 刘凤云, 陈秋红. 急性低氧对高原土生动物藏系绵羊血气的影响[J]. 动物学杂志, 2006, 41 (1): 48-52.
    [135] Weidner N., Semple J.P., Welch W.R., et al. Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N. Engl. J. Med., 1991, 324: 1-8.
    [136] Weibel E.R., Kistler G.S., Scherle W.F.. Practical stereological methods for morphometric cytology. The Journal of Cell Biology, 1966, 30: 23-38.
    [137] Weibel E.R., Knight B.W.. A morphometric study on the thickness of the pulmonaryair-blood barrier. The Journal of Cell Biology, 1964, 21: 367-384.
    [138] 郑富盛. 细胞形态立体计量学[M]. 北京: 北京医科大学、中国协和医科大学联合出版社. 1990, 19-42, 147-150.
    [139] Howell K., Ooi H., Preston R., et al. Structural basis of hypoxic pulmonary hypertension: the modifying effect of chronic hypercapnia. Exp. Physiol., 2004, 89 (1): 66-72.
    [140] 魏登邦, 张建梅, 魏莲, 等. 高原鼢鼠对低氧高二氧化碳环境适应的相关生理指标的季节性变化[J]. 动物学报, 2006, 52 (5): 871-877.
    [141] Kennerly T.. Microenvironment conditions of the pocket gopher burrow. Tex..J. Sci., 1964, 16: 395-441.
    [142] Kuhnen G.. O2 and CO2 concentrations in burrows of enthermic and hibernating golden hamsters. Comp. Biochem. Physiol. A, 1986, 84: 517-522.
    [143] Shams I., Avivi A., Nevo E.. Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1α. Proc. Natl. Acad. Sci. U.S.A., 2004, 101: 9698-9703.
    [144] Shams I., Nevo E., Avivi A.. Ontogenetic expression of erythropoietin and hypoxia- inducible factor-1 alpha genes in subterranean blind mole rats. FASEB J., 2004, 19: 307-309.
    [145] Vannucci R.C., Towfighi J., Heitjan D.F., et al. Carbon dioxide protects the perinatal bram from hypoxic-ischcmic damage: an experimental study in the immature rat. Pediatrics, 1995, 95: 868-874.
    [146] 谢永宏, 钱贵生, 金发光, 等. 不同气体吸入对高原缺氧犬血流力学及血气的影响[J].第四军医大学学报, 2005, 26 (6): 537-540.
    [147] 叶润蓉, 曹伊凡, 白琴华. 高原鼠兔的血象及其低氧适应的关系[J]. 中国实验动物学报, 1994, 2 (2): 115-120.
    [148] Arieli R., Ar A.. Heart rate responses of the mole rat (Spalax ehrenbergi) in hypercapnic, hypoxic, and cold conditions. Physiological zoology, 1981, 54 (1): 14-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700